Group Theory

Linear Algebraic Groups

20Gxx

  1. Maximilian Albert and Annette Maier, Additive polynomials for finite groups of Lie type, preprint (2009), 59 pages.[arXiv]
  2. Henrik Bäärnhielm, Tensor decomposition of the Ree groups, Preprint (2006), 9 pages.[link]
  3. László Babai and Robert Beals, A polynomial-time theory of black box groups. I, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge, 1999, pp. 30–64.[MR]
  4. Tatiana Bandman, Fritz Grunewald, Boris Kunyavskii, and Nathan Jones, Geometry and arithmetic of verbal dynamical systems on simple groups, Groups, Geometry, and Dynamics 4 (2010), no. 4, 607–655.[arXiv]
  5. C. Bates, D. Bundy, Sarah B. Perkins, and P. Rowley, Commuting involution graphs in special linear groups, Comm. Algebra 32 (2004), no. 11, 4179–4196.[MR]
  6. C. P. Bendel, D. K. Nakano, B. J. Parshall, and C. Pillen, Cohomology for quantum groups via the geometry of the Nullcone, Preprint (2007), 1–58.
  7. Christopher P. Bendel, Daniel K. Nakano, and Cornelius Pillen, Second cohomology groups for Frobenius kernels and related structures, Adv. Math. 209 (2007), no. 1, 162–197.[MR/link]
  8. John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, Certain classical groups are not well-defined, J. Group Theory 12 (2009), no. 2, 171–180.[MR]
  9. Peter A. Brooksbank, Fast constructive recognition of black box symplectic groups, J. Algebra 320 (2008), no. 2, 885–909.[MR]
  10. Donald I. Cartwright, Groups acting simply transitively on the vertices of a building of type An, Groups of Lie Type and Their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 43–76.[MR]
  11. Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type A2. I, Geom. Dedicata 47 (1993), no. 2, 143–166.[MR]
  12. Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type A2. II. The cases q = 2 and q = 3, Geom. Dedicata 47 (1993), no. 2, 167–223.[MR]
  13. Tracey Cicco, Algorithms for Computing Restricted Root Systems and Weyl Groups, PhD Thesis, North Carolina State University, 2006.
  14. Arjeh M. Cohen and Scott H. Murray, An algorithm for Lang's Theorem, J. Algebra 322 (2009), no. 3, 675–702.[MR/arXiv]
  15. Marston Conder, Edmund Robertson, and Peter Williams, Presentations for 3-dimensional special linear groups over integer rings, Proc. Amer. Math. Soc. 115 (1992), no. 1, 19–26.[MR]
  16. Antonio Cossidente and Sam K. J. Vereecke, Some geometry of the isomorphism Sp(4,q)≅O(5,q), q even, J. Geom. 70 (2001), no. 1-2, 28–37.[MR]
  17. L. Di Martino, A. Previtali, and R. Radina, Sets of transvections generating subgroups isomorphic to special linear groups, Comm. Algebra 33 (2005), no. 6, 1663–1691.[MR]
  18. Claus Fieker and Willem A. de Graaf, Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras, LMS J. Comput. Math. 10 (2007), 271–287 (electronic).[MR]
  19. D. L. Flannery and E. A. O'Brien, Linear groups of small degree over finite fields, Internat. J. Algebra Comput. 15 (2005), no. 3, 467–502.[MR]
  20. P. Fleischmann, W. Lempken, and A. E. Zalesskii, Linear groups over GF(2k) generated by a conjugacy class of a fixed point free element of order 3, J. Algebra 244 (2001), no. 2, 631–663.[MR]
  21. Jason Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51–85 (electronic).[MR]
  22. Skip Garibaldi and Michael Carr, Geometries, the principle of duality, and algebraic groups, Expo. Math. 24 (2006), no. 3, 195–234.[MR]
  23. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra 213 (2009), no. 2, 250–258.[MR/doi]
  24. Neil A. Gordon, Trevor M. Jarvis, and Ron Shaw, Aspects of the linear groups GL(n,2), n < 7, J. Combin. Math. Combin. Comput. 53 (2005), 13–31.[MR]
  25. Neil A. Gordon, Guglielmo Lunardon, and Ron Shaw, Linear sections of GL(4,2), Bull. Belg. Math. Soc. Simon Stevin 5 (1998), no. 2-3, 287–311.[MR]
  26. Willem A. de Graaf and Andrea Pavan, Constructing arithmetic subgroups of unipotent groups, J. Algebra 322 (2009), no. 11, 3950–3970.[MR/doi]
  27. Jan E. Grabowski, Examples of quantum cluster algebras associated to partial flag varieties, J. Pure Appl. Algebra, to appear (2010), 19 pages.[arXiv]
  28. Jan E. Grabowski and Stéphane Launois, Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: The finite-type cases, Int.Math.Res. Not, to appear (2010), 24 pages.[doi]
  29. Gerhard Grams, Erzeugende und Relationen gewisser orthogonaler und symplektischer Gruppen über GF(2), Mitt. Math. Sem. Giessen (1987), no. 183, 55–75.[MR]
  30. Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of SL(2,27) in complex exceptional algebraic groups, Michigan Math. J. 50 (2002), no. 1, 89–99.[MR]
  31. Benedict H. Gross and Gabriele Nebe, Globally maximal arithmetic groups, J. Algebra 272 (2004), no. 2, 625–642.[MR]
  32. Robert Guralnick and Susan Montgomery, Frobenius-Schur indicators for subgroups and the Drinfeld double of Weyl groups, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3611–3632.[MR/arXiv]
  33. Gerhard Hiss, Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups, Indag. Math. (N.S.) 15 (2004), no. 2, 223–243.[MR]
  34. R. B. Howlett, L. J. Rylands, and D. E. Taylor, Matrix generators for exceptional groups of Lie type, J. Symbolic Comput. 31 (2001), no. 4, 429–445.[MR]
  35. I. M. Isaacs and Dikran B. Karagueuzian, Involutions and characters of upper triangular matrix groups, Math. Comp. 74 (2005), no. 252, 2027–2033 (electronic).[MR]
  36. William M. Kantor and Ákos Seress, Black box classical groups, Mem. Amer. Math. Soc. 149 (2001), no. 708, viii+168.[MR]
  37. William M. Kantor and Ákos Seress, Computing with matrix groups, Groups, combinatorics &geometry (Durham, 2001), World Sci. Publishing, River Edge, NJ, 2003, pp. 123–137.[MR]
  38. P. H. Kropholler, S. Mohseni Rajaei, and J. Segal, Invariant rings of orthogonal groups over \bf F2, Glasg. Math. J. 47 (2005), no. 1, 7–54.[MR]
  39. Larry Lambe and Bhama Srinivasan, A computation of Green functions for some classical groups, Comm. Algebra 18 (1990), no. 10, 3507–3545.[MR]
  40. C. R. Leedham-Green and E. A. O'Brien, Constructive recognition of classical groups in odd characteristic, J. Algebra 322 (2009), no. 3, 833–881.[MR/doi]
  41. Dimitri Leemans and Laurence Vauthier, An atlas of abstract regular polytopes for small groups, Aequationes Math. 72 (2006), no. 3, 313–320.[MR]
  42. G. I. Lehrer, The cohomology of the regular semisimple variety, J. Algebra 199 (1998), no. 2, 666–689.[MR]
  43. W. Lempken, Constructing J4 in GL(1333,11), Comm. Algebra 21 (1993), no. 12, 4311–4351.[MR]
  44. Martin W. Liebeck and E. A. O'Brien, Finding the characteristic of a group of Lie type, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 741–754.[MR]
  45. Alexander Lubotzky and Igor Pak, The product replacement algorithm and Kazhdan's property (T), J. Amer. Math. Soc. 14 (2001), no. 2, 347–363 (electronic).[MR]
  46. Christopher Macmeikan, Toral arrangements, The COE Seminar on Mathematical Sciences 2004, Sem. Math. Sci., vol. 31, Keio Univ., Yokohama, 2004, pp. 37–54.[MR]
  47. Alice C. Niemeyer and Cheryl E. Praeger, A recognition algorithm for non-generic classical groups over finite fields, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 223–253.[MR]
  48. Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). I. The five and seven dimensional cases, Math. Comp. 31 (1977), no. 138, 536–551.[MR]
  49. Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). II. The six dimensional case, Math. Comp. 31 (1977), no. 138, 552–573.[MR]
  50. Cheryl E. Praeger, Primitive prime divisor elements in finite classical groups, Groups St. Andrews 1997 in Bath, II, London Math. Soc. Lecture Note Ser., vol. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 605–623.[MR]
  51. L. J. Rylands and D. E. Taylor, Matrix generators for the orthogonal groups, J. Symbolic Comput. 25 (1998), no. 3, 351–360.[MR]
  52. David I. Stewart, The reductive subgroups of G2, J. Group Theory 13 (2010), no. 1, 117–130.[doi/arXiv]
  53. Pham Huu Tiep and A. E. Zalesskii, Some aspects of finite linear groups: a survey, J. Math. Sci. (New York) 100 (2000), no. 1, 1893–1914.[MR]
  54. M. Vsemirnov, Hurwitz groups of intermediate rank, LMS J. Comput. Math. 7 (2004), 300–336 (electronic).[MR]
  55. M. A. Vsemirnov, Is the group SL(6,Z) (2,3)-generated?, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 13, 101–130, 272.[MR]
  56. M. A. Vsemirnov, On the (2,3)-generation of matrix groups over the ring of integers, Algebra i Analiz 19 (2007), no. 6, 22–58.[MR]
  57. Maxim Vsemirnov, The group GL(6,Z) is (2,3)-generated, J. Group Theory 10 (2007), no. 4, 425–430.[MR]