Coding Theory

Lattice Codes

94B10

  1. T. L. Alderson and Keith E. Mellinger, 2-dimensional optical orthogonal codes from Singer groups, Discrete Appl. Math. 157 (2009), no. 14, 3008–3019.[MR/doi]
  2. Masaaki Harada, On the existence of frames of the Niemeier lattices and self-dual codes over Fp, J. Algebra 321 (2009), no. 8, 2345–2352.[MR/doi]
  3. C. Hollanti, J. Lahtonen, and Hsiao-feng Lu, Maximal orders in the design of dense space-time lattice codes, IEEE Transactions on Information Theory 54 (2008), no. 10, 4493-4510.[doi]
  4. C. Hollanti, J. Lahtonen, K. Ranto, and R. Vehkalahti, On the densest MIMO lattices from cyclic division algebras, IEEE Trans. Comp. 55 (2009), no. 8, 3751–3780.[arXiv]
  5. Camilla J. Hollanti, Order-theoretic methods for space-time coding: Symmetric and asymmetric designs, PhD Thesis, Turku Centre for Computer Science, 2008.
  6. Camilla Hollanti, Jyrki Lahtonen, Kalle Ranto, and Roope Vehkalahti, Optimal matrix lattices for MIMO codes from division algebras, in IEEE International Symposium on Information Theory. ISIT 2006, July 2006, pp. 783-787.[doi]
  7. Camilla Hollanti and Hsiao-Feng Lu, Construction methods for asymmetric multiblock space-time codes, IEEE Trans. Inform. Theory 55 (2009), no. 3, 1086–1103.
  8. Camilla Hollanti and Kalle Ranto, Maximal orders in space-time coding: Construction and decoding, 2008.
  9. Jyrki Lahtonen and Camilla Hollanti, A new tool: constructing STBCs from maximal orders in central simple algebras, in IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13–17, 2006, 2006.
  10. Roope Vehkalahti, Class field theoretic methods in the design of lattice signal constellations, PhD Thesis, University of Turku, 2008.