Forms and Linear Algebraic Groups
- Kanat Abdukhalikov and Rudolf Scharlau, Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers, Math. Comp. 78 (2009), no. 265, 387–403.[MR]
- Alexander Berkovich and William C. Jagy, Ternary quadratic forms, modular equations and certain positivity conjectures, The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Springer, New York, 2009, pp. 211–241.[doi]
- Manjul Bhargava, Higher composition laws I: A new view on Gauss composition, and quadratic generalizations, Ann. of Math. (2) 159 (2004), no. 1, 217–250.[MR]
- Donald I. Cartwright and Tim Steger, Application of the Bruhat–Tits tree of SU3(h) to some A2 groups, J. Austral. Math. Soc. Ser. A 64 (1998), no. 3, 329–344.[MR]
- Carlos Castaño-Bernard, Further properties of a function of Ogg and Ligozat, Ramanujan J. 17 (2008), no. 1, 107–121.[MR]
- Darrin Doud, Supersingular Galois representations and a generalization of a conjecture of Serre, Experiment. Math. 16 (2007), no. 1, 119–128.[MR/link]
- Paul E. Gunnells and Dan Yasaki, Perfect forms over totally real number fields, preprint (2009), 11 pages.[arXiv]
- Jonathan Hanke, Local densities and explicit bounds for representability by a quadratric form, Duke Math. J. 124 (2004), no. 2, 351–388.[MR]
- Boris Hemkemeier, Algorithmische konstruktionen von gittern, preprint (2004), 64 pages.[arXiv]
- Ben Kane, CM liftings of supersingular elliptic curves, preprint (2009), 26 pages.[arXiv]
- Piotr Maciak, Primes of the form x2+n*y2 in function fields, preprint (2009), 12 pages.[arXiv]
- Jeremy Rouse, Zagier duality for the exponents of Borcherds products for Hilbert modular forms, J. London Math. Soc. (2) 73 (2006), no. 2, 339–354.[MR]
- John Voight, Quadratic Forms and Quaternion Algebras: Algorithms and Arithmetic, PhD Thesis, Berkeley, 2005.
- John Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007), no. 259, 1589–1617 (electronic).[MR/arXiv]
- Tonghai Yang, Local densities of 2-adic quadratic forms, J. Number Theory 108 (2004), no. 2, 287–345.[MR]
- Dan Yasaki, Binary Hermitian forms over a cyclotomic field, J. Algebra 322 (2009), no. 11, 4132–4142.[MR/doi]
- Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385–396.[doi]