Analysis

Ordinary Differential Equations

34Xxx

  1. Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, preprint (2005), 24 pages.[arXiv]
  2. Philip Boalch, Higher genus icosahedral Painlevé curves, Funk. Ekvac. (Kobe), 50 (2007), 19–32.[arXiv]
  3. A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic, Fast computation of power series solutions of systems of differential equations, in SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007, pp. 1012–1021.[arXiv]
  4. Alin Bostan, Thomas Cluzeau, and Bruno Salvy, Fast algorithms for polynomial solutions of linear differential equations, ISSAC'05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2005, pp. 45–52 (electronic).[MR]
  5. Delphine Boucher, Philippe Gaillard, and Felix Ulmer, Fourth order linear differential equations with imprimitive group, in ISSAC '03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2003, pp. 45–49 (electronic).[MR]
  6. Olivier Cormier, On Liouvillian solutions of linear differential equations of order 4 and 5, in ISSAC '01: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 93–100 (electronic).[MR]
  7. Christopher M. Cosgrove, Chazy classes IX–XI of third-order differential equations, Stud. Appl. Math. 104 (2000), no. 3, 171–228.[MR]
  8. Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006, pp. xvi+298.[MR]
  9. Winfried Fakler, Algorithmen zur symbolischen lösung homogener linearer differentialgleichungen, Master's Thesis, Universität Karlsruhe, 1994.
  10. Chris M. Field and Chris M. Ormerod, An ultradiscrete matrix version of the fourth Painlevé equation, Adv. Difference Equ. (2007), Art. ID 96752, 14.[MR/arXiv]
  11. Armengol Gasull and Joan Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math. 31 (2001), no. 4, 1277–1303.[MR/doi]
  12. Jaume Giné and Xavier Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math. 166 (2004), no. 2, 465–476.[MR]
  13. Sabrina A. Hessinger, Computing the Galois group of a linear differential equation of order four, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 489–536.[MR]
  14. V. A. Krasikov and T. M. Sadykov, Linear differential operators for generic algebraic curves, preprint (2010).[arXiv]
  15. Sonja Lauer, Entwurf von Algorithmen zur Konstruktion von Differentialgleichungen mit vorgegebener endlicher Galoisgruppe, Master's Thesis, Universität Karlsruhe, 2005.
  16. Sonja Lauer, Entwurf von algorithmen zur konstruktion von differentialgleichungen mit vorgegebener endlicher galoisgruppe, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 2006.
  17. Stefan Măruşter, Viorel Negru, Dana Petcu, and Călin Sandru, Intelligent front-end for solving differential and non-linear equations systems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 258 (1999), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 4, 318–334, 361.[MR]
  18. Michael F. Singer, Testing reducibility of linear differential operators: A group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 2, 77–104.[MR]
  19. Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36.[MR]
  20. Michael F. Singer and Felix Ulmer, Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 37–73.[MR]
  21. Michael F. Singer and Felix Ulmer, On a third order differential equation whose differential Galois group is the simple group of 168 elements, Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), Lecture Notes in Comput. Sci., vol. 673, Springer, Berlin, 1993, pp. 316–324.[MR]
  22. Michael F. Singer and Felix Ulmer, Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput. 6 (1995), no. 1, 1–22.[MR]
  23. Felix Ulmer, On algebraic solutions of linear differential equations with primitive unimodular Galois group, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 446–455.[MR]
  24. Felix Ulmer, On Liouvillian solutions of linear differential equations, Appl. Algebra Engrg. Comm. Comput. 2 (1992), no. 3, 171–193.[MR]
  25. Felix Ulmer, Liouvillian solutions of third order differential equations, J. Symbolic Comput. 36 (2003), no. 6, 855–889.[MR]