Number Theory

Zeta and L-functions: Analytic Theory

11Mxx

  1. Peter Borwein, Greg Fee, Ron Ferguson, and Alexa van der Waall, Zeros of partial sums of the Riemann zeta function, Experiment. Math. 16 (2007), no. 1, 21–39.[MR/link]
  2. B. Conrad, K. Conrad, and H. Helfgott, Root numbers and ranks in positive characteristic, Adv. Math. 198 (2005), no. 2, 684–731.[MR]
  3. Gunther Cornelissen, Aristides Kontogeorgis, and Lotte van der Zalm, Arithmetic equivalence for function fields, the Goss zeta function and a generalisation, J. Number Theory 130 (2010), no. 4, 1000–1012.[MR/doi]
  4. Ralf Gerkmann, Relative rigid cohomology and deformation of hypersurfaces, Int. Math. Res. Pap. IMRP (2007), no. 1, Art. ID rpm003, 67.[MR]
  5. Kiran S. Kedlaya and Andrew V. Sutherland, Computing L-series of hyperelliptic curves, Algorithmic Number Theory, Lecture Notes in Computer Science, vol. 5011, 2008, pp. 312–326.
  6. Emmanuel Kowalski, The large sieve, monodromy, and zeta functions of algebraic curves. II. Independence of the zeros, Int. Math. Res. Not. IMRN (2008), Art. ID rnn 091, 57.[MR/arXiv]
  7. Alan G. B. Lauder, A recursive method for computing zeta functions of varieties, LMS J. Comput. Math. 9 (2006), 222–269 (electronic).[MR]
  8. Phil Martin and Mark Watkins, Symmetric powers of elliptic curve L-functions, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 377–392.[MR]
  9. Moritz Minzlaff, Computing zeta functions of superelliptic curves in larger characteristic, Math. Comput. Sci. 3 (2010), 209–224.[doi]
  10. M. P. F. du Sautoy, J. J. McDermott, and G. C. Smith, Zeta functions of crystallographic groups and analytic continuation, Proc. London Math. Soc. (3) 79 (1999), no. 3, 511–534.[MR]
  11. Marcus du Sautoy and Luke Woodward, Nilpotent groups: explicit examples, Zeta Functions of Groups and Rings, Lecture Notes in Computer Science, vol. 1925/2008, Springer Berlin / Heidelberg, 2008, pp. 21–68.
  12. Christopher Voll, Normal subgroup growth in free class-2-nilpotent groups, Math. Ann. 332 (2005), no. 1, 67–79.[MR]
  13. Alexey Zaytsev and Gary McGuire, On the zeta functions of an optimal tower of function fields over F4, preprint (2009), 14 pages.[arXiv]