Ordinary Differential Equations
- Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, preprint (2005), 24 pages.[arXiv]
- Philip Boalch, Higher genus icosahedral Painlevé curves, Funk. Ekvac. (Kobe), 50 (2007), 19–32.[arXiv]
- A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic, Fast computation of power series solutions of systems of differential equations, in SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007, pp. 1012–1021.[arXiv]
- Alin Bostan, Thomas Cluzeau, and Bruno Salvy, Fast algorithms for polynomial solutions of linear differential equations, ISSAC'05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2005, pp. 45–52 (electronic).[MR]
- Delphine Boucher, Philippe Gaillard, and Felix Ulmer, Fourth order linear differential equations with imprimitive group, in ISSAC '03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2003, pp. 45–49 (electronic).[MR]
- Olivier Cormier, On Liouvillian solutions of linear differential equations of order 4 and 5, in ISSAC '01: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 93–100 (electronic).[MR]
- Christopher M. Cosgrove, Chazy classes IX–XI of third-order differential equations, Stud. Appl. Math. 104 (2000), no. 3, 171–228.[MR]
- Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006, pp. xvi+298.[MR]
- Winfried Fakler, Algorithmen zur symbolischen lösung homogener linearer differentialgleichungen, Master's Thesis, Universität Karlsruhe, 1994.
- Chris M. Field and Chris M. Ormerod, An ultradiscrete matrix version of the fourth Painlevé equation, Adv. Difference Equ. (2007), Art. ID 96752, 14.[MR/arXiv]
- Armengol Gasull and Joan Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math. 31 (2001), no. 4, 1277–1303.[MR/doi]
- Jaume Giné and Xavier Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math. 166 (2004), no. 2, 465–476.[MR]
- Sabrina A. Hessinger, Computing the Galois group of a linear differential equation of order four, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 489–536.[MR]
- V. A. Krasikov and T. M. Sadykov, Linear differential operators for generic algebraic curves, preprint (2010).[arXiv]
- Sonja Lauer, Entwurf von Algorithmen zur Konstruktion von Differentialgleichungen mit vorgegebener endlicher Galoisgruppe, Master's Thesis, Universität Karlsruhe, 2005.
- Sonja Lauer, Entwurf von algorithmen zur konstruktion von differentialgleichungen mit vorgegebener endlicher galoisgruppe, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 2006.
- Stefan Măruşter, Viorel Negru, Dana Petcu, and Călin Sandru, Intelligent front-end for solving differential and non-linear equations systems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 258 (1999), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 4, 318–334, 361.[MR]
- Michael F. Singer, Testing reducibility of linear differential operators: A group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 2, 77–104.[MR]
- Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36.[MR]
- Michael F. Singer and Felix Ulmer, Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 37–73.[MR]
- Michael F. Singer and Felix Ulmer, On a third order differential equation whose differential Galois group is the simple group of 168 elements, Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), Lecture Notes in Comput. Sci., vol. 673, Springer, Berlin, 1993, pp. 316–324.[MR]
- Michael F. Singer and Felix Ulmer, Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput. 6 (1995), no. 1, 1–22.[MR]
- Felix Ulmer, On algebraic solutions of linear differential equations with primitive unimodular Galois group, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 446–455.[MR]
- Felix Ulmer, On Liouvillian solutions of linear differential equations, Appl. Algebra Engrg. Comm. Comput. 2 (1992), no. 3, 171–193.[MR]
- Felix Ulmer, Liouvillian solutions of third order differential equations, J. Symbolic Comput. 36 (2003), no. 6, 855–889.[MR]