Representation Theory
- A. Abduh and R. J. List, The characters of the centralizer of an involution in C1, Arch. Math. (Basel) 51 (1988), no. 6, 485–490.[MR]
- Jaume Aguadé, The arboreal approach to pairs of involutions in rank two, Comm. Algebra 37 (2009), no. 3, 1104–1116.[MR/doi]
- Faryad Ali and Jamshid Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'24, Represent. Theory 7 (2003), 300–321 (electronic).[MR]
- Faryad Ali and Jamshid Moori, Fischer-Clifford matrices of the non-split group extension 26·U4(2), Quaest. Math. 31 (2008), no. 1, 27–36.[MR/doi]
- Jianbei An, Dade's conjecture for the Tits group, New Zealand J. Math. 25 (1996), no. 2, 107–131.[MR]
- Jianbei An, The Alperin and Dade conjectures for the simple Held group, J. Algebra 189 (1997), no. 1, 34–57.[MR]
- Jianbei An, John J. Cannon, E. A. O'Brien, and W. R. Unger, The Alperin weight conjecture and Dade's conjecture for the simple group Fi24', LMS J. Comput. Math. 11 (2008), 100–145.[MR]
- Jianbei An and Marston Conder, The Alperin and Dade conjectures for the simple Mathieu groups, Comm. Algebra 23 (1995), no. 8, 2797–2823.[MR]
- Jianbei An and E. A. O'Brien, A local strategy to decide the Alperin and Dade conjectures, J. Algebra 206 (1998), no. 1, 183–207.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Fischer simple group Fi23, Internat. J. Algebra Comput. 9 (1999), no. 6, 621–670.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the O'Nan and Rudivalis simple groups, Comm. Algebra 30 (2002), no. 3, 1305–1348.[MR]
- Jianbei An and E. A. O'Brien, Conjectures on the character degrees of the Harada-Norton simple group HN, Israel J. Math. 137 (2003), 157–181.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Conway simple group Co1, Algebr. Represent. Theory 7 (2004), no. 2, 139–158.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Uno conjectures for the Fischer simple group Fi22, Comm. Algebra 33 (2005), no. 5, 1529–1557.[MR]
- Jianbei An, E. A. O'Brien, and R. A. Wilson, The Alperin weight conjecture and Dade's conjecture for the simple group J4, LMS J. Comput. Math. 6 (2003), 119–140 (electronic).[MR]
- Jianbei An and R. A. Wilson, The Alperin weight conjecture and Uno's conjecture for the Baby Monster B, p odd, LMS J. Comput. Math. 7 (2004), 120–166 (electronic).[MR]
- Henrik Bäärnhielm, Algorithmic problems in twisted groups of Lie type, preprint (2008), 131 pages.[arXiv]
- Martina Balagovic and Arjun Puranik, Irreducible representations of the rational Cherednik algebra associated to the Coxeter group H3, preprint (2010), 28 pages.[arXiv]
- Ayala Bar-Ilan, Tzviya Berrebi, Genadi Chereshnya, Ruth Leabovich, Mikhal Cohen, and Mary Schaps, Explicit tilting complexes for the Broué conjecture on 3-blocks, vol. 1, Cambridge University Press, 2005, pp. 8.[link]
- R. W. Barraclough and R. A. Wilson, The character table of a maximal subgroup of the Monster, LMS J. Comput. Math. 10 (2007), 161–175 (electronic).[MR]
- B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's Property (t), New Mathematical Monographs, Cambridge University Press, Cambridge, 2008, 492 pages.[link]
- C. P. Bendel, D. K. Nakano, B. J. Parshall, and C. Pillen, Cohomology for quantum groups via the geometry of the Nullcone, Preprint (2007), 1–58.
- D. J. Benson and J. F. Carlson, Cohomology of the double cover of the Mathieu group M12, J. Algebra 226 (2000), no. 1, 547–576.[MR]
- David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, Jeremiah Hower, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt, and Caroline Wright, Support varieties for Weyl modules over bad primes, J. Algebra 312 (2007), no. 2, 602–633.
- Christine Bessenrodt, Tensor products of representations of the symmetric groups and related groups, Sūrikaisekikenkyūsho Kōkyūroku (2000), no. 1149, 1–15.[MR]
- Jonah Blasiak, W-graph versions of tensoring with the Sn defining representation, preprint (2008), 43 pages.[arXiv]
- J. D. Bradley and P. E. Holmes, Improved bounds for the spread of sporadic groups, LMS J. Comput. Math. 10 (2007), 132–140 (electronic).[MR]
- John N. Bray and Robert T. Curtis, Monomial modular representations and symmetric generation of the Harada-Norton group, J. Algebra 268 (2003), no. 2, 723–743.[MR]
- Peter A. Brooksbank and Eugene M. Luks, Testing isomorphism of modules, J. Algebra 320 (2008), no. 11, 4020–4029.[MR/doi]
- Peter A. Brooksbank and E. A. O'Brien, Constructing the group preserving a system of forms, Internat. J. Algebra Comput. 18 (2008), no. 2, 227–241.[MR]
- Jon F. Carlson, Constructing endotrivial modules, J. Pure Appl. Algebra 206 (2006), no. 1-2, 83–110.[MR]
- Jon F. Carlson, Support varieties for modules, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 187–204.[MR]
- Jon F. Carlson, When is projectivity detected on subalgebras?, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 205–220.[MR]
- Jon F. Carlson, David J. Hemmer, and Nadia Mazza, The group of endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 83–95.[MR/doi]
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for finite groups of Lie type, J. Reine Angew. Math. 595 (2006), 93–119.[MR]
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 52 (2009), 45–66.[MR/doi]
- Jon F. Carlson and Jacques Thévenaz, Torsion endo-trivial modules, Algebr. Represent. Theory 3 (2000), no. 4, 303–335.[MR]
- Jon F. Carlson and Jacques Thévenaz, The classification of endo-trivial modules, Invent. Math. 158 (2004), no. 2, 389–411.[MR]
- Jon F. Carlson and Jacques Thévenaz, The classification of torsion endo-trivial modules, Ann. of Math. (2) 162 (2005), no. 2, 823–883.[MR]
- Marston Conder, C. R. Leedham-Green, and E. A. O'Brien, Constructive recognition of PSL(2,q), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1203–1221 (electronic).[MR]
- Adán Cortés-Medina and Luis Valero-Elizondo, A computational verification of Alperin's weight conjecture for groups of small order and their prime fields, Rev. Colomb. Mat. 41 (2007), no. 2, 325–331.
- David A. Craven, Simple modules for groups with abelian Sylow 2-subgroups are algebraic, J. Algebra 321 (2009), no. 5, 1473–1479.[MR/arXiv]
- Susanne Danz, On vertices of exterior powers of the natural simple module for the symmetric group in odd characteristic, Arch. Math. (Basel) 89 (2007), no. 6, 485–496.[MR]
- Susanne Danz, Vertices of low-dimensional simple modules for symmetric groups, Comm. Algebra 36 (2008), no. 12, 4521–4539.[MR]
- Susanne Danz, On vertices of completely spittable modules for symmetric groups and simple modules labelled by two part partitions, J. Group Theory 12 (2009), no. 3, 351–385.[MR]
- Susanne Danz and Karin Erdmann, The vertices of a class of Specht modules and simple modules for symmetric groups in characteristic 2, Preprint (2010), 1–32.
- Susanne Danz and Burkhard Külshammer, The vertices and sources of the basic spin module for the symmetric group in characteristic 2, J. Pure Appl. Algebra 213 (2009), no. 7, 1264–1282.[MR]
- Susanne Danz and Burkhard Külshammer, Vertices of simple modules for symmetric groups: A survey, in Proceedings of the International Conference on Modules and Representation Theory, Presa Univ. Clujeană, Cluj-Napoca, 2009, pp. 61–77.[MR/link]
- Susanne Danz and Burkhard Külshammer, Vertices, sources and Green correspondents of the simple modules for the large Mathieu groups, J. Algebra 322 (2009), no. 11, 3919–3949.[MR/doi]
- Susanne Danz, Burkhard Külshammer, and René Zimmermann, On vertices of simple modules for symmetric groups of small degrees, J. Algebra 320 (2008), no. 2, 680–707.[MR]
- Susanne Danz and René Zimmermann, Vertices of simple modules for the symmetric groups in blocks of small weights, Beiträge Algebra Geom. 49 (2008), no. 2, 409–427.[MR]
- Harald Ellers and John Murray, Branching rules for Specht modules, J. Algebra 307 (2007), no. 1, 278–286.[MR/arXiv]
- Pavel Etingof, Frédéric Latour, and Eric Rains, On central extensions of preprojective algebras, J. Algebra 313 (2007), no. 1, 165–175.[MR]
- Pavel Etingof and Eric Rains, Central extensions of preprojective algebras, the quantum Heisenberg algebra, and 2-dimensional complex reflection groups, J. Algebra 299 (2006), no. 2, 570–588.[MR/arXiv]
- Claus Fieker, Minimizing representations over number fields, J. Symbolic Comput. 38 (2004), no. 1, 833–842.[MR]
- Claus Fieker, Minimizing representations over number fields II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752–765.[MR/doi]
- Andrew Francis, The minimal basis for the centre of an Iwahori-Hecke algebra, J. Algebra 221 (1999), no. 1, 1–28.[MR]
- S. P. Glasby and Cheryl E. Praeger, Towards an efficient Meat-axe algorithm using f-cyclic matrices: the density of uncyclic matrices in M(n,q), J. Algebra 322 (2009), no. 3, 766–790.
- H. W. Gollan and T. W. Ostermann, Operation of class sums on permutation modules, J. Symbolic Comput. 9 (1990), no. 1, 39–47.[MR]
- Willem A. de Graaf and Oksana S. Yakimova, Good index behaviour of θ-representations, i, preprint (2010).[arXiv]
- Markus Grassl, Constructing matrix representations of finite groups in characteristic zero, Proceedings 10th Rhine Workshop on Computer Algebra (RWCA06, 2006, pp. 143-148.
- David J. Green, Gröbner bases for p-group algebras, preprint (2009).[arXiv]
- Robert Guralnick and Susan Montgomery, Frobenius-Schur indicators for subgroups and the Drinfeld double of Weyl groups, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3611–3632.[MR/arXiv]
- David J. Hemmer, The complexity of certain Specht modules for the symmetric group, J. Algebraic Combin. 30 (2009), no. 4, 421–427.[MR/doi]
- Stuart Hendren, Extra special defect groups of order p3 and exponent p, J. Algebra 313 (2007), no. 2, 724–760.[MR]
- R. J. Higgs, The bad behavior of representation groups, J. Algebra Appl. 4 (2005), no. 2, 139–151.[MR]
- R. J. Higgs and J. F. Humphreys, Projective character degree patterns of 2-groups, Comm. Algebra 28 (2000), no. 3, 1189–1210.[MR]
- G. Hiss, Algorithms of representation theory, Computer Algebra Handbook, vol. 17, Springer, Berlin, 2003, pp. 84–88.
- Miles Lee Holloway, Derived equivalences for group algebras, PhD Thesis, University of Bristol, 2001.
- Miles Holloway, Broué's conjecture for the Hall-Janko group and its double cover, Proc. London Math. Soc. (3) 86 (2003), no. 1, 109–130.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Computing matrix group decompositions with respect to a normal subgroup, J. Algebra 184 (1996), no. 3, 818–838.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Testing matrix groups for primitivity, J. Algebra 184 (1996), no. 3, 795–817.[MR]
- Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1–16.[MR]
- Shih-Chang Huang, Uno's conjecture for the Chevalley simple groups G2(3) and G2(4), New Zealand J. Math. 35 (2006), no. 2, 155–182.[MR]
- Stephen P. Humphries, Some linear representations of braid groups, J. Knot Theory Ramifications 9 (2000), no. 3, 341–366.[MR]
- I. M. Isaacs, Counting characters of upper triangular groups, J. Algebra 315 (2007), no. 2, 698–719.[MR]
- I. M. Isaacs and Dikran Karagueuzian, Conjugacy in groups of upper triangular matrices, J. Algebra 202 (1998), no. 2, 704–711.[MR]
- I. M. Isaacs and Dikran Karagueuzian, Erratum: "Conjugacy in groups of upper triangular matrices" [J. Algebra 202 (1998), no. 2, 704–711; MR1617655 (99b:20011)], J. Algebra 208 (1998), no. 2, 722.[MR]
- I. M. Isaacs and Tom Wilde, Primitive characters of maximal subgroups of solvable groups, J. Algebra 323 (2010), no. 2, 419–436.[MR/doi]
- Christoph Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math. 8 (2005), 122–144 (electronic).[MR]
- D. Joyner, Arithmetic of characters of generalized symmetric groups, Arch. Math. (Basel) 81 (2003), no. 2, 113–120.[MR]
- D. B. Karagueuzian and P. Symonds, The module structure of a group action on a polynomial ring: Examples, generalizations, and applications, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 139–158.[MR/link]
- Dikran B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring, J. Algebra 218 (1999), no. 2, 672–692.[MR]
- Dikran B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring: a finiteness theorem, J. Amer. Math. Soc. 20 (2007), no. 4, 931–967 (electronic).[MR]
- Hyun Kyu Kim and Gerhard O. Michler, Construction of Co1 from an irreducible subgroup M24 of GL11(2), preprint (2009), 220 pages.[arXiv]
- Markus Kirschmer, Finite symplectic matrix groups, preprint, 21 pages.[arXiv]
- Joachim König, Solvability of generalized monomial groups, preprint (2009), 21 pages.[arXiv]
- L. G. Kovács and Ralph Stöhr, Lie powers of the natural module for GL(2), J. Algebra 229 (2000), no. 2, 435–462.[MR]
- M. Kratzer, G. O. Michler, and M. Weller, Harada group uniquely determined by centralizer of a 2-central involution, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 303–372.[MR]
- Mathias Kratzer, Konkrete Charaktertafeln und kompatible Charaktere, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 30, Universität Essen Fachbereich Mathematik, Essen, 2001, pp. vi+106.[MR]
- Mathias Kratzer, Constructing pairs of compatible characters, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 285–302.[MR]
- Matthias Künzer, On representations of twisted group rings, J. Group Theory 7 (2004), no. 2, 197–229.[MR/link]
- Matthias Künzer and Andrew Mathas, Elementary divisors of Specht modules, European J. Combin. 26 (2005), no. 6, 943–964.[MR]
- Alain LeBel, D. L. Flannery, and K. J. Horadam, Group algebra series and coboundary modules, J. Pure Appl. Algebra 214 (2010), no. 7, 1291–1300.[MR/doi]
- W. Lempken and R. Staszewski, A construction of \widehat 3McL and some representation theory in characteristic 5, Linear Algebra Appl. 192 (1993), 205–234.[MR]
- W. Lempken and R. Staszewski, Some 5-modular representation theory for the simple group McL, Comm. Algebra 21 (1993), no. 5, 1611–1629.[MR]
- W. Lempken and R. Staszewski, The structure of the projective indecomposable modules of \hat 3M22 in characteristic 2, Math. Comp. 62 (1994), no. 206, 841–850.[MR]
- Mark L. Lewis, Generalizing a theorem of Huppert and Manz, J. Algebra Appl. 6 (2007), no. 4, 687–695.[MR]
- Mark L. Lewis, A group with three real irreducible characters: answering a question of Moretó and Navarro, J. Algebra Appl. 8 (2009), no. 4, 453–459.[MR/doi/arXiv]
- Mark L. Lewis, The vanishing-off subgroup, J. Algebra 321 (2009), no. 4, 1313–1325.[MR]
- Kay Jin Lim, The varieties for some Specht modules, J. Algebra 321 (2009), no. 8, 2287–2301.[MR]
- K. Lux and H. Pahlings, Computational aspects of representation theory of finite groups, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 37–64.[MR]
- Kay Magaard, E. A. O'Brien, and Ákos Seress, Recognition of small dimensional representations of general linear groups, J. Aust. Math. Soc. 85 (2008), no. 2, 229–250.[MR]
- Ivan Marin and Jean Michel, Automorphisms of complex reflection groups, preprint (2007), 39 pages.[arXiv]
- Conchita Martinez-Perez and Wolfgang Willems, The trivial intersection problem for characters of principal indecomposable modules, Adv. Math. 222 (2009), no. 4, 1197–1219.
- Gerhard O. Michler, Some problems in computational representation theory, J. Symbolic Comput. 9 (1990), no. 5-6, 571–582.[MR]
- Gerhard O. Michler and Andrea Previtali, Another existence and uniqueness proof for the Higman-Sims simple group, Algebra Colloq. 12 (2005), no. 3, 369–398.[MR]
- Gerhard O. Michler and Øyvind Solberg, Testing modules of groups of even order for simplicity, J. Algebra 202 (1998), no. 1, 229–242.[MR]
- Gerhard O. Michler and Michael Weller, A new computer construction of the irreducible 112-dimensional 2-modular representation of Janko's group J4, Comm. Algebra 29 (2001), no. 4, 1773–1806.[MR]
- Gerhard O. Michler and Michael Weller, The character values of the irreducible constituents of a transitive permutation representation, Arch. Math. (Basel) 78 (2002), no. 6, 417–429.[MR]
- Vanessa Miemietz, On representations of affine hecke algebras of type B, PhD Thesis, Universität Stuttgart, 2005.
- Torsten Minkwitz, Extensions of irreducible representations, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 5, 391–399.[MR]
- Mohammad Reza R. Moghaddam, Ali Reza Salemkar, and Taghi Karimi, Some inequalities for the order of the Schur multiplier of a pair of groups, Comm. Algebra 36 (2008), no. 7, 2481–2486.[MR]
- Alexander Moretó, Complex group algebras of finite groups: Brauer's problem 1, Adv. Math. 208 (2007), no. 1, 236–248.[MR]
- J. Neubüser, H. Pahlings, and W. Plesken, CAS; design and use of a system for the handling of characters of finite groups, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 195–247.[MR]
- Peter M. Neumann and Cheryl E. Praeger, Cyclic matrices and the MEATAXE, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 291–300.[MR]
- E. A. O'Brien, Towards effective algorithms for linear groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 163–190.[MR]
- Th. Ostermann, Charaktertafeln von Sylownormalisatoren sporadischer einfacher Gruppen, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 14, Universität Essen Fachbereich Mathematik, Essen, 1986, pp. x+187.[MR]
- W. Plesken, Finite unimodular groups of prime degree and circulants, J. Algebra 97 (1985), no. 1, 286–312.[MR]
- W. Plesken and D. Robertz, Representations, commutative algebra, and Hurwitz groups, J. Algebra 300 (2006), no. 1, 223–247.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). III. The nine-dimensional case, Math. Comp. 34 (1980), no. 149, 245–258.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). IV. Remarks on even dimensions with applications to n = 8, Math. Comp. 34 (1980), no. 149, 259–275.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). V. The eight-dimensional case and a complete description of dimensions less than ten, Math. Comp. 34 (1980), no. 149, 277–301, loose microfiche suppl.[MR]
- Andrea Previtali, Unitriangular actions on quadratic forms and character degrees, Linear Algebra Appl. 408 (2005), 120–150.[MR]
- Andrea Previtali, Irreducible constituents of monomial representations, J. Symbolic Comput. 41 (2006), no. 12, 1345–1359.[MR]
- M. Anwar Rao and Robert Sandling, The characterisation of modular group algebras having unit groups of nilpotency class 3, Canad. Math. Bull. 38 (1995), no. 1, 112–116.[MR]
- M. Anwar Rao and Robert Sandling, Vanishing orbit sums in group algebras of p-groups, Groups '93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 507–511.[MR]
- William F. Reynolds, Noncommutators and the number of projective characters of a finite group, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 71–74.[MR]
- Daniel Robbins, Broue's abelian defect group conjecture for the Tits group, preprint (2008), 23 pages.[arXiv]
- Robert Sandling, The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math. (Basel) 52 (1989), no. 1, 22–27.[MR]
- Travis Schedler, Hochschild homology of preprojective algebras over the integers, preprint (2007), 103 pages.[arXiv]
- Gerhard J. A. Schneider, The vertices of the simple modules of M12 over a field of characteristic 2, J. Algebra 83 (1983), no. 1, 189–200.[MR]
- Gerhard J. A. Schneider, PSL(3,4) in characteristic 3, Comm. Algebra 15 (1987), no. 8, 1543–1547.[MR]
- Gerhard J. A. Schneider, The structure of the projective indecomposable modules of the Suzuki group Sz(8) in characteristic 2, Math. Comp. 60 (1993), no. 202, 779–786, S29–S32.[MR]
- Michael C. Slattery, Character degrees of finite p-groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 89–92.[MR]
- Michael C. Slattery, Character degrees and derived length in p-groups, Glasgow Math. J. 30 (1988), no. 2, 221–230.[MR]
- Michael C. Slattery, Character degrees of normally monomial maximal class 5-groups, Contemporary Mathematics 524 (2010), 153–159.
- Bernd Souvignier, Decomposing homogeneous modules of finite groups in characteristic zero, J. Algebra 322 (2009), no. 3, 948–956.
- Britta Späth, The McKay conjecture for exceptional groups and odd primes, Math. Z. Online first (2008), 25.
- Peter Symonds, Cyclic group actions on polynomial rings, Bull. Lond. Math. Soc. 39 (2007), no. 2, 181–188.[MR/link]
- Katsushi Waki, Calculation of direct summands of FG-modules, Sci. Rep. Hirosaki Univ. 44 (1997), no. 2, 193–200.[MR]
- Michael Weller, Construction of large permutation representations for matrix groups II, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 463–488.[MR]
- Mark Wildon, Character values and decomposition matrices of symmetric groups, J. Algebra 319 (2008), no. 8, 3382–3397.[MR/arXiv]
- Mark Wildon, Multiplicity-free representations of symmetric groups, J. Pure Appl. Algebra 213 (2009), no. 7, 1464–1477.[MR]
- Pawel Wocjan, Martin Rötteler, Dominik Janzing, and Thomas Beth, Universal simulation of Hamiltonians using a finite set of control operations, Quantum Inf. Comput. 2 (2002), no. 2, 133–150.[MR]
- Martin Wursthorn, Isomorphisms of modular group algebras: an algorithm and its application to groups of order 26, J. Symbolic Comput. 15 (1993), no. 2, 211–227.[MR]