Special Aspects of Finite or Infinite Groups
- Roger C. Alperin, Platonic triangles of groups, Experiment. Math. 7 (1998), no. 3, 191–219.[MR]
- Daniel Appel and Evija Ribnere, On the index of congruence subgroups of Aut(Fn), J. Algebra 321 (2009), no. 10, 2875–2889.[MR/arXiv]
- Björn Assmann and Stephen Linton, Using the Malcev correspondence for collection in polycyclic groups, J. Algebra 316 (2007), no. 2, 828–848.[MR]
- Huseyin Aydin and Geoff C. Smith, Finite p-quotients of some cyclically presented groups, J. London Math. Soc. (2) 49 (1994), no. 1, 83–92.[MR]
- Tathagata Basak, On Coxeter diagrams of complex reflection groups, preprint (2008), 17 pages.[arXiv]
- C. Bates, D. Bundy, Sarah B. Perkins, and P. Rowley, Commuting involution graphs for finite Coxeter groups, J. Group Theory 6 (2003), no. 4, 461–476.[MR]
- Joan S. Birman, Volker Gebhardt, and Juan González-Meneses, Conjugacy in Garside groups. III. Periodic braids, J. Algebra 316 (2007), no. 2, 746–776.[MR]
- Russell D. Blyth, Rewriting products of group elements I, J. Algebra 116 (1988), no. 2, 506–521.[MR]
- Russell D. Blyth, Rewriting products of group elements II, J. Algebra 119 (1988), no. 1, 246–259.[MR]
- Russell D. Blyth and Robert Fitzgerald Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321 (2009), no. 8, 2139–2148.[MR]
- Russell D. Blyth and Derek J. S. Robinson, Recent progress on rewritability in groups, Group theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 77–85.[MR]
- Russell D. Blyth and Derek J. S. Robinson, Solution of the solubility problem for rewritable groups, J. London Math. Soc. (2) 41 (1990), no. 3, 438–444.[MR]
- John N. Bray, An improved method for generating the centralizer of an involution, Arch. Math. (Basel) 74 (2000), no. 4, 241–245.[MR]
- John N. Bray and Robert T. Curtis, A systematic approach to symmetric presentations II: Generators of order 3, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 1–20.[MR]
- Ronald Brown, Neil Ghani, Anne Heyworth, and Christopher D. Wensley, String rewriting for double coset systems, J. Symbolic Comput. 41 (2006), no. 5, 573–590.[MR/arXiv]
- John Burns and Graham Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997), no. 3, 405–428.[MR]
- Bill Casselman, Computation in Coxeter groups. II. Constructing minimal roots, Represent. Theory 12 (2008), 260–293.[MR]
- Alberto Cavicchioli, E. A. O'Brien, and Fulvia Spaggiari, On some questions about a family of cyclically presented groups, J. Algebra 320 (2008), no. 11, 4063–4072.[MR]
- Arjeh M. Cohen and Luis Paris, On a theorem of Artin, J. Group Theory 6 (2003), no. 4, 421–441.[MR]
- Marston Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30 (1984), no. 1, 73–90.[MR]
- Marston Conder, The symmetric genus of alternating and symmetric groups, J. Combin. Theory Ser. B 39 (1985), no. 2, 179–186.[MR]
- Marston Conder, A family of Hurwitz groups with nontrivial centres, Bull. Austral. Math. Soc. 33 (1986), no. 1, 123–130.[MR]
- Marston Conder, Hurwitz groups with arbitrarily large centres, Bull. London Math. Soc. 18 (1986), no. 3, 269–271.[MR]
- Marston Conder, Groups of minimal genus including C2 extensions of PSL(2,q) for certain q, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 449–460.[MR]
- Marston Conder, Three-relator quotients of the modular group, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 427–447.[MR]
- Marston Conder, Maximal automorphism groups of symmetric Riemann surfaces with small genus, J. Algebra 114 (1988), no. 1, 16–28.[MR]
- Marston Conder, A surprising isomorphism, J. Algebra 129 (1990), no. 2, 494–501.[MR]
- Marston Conder, A question by Graham Higman concerning quotients of the (2,3,7) triangle group, J. Algebra 141 (1991), no. 2, 275–286.[MR]
- Marston Conder, Two element generation of the finite reflection groups, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 181, 95–106.[MR]
- Marston Conder, Combinatorial and computational group-theoretic methods in the study of graphs, maps and polytopes with maximal symmetry, Jack Koolen and Jin Ho Kwak and Ming-Yao Xu, Eds. Applications of Group Theory to Combinatorics, Taylor &Francis Group, London, 2008, pp. 1–11.
- Marston Conder and Peter Dobcsányi, Normal subgroups of the modular group and other Hecke groups, Combinatorial group theory, discrete groups, and number theory, Contemp. Math., vol. 421, Amer. Math. Soc., Providence, RI, 2006, pp. 65–86.[MR]
- M. Cuntz and I. Heckenberger, Finite Weyl groupoids of rank three, preprint (2009), 31 pages.[arXiv]
- R. T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu groups M12 and M24, Groups, combinatorics &geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 380–396.[MR]
- R. T. Curtis, Symmetric presentations. II. The Janko group J1, J. London Math. Soc. (2) 47 (1993), no. 2, 294–308.[MR]
- R. T. Curtis, A. M. A. Hammas, and J. N. Bray, A systematic approach to symmetric presentations I: Involutory generators, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 23–34.[MR]
- Alberto L. Delgado, Amalgams of type F3, J. Algebra 117 (1988), no. 1, 149–161.[MR]
- Matthew J. Dyer, Elementary roots and admissible subsets of coxeter groups, J. Group Theory, to appear (2009).
- Bettina Eick and Delaram Kahrobaei, Polycyclic groups: a new platform for cryptology?, preprint (2004), 47 pages.[arXiv]
- Graham Ellis, On groups with a finite nilpotent upper central quotient, Arch. Math. (Basel) 70 (1998), no. 2, 89–96.[MR]
- Graham Ellis, On the relation between upper central quotients and lower central series of a group, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4219–4234 (electronic).[MR]
- Graham Ellis and Irina Kholodna, Three-dimensional presentations for the groups of order at most 30, LMS J. Comput. Math. 2 (1999), 93–117+2 appendixes (HTML and source code) (electronic).[MR]
- Pavel Etingof and Eric Rains, New deformations of group algebras of Coxeter groups. II, Geom. Funct. Anal. 17 (2008), no. 6, 1851–1871.[MR/link]
- Peter Fleischmann, On pointwise conjugacy of distinguished coset representatives in Coxeter groups, J. Group Theory 5 (2002), no. 3, 269–283.[MR]
- Thomas A. Fournelle and Kenneth W. Weston, Verbal embeddings and a geometric approach to some group presentations, J. Algebra 124 (1989), no. 2, 300–316.[MR]
- Thomas A. Fournelle and Kenneth W. Weston, A geometric approach to some group presentations, Combinatorial Group Theory (College Park, MD, 1988), Contemp. Math., vol. 109, Amer. Math. Soc., Providence, RI, 1990, pp. 25–33.[MR]
- Volker Gebhardt, Computer aided discovery of a fast algorithm for testing conjugacy in braid groups, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 261–285.[MR]
- Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra 213 (2009), no. 2, 250–258.[MR/doi]
- Fritz Grunewald and Alexander Lubotzky, Linear representations of the automorphism group of a free group, Geometric and Functional Analysis 18 (2010), no. 5, 1564–1608.[doi/arXiv]
- Simon Guest, A solvable version of the Baer–Suzuki theorem, Trans. Amer. Math. Soc. 362 (2010), 5909–5946.[MR/arXiv]
- R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Remarks on proficient groups, J. Algebra 326 (2011), no. 1, 169–184.
- R. Haas and A. G. Helminck, Algorithms for twisted involutions in Weyl groups, Preprint (2006), 10 pages.
- George Havas and Derek F. Holt, On Coxeter's families of group presentations, J. Algebra 324 (2010), no. 5, 1076–1082.[MR/doi]
- George Havas, Derek F. Holt, P. E. Kenne, and Sarah Rees, Some challenging group presentations, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 206–213.[MR]
- George Havas, Derek F. Holt, and M. F. Newman, Certain cyclically presented groups are infinite, Comm. Algebra 29 (2001), no. 11, 5175–5178.[MR]
- George Havas, M. F. Newman, Alice C. Niemeyer, and Charles C. Sims, Groups with exponent six, Comm. Algebra 27 (1999), no. 8, 3619–3638.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, Groups of deficiency zero, Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 53–67.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, On the efficiency of some finite groups, Comm. Algebra 32 (2004), no. 2, 649–656.[MR]
- George Havas and Colin Ramsay, Short balanced presentations of perfect groups, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser., vol. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 238–243.[MR]
- George Havas and Colin Ramsay, On proofs in finitely presented groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 457–474.[MR]
- George Havas, J. S. Richardson, and Leon S. Sterling, The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh Sect. A 83 (1979), no. 3-4, 199–203.[MR]
- George Havas and Edmund F. Robertson, Two groups which act on cubic graphs, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 65–68.[MR]
- George Havas and Edmund F. Robertson, Central factors of deficiency zero groups, Comm. Algebra 24 (1996), no. 11, 3483–3487.[MR]
- George Havas, Edmund F. Robertson, and Dale C. Sutherland, Behind and beyond a theorem on groups related to trivalent graphs, J. Aust. Math. Soc. 85 (2008), no. 3, 323–332.
- George Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Internat. J. Algebra Comput. 15 (2005), no. 4, 649–682.[MR]
- George Havas and M. R. Vaughan-Lee, Computing with 4-Engel groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 475–485.[MR]
- George Havas and Michael Vaughan-Lee, On counterexamples to the Hughes conjecture, J. Algebra 322 (2009), no. 3, 791–801.
- Derek F. Holt and Sarah Rees, Computing with abelian sections of finitely presented groups, J. Algebra 214 (1999), no. 2, 714–728.[MR]
- Robert B. Howlett and Yunchuan Yin, Computational construction of irreducible W-graphs for types E6 and E7, J. Algebra 321 (2009), no. 8, 2055–2067.[MR]
- Mervyn C. Hughes and Alun O. Morris, Root systems for two dimensional complex reflection groups, Sém. Lothar. Combin. 45 (2000/01), Art. B45e, 18 pp. (electronic).[MR]
- Stephen P. Humphries, Quotients of Coxeter complexes, fundamental groupoids and regular graphs, Math. Z. 217 (1994), no. 2, 247–273.[MR]
- Stephen P. Humphries, Action of braid groups on determinantal ideals, compact spaces and a stratification of Teichmüller space, Invent. Math. 144 (2001), no. 3, 451–505.[MR/link]
- Stephen P. Humphries, Finite Hurwitz braid group actions on sequences of Euclidean reflections, J. Algebra 269 (2003), no. 2, 556–588.[MR]
- Stephen P. Humphries, Finite Hurwitz braid group actions for Artin groups, Israel J. Math. 143 (2004), 189–222.[MR]
- Stephen P. Humphries, Representations and rigidity of Aut(F3), Internat. J. Algebra Comput. 16 (2006), no. 5, 925–929.[MR]
- Stephen P. Humphries, Subgroups of pure braid groups generated by powers of Dehn twists, Rocky Mountain J. Math. 37 (2007), no. 3, 801–828.[MR]
- Stephen P. Humphries, Subgroups of free groups generated by conjugates of powers of the generators, J. Group Theory 12 (2009), no. 3, 465–485.[MR/doi]
- Enrico Jabara, Automorphisms with finite Reidemeister number in residually finite groups, J. Algebra 320 (2008), no. 10, 3671–3679.[MR]
- Luise-Charlotte Kappe and Robert Fitzgerald Morse, On commutators in groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 531–558.[MR]
- P. E. Kenne, Presentations for some direct products of groups, Bull. Austral. Math. Soc. 28 (1983), no. 1, 131–133.[MR]
- P. E. Kenne, Efficient presentations for three simple groups, Comm. Algebra 14 (1986), no. 5, 797–800.[MR]
- P. E. Kenne, Some new efficient soluble groups, Comm. Algebra 18 (1990), no. 8, 2747–2753.[MR]
- Jennifer D. Key and Johannes Siemons, Regular sets and geometric groups, Results Math. 11 (1987), no. 1-2, 97–116.[MR]
- Anastasia V. Kisil, Gromov conjecture on surface subgroups: Computational experiments, preprint (2010), 11 pages.[arXiv]
- Peter Köhler, Thomas Meixner, and Michael Wester, Triangle groups, Comm. Algebra 12 (1984), no. 13-14, 1595–1625.[MR]
- Joachim König, Solvability of generalized monomial groups, J. Group Theory, to appear (2009).
- Peter Lorimer, Hyperbolic pyritohedra constructed from the Coxeter group [4,3,5], Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 303–321.[MR]
- Arturo Magidin, Capability of nilpotent products of cyclic groups, J. Group Theory 8 (2005), no. 4, 431–452.[MR/arXiv]
- Ivan Marin and Jean Michel, Automorphisms of complex reflection groups, preprint (2007), 39 pages.[arXiv]
- M. F. Newman, On a family of cyclically-presented fundamental groups, J. Aust. Math. Soc. 71 (2001), no. 2, 235–241.[MR]
- M. F. Newman, Automorphism groups of free groups, J. Aust. Math. Soc. 85 (2008), no. 3, 341–345.[MR/doi]
- M. F. Newman and Michael Vaughan-Lee, Engel-4 groups of exponent 5. II. Orders, Proc. London Math. Soc. (3) 79 (1999), no. 2, 283–317.[MR]
- Sarah B. Perkins and Peter J. Rowley, Minimal and maximal length involutions in finite Coxeter groups, Comm. Algebra 30 (2002), no. 3, 1273–1292.[MR]
- Sarah B. Perkins and Peter J. Rowley, On negative orbits of finite Coxeter groups, J. Algebraic Combin. 20 (2004), no. 1, 17–31.[MR]
- Norbert Peyerimhoff and Alina Vdovina, Cayley graph expanders and groups of finite width, preprint (2008), 18 pages.[arXiv]
- W. Plesken and A. Fabiańska, An L2-quotient algorithm for finitely presented groups, J. Algebra 322 (2009), no. 3, 914–935.[MR/doi]
- Evija Ribnere, Sequences of words characterizing finite solvable groups, Monatsh. Math 157 (2009), no. 4, 387–401.
- Mark Sapir, Residual properties of 1-relator groups, preprint (2010), 19 pages.[arXiv]
- Neil Saunders, Minimal faithful permutation degrees for irreducible Coxeter groups, preprint (2008), 11 pages.[arXiv]
- Marcus du Sautoy and Luke Woodward, Nilpotent groups: explicit examples, Zeta Functions of Groups and Rings, Lecture Notes in Computer Science, vol. 1925/2008, Springer Berlin / Heidelberg, 2008, pp. 21–68.
- Mohamed Sayed, Nested symmetric representation of elements of the Suzuki chain groups, Int. J. Math. Math. Sci. 2003 (2003), no. 62, 3931–3948.[MR]
- Jian-Yi Shi, Congruence classes of presentations for the complex reflection groups G(m, 1, n) and G(m, m, n), Indag. Math. (N.S.) 16 (2005), no. 2, 267–288.
- B. de Smit and H. W. Lenstra, Jr., Linearly equivalent actions of solvable groups, J. Algebra 228 (2000), no. 1, 270–285.[MR]
- Pablo Spiga, CI-property of elementary abelian 3-groups, Discrete Math. 309 (2009), no. 10, 3393–3398.[MR]
- P. Christopher Staecker, Computing twisted conjugacy classes in free groups using nilpotent quotients, preprint (2007), 14 pages.[arXiv]
- P. Christopher Staecker, Remnant properties in nielsen coincidence theory, preprint (2008), 16 pages.[arXiv]
- John R. Stembridge, Explicit matrices for irreducible representations of Weyl groups, Represent. Theory 8 (2004), 267–289 (electronic).[MR]
- Polina Strogova, Finding a finite group presentation using rewriting, Symbolic Rewriting Techniques (Ascona, 1995), Progr. Comput. Sci. Appl. Logic, vol. 15, Birkhäuser, Basel, 1998, pp. 267–276.[MR]
- G. Stroth and R. Weiss, Groups with the BNB-property, Geom. Dedicata 35 (1990), no. 1-3, 251–282.[MR]
- M. Chiara Tamburini and M. A. Vsemirnov, Irreducible (237)-subgroups of n[less-than-or-equals slant]7 ii, Journal of Algebra, to appear (2009).[doi]
- Stephen Tawn, A presentation for the pure Hilden group, preprint (2009), 26 pages.[arXiv]
- Michael Vaughan-Lee, The restricted Burnside problem, London Mathematical Society Monographs. New Series, vol. 8, The Clarendon Press Oxford University Press, New York, 1993, pp. xiv+256.[MR]
- Michael Vaughan-Lee, Engel-4 groups of exponent 5, Proc. London Math. Soc. (3) 74 (1997), no. 2, 306–334.[MR]
- Michael Vaughan-Lee, On 4-Engel groups, LMS J. Comput. Math. 10 (2007), 341–353 (electronic).[MR]
- Christopher Voll, Normal subgroup growth in free class-2-nilpotent groups, Math. Ann. 332 (2005), no. 1, 67–79.[MR]
- M. Vsemirnov, Groups G2(p) as quotients of (2,3,7;2p), Transform. Groups 11 (2006), no. 2, 295–304.[MR]
- Richard Weiss, A geometric characterization of the groups M12, He and Ru, J. Math. Soc. Japan 43 (1991), no. 4, 795–814.[MR]
- Uri Weiss, On Shephard groups with large triangles, preprint (2009), 30 pages.[arXiv]
- Gerald Williams, The aspherical Cavicchioli-Hegenbarth-Pepovš generalized Fibonacci groups, J. Group Theory 12 (2009), no. 1, 139–149.[MR/doi]