- Wouter Castryck, Hendrik Hubrechts, and Frederik Vercauteren, Computing zeta functions in families of Ca, b curves using deformation, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 296-311.
- Jan Denef and Frederik Vercauteren, An extension of Kedlaya's algorithm to Artin-Schreier curves in characteristic 2, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 308–323.[MR]
- S. Galbraith, F. Hess, and F. Vercauteren, Aspects of pairing inversion, IEEE Transactions on Information Theory 54 (2008), no. 12, 5719-5728.[doi/eprint]
- R. Granger and F. Vercauteren, On the discrete logarithm problem on algebraic tori, Crypto 2005: 25th Annual International Cryptology Conference (Santa Barbara, Cal., Lecture Notes in Comput. Sci., vol. 3621, Springer, Berlin, 2005, pp. 66.
- A. Muzereau, N. P. Smart, and F. Vercauteren, The equivalence between the DHP and DLP for elliptic curves used in practical applications, LMS J. Comput. Math. 7 (2004), 50–72 (electronic).[MR]
- Frederik Vercauteren, The hidden root problem, Pairing-Based Cryptography - Pairing, Lecture Notes in Computer Science, vol. 5209, SpringerLink, Berlin, 2008, pp. 89–99.