Commutative Algebra

Invariant Theory

13A50

  1. Thomas Bayer, An algorithm for computing invariants of linear actions of algebraic groups up to a given degree, J. Symbolic Comput. 35 (2003), no. 4, 441–449.[MR]
  2. Dave Benson, Dickson invariants, regularity and computation in group cohomology, Illinois J. Math. 48 (2004), no. 1, 171–197.[MR/link]
  3. Mireille Boutin and Gregor Kemper, On reconstructing n-point configurations from the distribution of distances or areas, Adv. in Appl. Math. 32 (2004), no. 4, 709–735.[MR]
  4. Mireille Boutin and Gregor Kemper, On reconstructing configurations of points in P2 from a joint distribution of invariants, Appl. Algebra Engrg. Comm. Comput. 15 (2005), no. 6, 361–391.[MR]
  5. Abraham Broer, On Chevalley-Shephard-Todd's theorem in positive characteristic, Symmetry and Spaces, Progress in Mathematics, Birkhäuser Boston, 2010, pp. 21–34.[doi]
  6. H. E. A. Campbell, B. Fodden, and David L. Wehlau, Invariants of the diagonal Cp-action on V3, J. Algebra 303 (2006), no. 2, 501–513.[MR]
  7. H. E. A. Campbell, I. P. Hughes, G. Kemper, R. J. Shank, and D. L. Wehlau, Depth of modular invariant rings, Transform. Groups 5 (2000), no. 1, 21–34.[MR]
  8. H. E. A. Campbell, R. J. Shank, and D. L. Wehlau, Vector invariants for the two dimensional modular representation of a cyclic group of prime order, Advances in Mathematics 225 (2010), no. 2, 1069–1094.[doi]
  9. Chris Charnes, Martin Rötteler, and Thomas Beth, On homogeneous bent functions, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Melbourne, 2001), Lecture Notes in Comput. Sci., vol. 2227, Springer, Berlin, 2001, pp. 249–259.[MR]
  10. Chris Charnes, Martin Rötteler, and Thomas Beth, Homogeneous bent functions, invariants, and designs, Des. Codes Cryptogr. 26 (2002), no. 1-3, 139–154.[MR]
  11. Wolfram Decker and Theo de Jong, Gröbner bases and invariant theory, Gröbner bases and applications (Linz, 1998), London Math. Soc. Lecture Note Ser., vol. 251, Cambridge Univ. Press, Cambridge, 1998, pp. 61–89.[MR]
  12. Harm Derksen, Computation of invariants for reductive groups, Adv. Math. 141 (1999), no. 2, 366–384.[MR]
  13. Harm Derksen and Gregor Kemper, Computational Invariant Theory, Invariant Theory and Algebraic Transformation Groups, I, Springer-Verlag, Berlin, 2002, pp. x+268.[MR]
  14. Emilie Dufresne, Jonathan Elmer, and Martin Kohls, The Cohen-Macaulay property of separating invariants of finite groups, Transform. Groups 14 (2009), no. 4, 771–785.[MR/doi]
  15. Alexander Duncan, Michael LeBlanc, and David L. Wehlau, A SAGBI basis for F[V2⊕V2⊕V3]C p, Canad. Math. Bull. 52 (2009), no. 1, 72–83.[MR]
  16. Jonathan Elmer, Depth and detection in modular invariant theory, J. Algebra 322 (2009), no. 5, 1653–1666.[MR/doi]
  17. Jonathan Elmer and Peter Fleischmann, On the depth of modular invariant rings for the groups Cp×Cp, Symmetry and Spaces, Progr. Math., vol. 278, Birkhäuser Boston Inc., Boston, MA, 2010, pp. 45–61.[MR/doi]
  18. Tom Fisher, The Hessian of a genus one curve, preprint (2006), 28 pages.[arXiv]
  19. P. Fleischmann, M. Sezer, R. J. Shank, and C. F. Woodcock, The Noether numbers for cyclic groups of prime order, Adv. Math. 207 (2006), no. 1, 149–155.[MR]
  20. Karin Gatermann and Frédéric Guyard, Gröbner bases, invariant theory and equivariant dynamics, J. Symbolic Comput. 28 (1999), no. 1-2, 275–302.[MR]
  21. Karin Gatermann and Pablo A. Parrilo, Symmetry groups, semidefinite programs, and sums of squares, J. Pure Appl. Algebra 192 (2004), no. 1-3, 95–128.[MR]
  22. Ian Hughes and Gregor Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Algebra 28 (2000), no. 4, 2059–2088.[MR]
  23. Ian Hughes and Gregor Kemper, Symmetric powers of modular representations for groups with a Sylow subgroup of prime order, J. Algebra 241 (2001), no. 2, 759–788.[MR]
  24. D. B. Karagueuzian and P. Symonds, The module structure of a group action on a polynomial ring: Examples, generalizations, and applications, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 139–158.[MR/link]
  25. Gregor Kemper, Calculating invariants of modular reflection groups with Magma, Preprint (1997), 5 pages.
  26. Gregor Kemper, Computational invariant theory, The Curves Seminar at Queen's. Vol. XII (Kingston, ON, 1998), Queen's Papers in Pure and Appl. Math., vol. 114, Queen's Univ., Kingston, ON, 1998, pp. 5–26.[MR]
  27. Gregor Kemper, The depth of invariant rings and cohomology, J. Algebra 245 (2001), no. 2, 463–531.[MR]
  28. Gregor Kemper, Computing invariants of reductive groups in positive characteristic, Transform. Groups 8 (2003), no. 2, 159–176.[MR]
  29. Gregor Kemper, The computation of invariant fields and a constructive version of a theorem by Rosenlicht, Transform. Groups 12 (2007), no. 4, 657–670.[MR]
  30. Gregor Kemper, Elmar Körding, Gunter Malle, B. Heinrich Matzat, Denis Vogel, and Gabor Wiese, A database of invariant rings, Experiment. Math. 10 (2001), no. 4, 537–542.[MR]
  31. Gregor Kemper and Gunter Malle, Invariant fields of finite irreducible reflection groups, Math. Ann. 315 (1999), no. 4, 569–586.[MR]
  32. Gregor Kemper and Allan Steel, Some algorithms in invariant theory of finite groups, Computational Methods for Representations of Groups and Algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 267–285.[MR]
  33. Simon King, Fast computation of secondary invariants, preprint (2007), 13 pages.[arXiv]
  34. Simon King, Minimal generating sets of non-modular invariant rings of finite groups, preprint (2007), 14 pages.[arXiv]
  35. Martin Kohls, Invarianten zusammenhaengender gruppen und die Cohen-Macaulay eigenschaft, Master's Thesis, Technische Universitaet Muechen, 2005.
  36. Martin Kohls, Üeber die tiefe von invariantenringen unendlicher gruppen, PhD Thesis, Technische Universitaet Muechen, 2007.
  37. Martin Kohls, On the depth of invariant rings of infinite groups, J. Algebra 322 (2009), no. 1, 210–218.[MR/arXiv]
  38. P. H. Kropholler, S. Mohseni Rajaei, and J. Segal, Invariant rings of orthogonal groups over \bf F2, Glasg. Math. J. 47 (2005), no. 1, 7–54.[MR]
  39. Martin Lorenz, Multiplicative Invariant Theory, Encyclopaedia of Mathematical Sciences, vol. 135, Springer-Verlag, Berlin, 2005, pp. xii+177.[MR]
  40. A. Marschner and J. Müller, On a certain algebra of higher modular forms, Algebra Colloq. 16 (2009), 371–380.
  41. Jürgen Müller and Christophe Ritzenthaler, On the ring of invariants of ordinary quartic curves in characteristic 2, J. Algebra 303 (2006), no. 2, 530–542.[MR/link]
  42. Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006, pp. xxviii+430.[MR]
  43. Mara D. Neusel and Müfit Sezer, The invariants of modular indecomposable representations of Zp2, Math. Ann. 341 (2008), no. 3, 575–587.[MR]
  44. W. Plesken and D. Robertz, Constructing invariants for finite groups, Experiment. Math. 14 (2005), no. 2, 175–188.[MR]
  45. Marc Stetson Renault, Computing Generators for Rings of Multiplicative Invariants, PhD Thesis, Temple University, 2002.
  46. Müfit Sezer and R. James Shank, On the coinvariants of modular representations of cyclic groups of prime order, J. Pure Appl. Algebra 205 (2006), no. 1, 210–225.[MR]
  47. R. J. Shank, Classical covariants and modular invariants, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 241–249.[MR]
  48. R. James Shank and David L. Wehlau, On the depth of the invariants of the symmetric power representations of SL2(Fp), J. Algebra 218 (1999), no. 2, 642–653.[MR]
  49. R. James Shank and David L. Wehlau, Computing modular invariants of p-groups, J. Symbolic Comput. 34 (2002), no. 5, 307–327.[MR]
  50. R. James Shank and David L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order, Bull. London Math. Soc. 34 (2002), no. 4, 438–450.[MR]
  51. R. James Shank and David L. Wehlau, Decomposing symmetric powers of certain modular representations of cyclic groups, Progress in Mathematics 278 (2010), 169–196.[arXiv]
  52. Nicolas M. Thiéry, Algebraic invariants of graphs; A study based on computer exploration, SIGSAM Bulletin 34 (2000), no. 3, 9–20.