Group Theory

Abstract Finite Groups

20Dxx

  1. A. Adem, J. F. Carlson, D. B. Karagueuzian, and R. James Milgram, The cohomology of the Sylow 2-subgroup of the Higman-Sims group, J. Pure Appl. Algebra 164 (2001), no. 3, 275–305.[MR]
  2. Faryad Ali and Jamshid Moori, Fischer-Clifford matrices of the non-split group extension 26·U4(2), Quaest. Math. 31 (2008), no. 1, 27–36.[MR/doi]
  3. Habib Amiri, S. M. Jafarian Amiri, and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), no. 9, 2978–2980.[MR/doi]
  4. Jianbei An, John J. Cannon, E. A. O'Brien, and W. R. Unger, The Alperin weight conjecture and Dade's conjecture for the simple group Fi24', LMS J. Comput. Math. 11 (2008), 100–145.[MR]
  5. Michael Asctbacher and Marshall Hall, Jr., Groups generated by a class of elements of order 3, Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland Amsterdam, 1973, pp. 12–18. North-Holland Math. Studies, Vol. 7.[MR]
  6. Sarah Astill, 3-local identifications of some finite simple groups, PhD Thesis, University of Birmingham, 2007.
  7. Sarah Astill and Chris Parker, A 3-local characterization of M12 and SL3(3), Arch. Math. (Basel) 92 (2009), no. 2, 99–110.[MR/arXiv]
  8. Roberto M. Avanzi, Mathias Kratzer, and Gerhard O. Michler, Janko's simple groups J2 and J3 are irreducible subgroups of SL85(5) with equal centralizers of an involution, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 21–37.[MR]
  9. Nir Avni and Shelly Garion, Connectivity of the product replacement graph of simple groups of bounded Lie rank, J. Algebra 320 (2008), no. 2, 945–960.[MR]
  10. Henrik Bäärnhielm, Recognising the Suzuki groups in their natural representations, J. Algebra 300 (2006), no. 1, 171–198.[MR]
  11. Robert F. Bailey and John N. Bray, Decoding the Mathieu group M12, Adv. Math. Commun. 1 (2007), no. 4, 477–487.[MR]
  12. Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Two-variable identities for finite solvable groups, C. R. Math. Acad. Sci. Paris 337 (2003), no. 9, 581–586.[MR]
  13. Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Identities for finite solvable groups and equations in finite simple groups, Compos. Math. 142 (2006), no. 3, 734–764.[MR]
  14. Richard William Barraclough, Some calculations related to the monster group, PhD Thesis, University of Birmingham, 2005.
  15. C. Bates, D. Bundy, S. Hart, and P. Rowley, Commuting involution graphs for sporadic simple groups, J. Algebra 316 (2007), no. 2, 849–868.[MR]
  16. Chris Bates and Peter J. Rowley, Centralizers of strongly real elements in finite groups, Preprint (2003), 4 pages.
  17. Chris Bates and Peter Rowley, Involutions in Conway's largest simple group, LMS J. Comput. Math. 7 (2004), 337–351 (electronic).[MR]
  18. Chris Bates and Peter Rowley, Normalizers of p-subgroups in finite groups, Arch. Math. (Basel) 92 (2009), no. 1, 7–13.[MR]
  19. Barbara Baumeister and Alexander Stein, Commuting graphs of odd prime order elements in simple groups, preprint (2009), 28 pages.[arXiv]
  20. Sarah Marie Belcastro and Gary J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366–374.[MR]
  21. Thomas R. Berger and Marcel Herzog, Criteria for nonperfectness, Comm. Algebra 6 (1978), no. 9, 959–968.[MR]
  22. Hans Ulrich Besche and Bettina Eick, The groups of order at most 1000 except 512 and 768, J. Symbolic Comput. 27 (1999), no. 4, 405–413.[MR]
  23. Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4 (electronic).[MR]
  24. Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, A millennium project: Constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644.[MR]
  25. Sean W. Bolt, John N. Bray, and Robert T. Curtis, Symmetric presentation of the Janko group J4, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 683–701.[MR]
  26. John van Bon, Arjeh M. Cohen, and Hans Cuypers, Graphs related to Held's simple group, J. Algebra 123 (1989), no. 1, 6–26.[MR]
  27. John van Bon and Richard Weiss, A characterization of the groups Fi22, Fi23 and Fi24, Forum Math. 4 (1992), no. 4, 425–432.[MR]
  28. Nigel Boston, Embedding 2-groups in groups generated by involutions, J. Algebra 300 (2006), no. 1, 73–76.[MR]
  29. Nigel Boston and Judy L. Walker, 2-groups with few conjugacy classes, Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 1, 211–217.[MR]
  30. J. D. Bradley and R. T. Curtis, Symmetric generation and existence of J3 : 2, the automorphism group of the third Janko group, J. Algebra 304 (2006), no. 1, 256–270.[MR]
  31. J. D. Bradley and R. T. Curtis, Symmetric generation and existence of McL : 2, the automorphism group of the McLaughlin group, Comm. Algebra 38 (2010), no. 2, 601–617.[MR/doi]
  32. L. Brailovsky, On (3,m)-special elements in groups, Comm. Algebra (1992), no. 11, 3301–3320.[MR]
  33. Rolf Brandl and Libero Verardi, Finite simple groups with few conjugacy classes of subgroups, Japan. J. Math. (N.S.) 18 (1992), no. 2, 347–359.[MR]
  34. J. N. Bray, R. T. Curtis, C. W. Parker, and C. B. Wiedorn, Symmetric presentations for the Fischer groups. I. The classical groups \rm Sp6(2),\ Sp8(2), and \rm 3·O7(3), J. Algebra 265 (2003), no. 1, 171–199.[MR]
  35. John Bray and Henrik Bäärnhielm, Standard generators for the Suzuki groups, Preprint (2008), 1–13.[link]
  36. John N. Bray, Ibrahim A. I. Suleiman, Peter G. Walsh, and Robert A. Wilson, Generating maximal subgroups of sporadic simple groups, Comm. Algebra 29 (2001), no. 3, 1325–1337.[MR]
  37. John N. Bray, John S. Wilson, and Robert A. Wilson, A characterization of finite soluble groups by laws in two variables, Bull. London Math. Soc. 37 (2005), no. 2, 179–186.[MR]
  38. John N. Bray and Robert A. Wilson, Explicit representations of maximal subgroups of the Monster, J. Algebra 300 (2006), no. 2, 834–857.[MR]
  39. John N. Bray and Robert A. Wilson, On the orders of automorphism groups of finite groups. II, J. Group Theory 9 (2006), no. 4, 537–545.[MR]
  40. F. Buekenhout and M. Hermand, On flag-transitive geometries and groups, Travaux de Mathématiques de l'Université Libre de Bruxelles 1 (1991), 45–78.
  41. Francis Buekenhout, The geometry of the finite simple groups, Buildings and the Geometry of Diagrams (Como, 1984), Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 1–78.[MR]
  42. Francis Buekenhout, Finite groups and geometries: A view on the present state and on the future, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 35–42.[MR]
  43. Francis Buekenhout and Dimitri Leemans, On a geometry of Ivanov and Shpectorov for the O'Nan sporadic simple group, J. Combin. Theory Ser. A 85 (1999), no. 2, 148–164.[MR]
  44. Francis Buekenhout and Sarah Rees, The subgroup structure of the Mathieu group M12, Math. Comp. 50 (1988), no. 182, 595–605.[MR]
  45. Timothy C. Burness, Martin W. Liebeck, and Aner Shalev, Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 116–162.[MR/doi]
  46. G. Butler, The maximal subgroups of the Chevalley group G2(4), Groups—St. Andrews 1981 (St. Andrews, 1981), London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 186–200.[MR]
  47. Gregory Butler, The maximal subgroups of the sporadic simple group of Held, J. Algebra 69 (1981), no. 1, 67–81.[MR]
  48. Colin Campbell, George Havas, Stephen Linton, and Edmund Robertson, Symmetric presentations and orthogonal groups, The Atlas of Finite Groups: Ten Years On (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 1–10.[MR]
  49. Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math. 7 (2004), 266–283 (electronic).[MR]
  50. Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math. 16 (2007), no. 3, 347–358.[MR]
  51. John J. Cannon, John McKay, and Kiang Chuen Young, The nonabelian simple groups G, | G | < 105 — presentations, Comm. Algebra 7 (1979), no. 13, 1397–1406.[MR]
  52. David P. Cargo, Warwick de Launey, Martin W. Liebeck, and Richard M. Stafford, Short two-variable identities for finite groups, J. Group Theory 11 (2008), no. 5, 675–690.[MR]
  53. Jon F. Carlson, Maximal elementary abelian subgroups of rank 2, J. Group Theory 10 (2007), no. 1, 5–13.[MR]
  54. Jon F. Carlson, The poset of elementary abelian p-subgroups having rank at least 2, J. Group. Th (To appear).
  55. Marston Conder, Random walks in large finite groups, Australas. J. Combin. 4 (1991), 49–57.[MR]
  56. Marston Conder, The symmetric genus of the Mathieu groups, Bull. London Math. Soc. 23 (1991), no. 5, 445–453.[MR]
  57. Marston Conder, George Havas, and Colin Ramsay, Efficient presentations for the Mathieu simple group M22 and its cover, Finite geometries, groups, and computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 33–41.[MR]
  58. Marston Conder and I. M. Isaacs, Derived subgroups of products of an abelian and a cyclic subgroup, J. London Math. Soc. (2) 69 (2004), no. 2, 333–348.[MR]
  59. Marston Conder, R. A. Wilson, and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 653–663.[MR]
  60. Marston Conder, R. A. Wilson, and A. J. Woldar, The symmetric genus of sporadic groups: Announced results, Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), Wiley-Intersci. Publ., Wiley, New York, 1993, pp. 163–169.[MR]
  61. S. B. Conlon, p-groups with an abelian maximal subgroup and cyclic center, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 221–233.[MR]
  62. G. D. Cooperman, W. Lempken, G. O. Michler, and M. Weller, A new existence proof of Janko's simple group J4, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 161–175.[MR]
  63. John Cossey and Trevor Hawkes, On the largest conjugacy class size in a finite group, Rend. Sem. Mat. Univ. Padova 103 (2000), 171–179.[MR]
  64. John Cossey and Stewart E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group, Illinois J. Math. 47 (2003), no. 1-2, 89–111.[MR/link]
  65. R. T. Curtis, Natural constructions of the Mathieu groups, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 423–429.[MR]
  66. R. T. Curtis, Symmetric generation of the Higman-Sims group, J. Algebra 171 (1995), no. 2, 567–586.[MR]
  67. R. T. Curtis, Symmetric generation and existence of the Janko group J1, J. Group Theory 2 (1999), no. 4, 355–366.[MR]
  68. R. T. Curtis and B. T. Fairbairn, Symmetric representation of the elements of the Conway group ·0, J. Symbolic Comput. 44 (2009), no. 8, 1044–1067.[MR]
  69. R. T. Curtis and Z. Hasan, Symmetric representation of the elements of the Janko group J1, J. Symbolic Comput. 22 (1996), no. 2, 201–214.[MR]
  70. Robert T. Curtis, Symmetric generation of groups, Encyclopedia of Mathematics and its Applications, vol. 111, Cambridge University Press, Cambridge, 2007, pp. xiv+317.[MR]
  71. M. R. Darafsheh, A. R. Ashrafi, and G. A. Moghani, (p,q,r)-generations of the Conway group Co1 for odd p, Kumamoto J. Math. 14 (2001), 1–20.[MR]
  72. Alice Devillers, Michael Giudici, Cai Heng Li, Geoffrey Pearce, and Cheryl E. Praeger, On imprimitive rank 3 permutation groups, preprint (2010).[arXiv]
  73. Alice Devillers, Michael Giudici, Cai Heng Li, and Cheryl E. Praeger, Locally s-distance transitive graphs, preprint (2010).[arXiv]
  74. Bettina Eick, M. F. Newman, and E. A. O'Brien, The class-breadth conjecture revisited, J. Algebra 300 (2006), no. 1, 384–393.[MR]
  75. Bettina Eick and E. A. O'Brien, Enumerating p-groups, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191–205.[MR]
  76. Ben Elias, Lior Silberman, and Ramin Takloo-Bighash, Minimal permutation representations of nilpotent groups, Experiment. Math. 19 (2010), no. 1, 121–128.[link]
  77. Anthony B. Evans, The admissibility of sporadic simple groups, Journal of Algebra 321 (2009), no. 1, 105–116.[doi]
  78. Susan Evans-Riley, On the derived length of finite, graded Lie rings with prime-power order and groups with prime-power order., Bull. Austral. Math. Soc. 64 (2001), no. 1, 171-172.[doi]
  79. Susan Evans-Riley, M. F. Newman, and Csaba Schneider, On the soluble length of groups with prime-power order, Bull. Austral. Math. Soc. 59 (1999), no. 2, 343–346.[MR/doi]
  80. Ben Fairbairn, Improved upper bounds on the spreads of some large sporadic groups, preprint (2009), 11 pages.[arXiv]
  81. Ben Fairbairn, Recent progress in the symmetric generation of groups, preprint (2010), 14 pages.[arXiv]
  82. Reza Rezaeian Farashahi, Ruud Pellikaan, and Andrey Sidorenko, Extractors for binary elliptic curves, Des. Codes Cryptogr. 49 (2008), no. 1-3, 171–186.[MR]
  83. J. Fischer and J. McKay, The nonabelian simple groups G, | G | < 106—maximal subgroups, Math. Comp. 32 (1978), no. 144, 1293–1302.[MR]
  84. Tuval Foguel, Groups, transversals, and loops, Comment. Math. Univ. Carolin. 41 (2000), no. 2, 261–269.[MR]
  85. A. Fukshansky and G. Stroth, Semiclassical parabolic systems related to M24, Geom. Dedicata 70 (1998), no. 3, 305–329.[MR]
  86. Shelly Garion and Aner Shalev, Commutator maps, measure preservation, and T-systems, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4631–4651.[MR]
  87. Volker Gebhardt, Two short presentations for Lyons' sporadic simple group, Experiment. Math. 9 (2000), no. 3, 333–338.[MR]
  88. Michael Giudici, Factorisations of sporadic simple groups, J. Algebra 304 (2006), no. 1, 311–323.[MR]
  89. Holger W. Gollan, A new existence proof for Ly, the sporadic simple group of R. Lyons, J. Symbolic Comput. 31 (2001), no. 1-2, 203–209.[MR]
  90. María Isabel González Vasco, Martin Rötteler, and Rainer Steinwandt, On minimal length factorizations of finite groups, Experiment. Math. 12 (2003), no. 1, 1–12.[MR]
  91. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, On the number of conjugates defining the solvable radical of a finite group, C. R. Math. Acad. Sci. Paris 343 (2006), no. 6, 387–392.[MR]
  92. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A commutator description of the solvable radical of a finite group, Groups Geom. Dyn. 2 (2008), no. 1, 85–120.[MR]
  93. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra 213 (2009), no. 2, 250–258.[MR/doi]
  94. Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical, J. Algebra 323 (2010), no. 10, 2888–2904.[arXiv]
  95. Simon Guest, A solvable version of the Baer–Suzuki theorem, Trans. Amer. Math. Soc. 362 (2010), 5909–5946.[MR/arXiv]
  96. R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Presentations of finite simple groups: A quantitative approach, J. Amer. Math. Soc. 21 (2008), no. 3, 711–774.[MR/arXiv]
  97. George Havas and Charles C. Sims, A presentation for the Lyons simple group, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 241–249.[MR]
  98. T. Hawkes, I. M. Isaacs, and M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (1989), no. 4, 1003–1034.[MR]
  99. P. E. Holmes, On minimal factorisations of sporadic groups, Experiment. Math. 13 (2004), no. 4, 435–440.[MR]
  100. P. E. Holmes, A classification of subgroups of the Monster isomorphic to S4 and an application, J. Algebra 319 (2008), no. 8, 3089–3099.[MR]
  101. P. E. Holmes and R. A. Wilson, A new maximal subgroup of the Monster, J. Algebra 251 (2002), no. 1, 435–447.[MR]
  102. Petra E. Holmes and Robert A. Wilson, A new computer construction of the Monster using 2-local subgroups, J. London Math. Soc. (2) 67 (2003), no. 2, 349–364.[MR]
  103. Derek F. Holt and Colva M. Roney-Dougal, Constructing maximal subgroups of classical groups, LMS J. Comput. Math. 8 (2005), 46–79 (electronic).[MR]
  104. A. Jaikin-Zapirain, M. F. Newman, and E. A. O'Brien, On p-groups having the minimal number of conjugacy classes of maximal size, Israel J. Math. 172 (2009), 119–123.[MR/doi]
  105. Rodney James, M. F. Newman, and E. A. O'Brien, The groups of order 128, J. Algebra 129 (1990), no. 1, 136–158.[MR]
  106. David Joyner, Richard Kreminski, and Joann Turisco, Applied abstract algebra, Johns Hopkins University Press, Baltimore, MD, 2004, pp. xii+329.[MR]
  107. W. F. Ke and K. S. Wang, On the Frobenius groups with kernel of order 64, Contributions to general algebra, 7 (Vienna, 1990), Hölder-Pichler-Tempsky, Vienna, 1991, pp. 221–233.[MR]
  108. Hyun Kyu Kim, Representation theoretic existence proof for Fischer group Fi23, Master's Thesis, Cornell University, 2009.[arXiv]
  109. Hyun Kyu Kim and Gerhard O. Michler, Construction of Co1 from an irreducible subgroup M24 of GL11(2), preprint (2009), 220 pages.[arXiv]
  110. Joachim König, Solvability of generalized monomial groups, preprint (2009), 21 pages.[arXiv]
  111. M. Kratzer, G. O. Michler, and M. Weller, Harada group uniquely determined by centralizer of a 2-central involution, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 303–372.[MR]
  112. Mathias Kratzer, Uniform and natural existence proofs for Janko's sporadic groups J2 and J3, Arch. Math. (Basel) 79 (2002), no. 1, 5–18.[MR]
  113. Mathias Kratzer, Wolfgang Lempken, Gerhard O. Michler, and Katsushi Waki, Another existence and uniqueness proof for McLaughlin's simple group, J. Group Theory 6 (2003), no. 4, 443–459.[MR]
  114. J. L. Leavitt, G. J. Sherman, and M. E. Walker, Rewriteability in finite groups, Amer. Math. Monthly 99 (1992), no. 5, 446–452.[MR]
  115. Dimitri Leemans, The rank 2 geometries of the simple Suzuki groups Sz(q), Beiträge Algebra Geom. 39 (1998), no. 1, 97–120.[MR]
  116. Dimitri Leemans, On a rank four geometry for the Hall-Janko sporadic group, J. Combin. Theory Ser. A 101 (2003), no. 1, 160–167.[MR]
  117. Dimitri Leemans, On computing the subgroup lattice of O'N, preprint (2008), 23.
  118. Dimitri Leemans, Locally s-arc-transitive graphs related to sporadic simple groups, J. Algebra 322 (2009), no. 3, 882–892.[MR/doi]
  119. Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He. II, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 373–380.[MR]
  120. Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He, Illinois J. Math. 47 (2003), no. 1-2, 361–393.[MR]
  121. Wolfgang Lempken, On 2-local amalgams proving existence and uniqueness of McL and 3.McL, Preprint (IEM, Essen. 2002).
  122. Wolfgang Lempken, On the existence and uniqueness of the sporadic simple groups J2 and J3 of Z. Janko, J. Group Theory 4 (2001), no. 2, 223–232.[MR]
  123. Mark L. Lewis, Brauer pairs of Camina p-groups of nilpotence class 2, Arch. Math. (Basel) 92 (2009), no. 2, 95–98.[MR/arXiv]
  124. Martin W. Liebeck, Aner Shalev, Pham Huu Tiep, and E. A. O'Brien, The Ore conjecture, Preprint (2008).
  125. F. Lübeck, K. Magaard, and E. A. O'Brien, Constructive recognition of SL3(q), J. Algebra 316 (2007), no. 2, 619–633.[MR]
  126. Arturo Magidin, Capability of nilpotent products of cyclic groups, J. Group Theory 8 (2005), no. 4, 431–452.[MR/arXiv]
  127. John McKay and Kiang Chuen Young, The nonabelian simple groups G, | G | < 106—minimal generating pairs, Math. Comp. 33 (1979), no. 146, 812–814.[MR]
  128. Gerhard O. Michler, On the uniqueness of the finite simple groups with a given centralizer of a 2-central involution, Illinois J. Math. 47 (2003), no. 1-2, 419–444.[MR/link]
  129. Gerhard O. Michler, Theory of finite simple groups, New Mathematical Monographs, vol. 8, Cambridge University Press, Cambridge, 2006, pp. 426,583.
  130. Gerhard O. Michler and Andrea Previtali, Another existence and uniqueness proof for the Higman-Sims simple group, Algebra Colloq. 12 (2005), no. 3, 369–398.[MR]
  131. Gerhard O. Michler and Andrea Previtali, O'Nan group uniquely determined by the centralizer of a 2-central involution, J. Algebra Appl. 6 (2007), no. 1, 135–171.[MR]
  132. Gerhard O. Michler and Lizhong Wang, Another existence and uniqueness proof of the Tits group, Algebra Colloq. 15 (2008), no. 2, 241–278.[MR]
  133. Gerhard O. Michler, Michael Weller, and Katsushi Waki, Natural existence proof for Lyons simple group, J. Algebra Appl. 2 (2003), no. 3, 277–315.[MR]
  134. Jamshid Moori, Subgroups of 3-transposition groups generated by four 3-transpositions, Quaestiones Math. 17 (1994), no. 1, 83–94.[MR]
  135. M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), no. 1, 131–169.[MR]
  136. M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), no. 1, 383–401.[MR]
  137. Jeanne Nielsen, Rewritable sequencing of groups, Ars Combin. 36 (1993), 207–214.[MR]
  138. Simon Norton, Computing in the Monster, J. Symbolic Comput. 31 (2001), no. 1-2, 193–201.[MR]
  139. E. A. O'Brien, The groups of order 256, J. Algebra 143 (1991), no. 1, 219–235.[MR]
  140. E. A. O'Brien and M. R. Vaughan-Lee, The groups with order p7 for odd prime p, J. Algebra 292 (2005), no. 1, 243–258.[MR]
  141. E. A. O'Brien and Michael Vaughan-Lee, The 2-generator restricted Burnside group of exponent 7, Internat. J. Algebra Comput. 12 (2002), no. 4, 575–592.[MR]
  142. Elizabeth A. Ormerod, On the Wielandt length of metabelian p-groups, Arch. Math. (Basel) 57 (1991), no. 3, 212–215.[MR]
  143. Christopher Parker, Generators and relations for the Lyons sporadic simple group, Arch. Math. (Basel) 78 (2002), no. 2, 97–103.[MR]
  144. Christopher Parker and Peter Rowley, Classical groups in dimension 3 as completions of the Goldschmidt G3-amalgam, J. London Math. Soc. (2) 62 (2000), no. 3, 802–812.[MR]
  145. Christopher Parker and Peter Rowley, Sporadic simple groups which are completions of the Goldschmidt G3-amalgam, J. Algebra 235 (2001), no. 1, 131–153.[MR]
  146. Christopher Parker and Peter Rowley, Local characteristic p completions of weak BN-pairs, Proc. London Math. Soc. (3) 93 (2006), no. 2, 325–394.[MR]
  147. Christopher Parker and Peter Rowley, A 3-local identification of the alternating group of degree 8, the McLaughlin simple group and their automorphism groups, J. Algebra 319 (2008), no. 4, 1752–1775.[MR]
  148. M. A. Pellegrini and M. C. Tamburini, Hurwitz generation of the universal covering of Alt(n), J. Group Theory 13 (2010), no. 5, 649–657.
  149. Colin Reid, A problem in the Kourovka notebook concerning the number of conjugacy classes of a finite group, preprint (2008), 25 pages.[arXiv]
  150. Evija Ribnere, Sequences of words characterizing finite solvable groups, Monatsh. Math. 157 (2009), no. 4, 387–401.[MR/doi]
  151. José L. Rodríguez, Jérôme Scherer, and Antonio Viruel, Non-simple localizations of finite simple groups, J. Algebra 305 (2006), no. 2, 765–774.[MR]
  152. Mohamed Sayed, Combinatorial method in the coset enumeration of symmetrically generated groups. II. Monomial modular representations, Int. J. Algebra 1 (2007), no. 9-12, 505–518.[MR/doi]
  153. Mohamed Sayed, Combinatorial method in the coset enumeration of symmetrically generated groups, Int. J. Comput. Math. 85 (2008), no. 7, 993–1001.[MR]
  154. Csaba Schneider, Some results on the Derived Series of Finite p-groups, PhD Thesis, Australian National University, 1999.
  155. Csaba Schneider, Groups of prime-power order with a small second derived quotient, J. Algebra 266 (2003), no. 2, 539–551.[MR]
  156. Csaba Schneider, Small derived quotients in finite p-groups, Publ. Math. Debrecen 69 (2006), no. 3, 373–378.[MR]
  157. U. Schoenwaelder, Finite groups with a Sylow 2-subgroup of type M24. I, II, J. Algebra 28 (1974), 20–45; ibid. 28 (1974), 46–56.[MR]
  158. Gary J. Sherman, Thomas J. Tucker, and Mark E. Walker, How Hamiltonian can a finite group be?, Arch. Math. (Basel) 57 (1991), no. 1, 1–5.[MR]
  159. Michael C. Slattery, Generation of groups of square-free order, J. Symbolic Comput. 42 (2007), no. 6, 668–677.[MR]
  160. Leonard H. Soicher, A new uniqueness proof for the Held group, Bull. London Math. Soc. 23 (1991), no. 3, 235–238.[MR]
  161. R. Staszewski, H. Völklein, and G. Wiesend, Counting generating systems of a finite group from given conjugacy classes, Computational aspects of algebraic curves, Lecture Notes Ser. Comput., vol. 13, World Sci. Publ., Hackensack, NJ, 2005, pp. 256–263.[MR]
  162. Mark Stather, Constructive Sylow theorems for the classical groups, J. Algebra 316 (2007), no. 2, 536–559.[MR]
  163. G. Stroth and R. Weiss, A new construction of the group Ru, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 162, 237–243.[MR]
  164. Gernot Stroth and Richard Weiss, Modified Steinberg relations for the group J4, Geom. Dedicata 25 (1988), no. 1-3, 513–525.[MR]
  165. Ibrahim A. I. Suleiman and Robert A. Wilson, Standard generators for J3, Experiment. Math. 4 (1995), no. 1, 11–18.[MR]
  166. Fritz Grunewald Tatiana Bandman, Shelly Garion, On the surjectivity of engel words on psl(2,q), preprint (2010), 1–22.[arXiv]
  167. Richard Weiss, A geometric characterization of the groups M12, He and Ru, J. Math. Soc. Japan 43 (1991), no. 4, 795–814.[MR]
  168. Richard Weiss, A geometric characterization of the groups McL and Co3, J. London Math. Soc. (2) 44 (1991), no. 2, 261–269.[MR]
  169. Michael Weller, Gerhard O. Michler, and Andrea Previtali, Thompson's sporadic group uniquely determined by the centralizer of a 2-central involution, J. Algebra 298 (2006), no. 2, 371–459.[MR]
  170. Stewart Wilcox, Reduction of the Hall-Paige conjecture to sporadic simple groups, J. Algebra 321 (2009), no. 5, 1407–1428.[MR]
  171. J. B. Wilson, Finding central decompositions of p-groups, J. Group Theory 12 (2009), 813–830.[doi]
  172. Robert A. Wilson, New computations in the monster, Preprint (2006), 11.
  173. Şükrü Yalçinkaya, Black box groups, Turk. J. Math. 31 (2007), no. Suppl, 171–210.
  174. Ivan Yudin, Presentation for parabolic subgroups of GLn(F2), preprint (2010), 11 pages.[arXiv]