Designs and Configurations
- David Applegate, E. M. Rains, and N. J. A. Sloane, On asymmetric coverings and covering numbers, J. Combin. Des. 11 (2003), no. 3, 218–228.[MR]
- Makoto Araya, Masaaki Harada, and Hadi Kharaghani, Some Hadamard matrices of order 32 and their binary codes, J. Combin. Des. 12 (2004), no. 2, 142–146.[MR]
- E. F. Assmus, Jr. and J. D. Key, Translation planes and derivation sets, J. Geom. 37 (1990), no. 1-2, 3–16.[MR]
- E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: A coding-theoretic approach, Trans. Amer. Math. Soc. 330 (1992), no. 1, 269–293.[MR]
- R. A. Bailey, Peter J. Cameron, Peter Dobcsányi, John P. Morgan, and Leonard H. Soicher, Designs on the web, Discrete Math. 306 (2006), no. 23, 3014–3027.[MR]
- John Bamberg and Tim Penttila, A classification of transitive ovoids, spreads, and m-systems of polar spaces, Forum Math. 21 (2009), no. 2, 181–216.[MR]
- Eiichi Bannai and Etsuko Bannai, On Euclidean tight 4-designs, J. Math. Soc. Japan 58 (2006), no. 3, 775–804.[MR]
- L. M. Batten and J. M. Dover, Some sets of type (m,n) in cubic order planes, Des. Codes Cryptogr. 16 (1999), no. 3, 211–213.[MR]
- Thomas Beth, Christopher Charnes, Markus Grassl, Gernot Alber, Aldo Delgado, and Michael Mussinger, A new class of designs which protect against quantum jumps, Des. Codes Cryptogr. 29 (2003), no. 1-3, 51–70.[MR]
- Anton Betten, Adalbert Kerber, Reinhard Laue, and Alfred Wassermann, Simple 8-designs with small parameters, Des. Codes Cryptogr. 15 (1998), no. 1, 5–27.[MR]
- A. Bonnecaze, E. Rains, and P. Solé, 3-colored 5-designs and Z4-codes, J. Statist. Plann. Inference 86 (2000), no. 2, 349–368.[MR]
- A. Bonnecaze, P. Solé, and P. Udaya, Tricolore 3-designs in type III codes, Discrete Math. 241 (2001), no. 1-3, 129–138.[MR]
- Alexis Bonnecaze, Bernard Mourrain, and Patrick Solé, Jacobi polynomials, type II codes, and designs, Des. Codes Cryptogr. 16 (1999), no. 3, 215–234.[MR]
- Thomas Britz and Carrie G. Rutherford, Covering radii are not matroid invariants, Discrete Math. 296 (2005), no. 1, 117–120.[MR]
- Thomas Britz and Keisuke Shiromoto, Designs from subcode supports of linear codes, Des. Codes Cryptogr. 46 (2008), no. 2, 175–189.[MR]
- S. Allen Broughton, Robert M. Dirks, Maria T. Sloughter, and C. Ryan Vinroot, Triangular surface tiling groups for low genus, Preprint (2001).
- F. Buekenhout, A. Delandtsheer, and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), no. 2, 268–293.[MR]
- A. R. Camina and L. Di Martino, Block designs on 196 points, Arch. Math. (Basel) 53 (1989), no. 4, 414–416.[MR]
- A. R. Camina and L. Di Martino, The group of automorphisms of a transitive 2-(91,6,1) design, Geom. Dedicata 31 (1989), no. 2, 151–164.[MR]
- I. Cardinali, N. Durante, T. Penttila, and R. Trombetti, Bruen chains over fields of small order, Discrete Math. 282 (2004), no. 1-3, 245–247.[MR]
- L. L. Carpenter and J. D. Key, On Hadamard matrices from resolvable Steiner designs, in Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), vol. 108, 1995, pp. 53–63.[MR]
- David B. Chandler and Qing Xiang, Cyclic relative difference sets and their p-ranks, Des. Codes Cryptogr. 30 (2003), no. 3, 325–343.[MR]
- Chris Charnes, Martin Rötteler, and Thomas Beth, Homogeneous bent functions, invariants, and designs, Des. Codes Cryptogr. 26 (2002), no. 1-3, 139–154.[MR]
- D. Combe, W. D. Palmer, and W. R. Unger, Bhaskar Rao designs and the alternating group A4, Australas. J. Combin. 24 (2001), 275–283.[MR]
- Marston Conder and John McKay, Markings of the Golay code, New Zealand J. Math. 25 (1996), no. 2, 133–139.[MR]
- Antonio Cossidente and Sam K. J. Vereecke, Some geometry of the isomorphism Sp(4,q)≅O(5,q), q even, J. Geom. 70 (2001), no. 1-2, 28–37.[MR]
- M. R. Darafsheh, A. Iranmanesh, and R. Kahkeshani, Some designs and codes invariant under the groups S9 and A8, Des. Codes Cryptogr. 51 (2009), no. 2, 211–223.[MR/doi]
- U. Dempwolff, Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups, Comm. Algebra 34 (2006), no. 3, 1077–1131.[MR]
- Cunsheng Ding, Zeying Wang, and Qing Xiang, Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3,32h+1), J. Combin. Theory Ser. A 114 (2007), no. 5, 867–887.[MR/arXiv]
- Cunsheng Ding and Jin Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1526–1535.[MR]
- G. L. Ebert, Quasimultiples of geometric designs, Discrete Math. 284 (2004), no. 1-3, 123–129.[MR]
- Ronald Evans, Henk D. L. Hollmann, Christian Krattenthaler, and Qing Xiang, Gauss sums, Jacobi sums, and p-ranks of cyclic difference sets, J. Combin. Theory Ser. A 87 (1999), no. 1, 74–119.[MR]
- Tao Feng, Non-abelian skew hadamard difference sets fixed by a prescribed automorphism, J Combin. Theory Ser. A, to appear (2009).[doi]
- W. Fish, J. D. Key, and E. Mwambene, Graphs, designs and codes related to the n-cube, Discrete Math. 309 (2009), no. 10, 3255–3269.[MR]
- D. L. Flannery, Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra 192 (1997), no. 2, 749–779.[MR]
- Anna Fukshansky and Corinna Wiedorn, C-extensions of the Petersen geometry for M22, European J. Combin. 20 (1999), no. 3, 233–238.[MR]
- S. Georgiou, I. Kotsireas, and C. Koukouvinos, Inequivalent Hadamard matrices of order 2n constructed from Hadamard matrices of order n, J. Combin. Math. Combin. Comput. 63 (2007), 65–79.[MR]
- S. Georgiou and C. Koukouvinos, Some results on orthogonal designs and Hadamard matrices, Int. J. Appl. Math. 17 (2005), no. 4, 433–443.[MR]
- Stelios D. Georgiou, New two-variable full orthogonal designs and related experiments with linear regression models, Statist. Probab. Lett. 77 (2007), no. 1, 25–31.[MR]
- Claudia Gohlisch, Helmut Koch, and Gabriele Nebe, Block squares, Math. Nachr. 241 (2002), 73–102.[MR]
- Ken Gray, On the minimum number of blocks defining a design, Bull. Austral. Math. Soc. 41 (1990), no. 1, 97–112.[MR]
- Masaaki Harada, On the self-dual F5-codes constructed from Hadamard matrices of order 24, J. Combin. Des. 13 (2005), no. 2, 152–156.[MR]
- Masaaki Harada, Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptogr. 38 (2006), no. 1, 5–16.[MR]
- Masaaki Harada, Clement Lam, and Vladimir D. Tonchev, Symmetric (4,4)-nets and generalized Hadamard matrices over groups of order 4, Des. Codes Cryptogr. 34 (2005), no. 1, 71–87.[MR]
- Masaaki Harada and Akihiro Munemasa, A quasi-symmetric 2-(49,9,6) design, J. Combin. Des. 10 (2002), no. 3, 173–179.[MR]
- Masaaki Harada and Vladimir D. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math. 264 (2003), no. 1-3, 81–90.[MR]
- K. J. Horadam, An introduction to cocyclic generalised Hadamard matrices, Discrete Appl. Math. 102 (2000), no. 1-2, 115–131.[MR]
- K. J. Horadam, Hadamard matrices and their applications, Princeton University Press, Princeton, NJ, 2007, pp. xiv+263.[MR]
- Naoyuki Horiguchi, Hiroyuki Nakasora, and Takehisa Wakabayashi, On the strongly regular graphs obtained from quasi-symmetric 2-(31,7,7) designs, Bull. Yamagata Univ. Natur. Sci. 16 (2005), no. 1, 1–6.[MR]
- Masakazu Jimbo and Keisuke Shiromoto, A construction of mutually disjoint Steiner systems from isomorphic Golay codes, J. Combin. Theory Ser. A 116 (2009), no. 7, 1245–1251.[MR/doi]
- G. A. Kadir and J. D. Key, The Steiner system S(5,8,24) constructed from dual affine planes, Proc. Roy. Soc. Edinburgh Sect. A 103 (1986), no. 1-2, 147–160.[MR]
- Wen-Fong Ke, On nonisomorphic BIBD with identical parameters, Combinatorics '90 (Gaeta, 1990), Ann. Discrete Math., vol. 52, North-Holland, Amsterdam, 1992, pp. 337–346.[MR]
- J. D. Key, Extendable Steiner designs, Geom. Dedicata 41 (1992), no. 2, 201–205.[MR]
- J. D. Key, On a class of 1-designs, European J. Combin. 14 (1993), no. 1, 37–41.[MR]
- J. D. Key, Extendable Steiner designs from finite geometries, J. Statist. Plann. Inference 56 (1996), no. 2, 181–186.[MR]
- J. D. Key and K. Mackenzie, Ovals in the designs W(2m), Ars Combin. 33 (1992), 113–117.[MR]
- J. D. Key and K. Mackenzie-Fleming, Rigidity theorems for a class of affine resolvable designs, J. Combin. Math. Combin. Comput. 35 (2000), 147–160.[MR]
- J. D. Key, T. P. McDonough, and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin. 26 (2005), no. 5, 665–682.[MR]
- J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput. 40 (2002), 143–159.[MR]
- J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom. 61 (1998), no. 1-2, 83–104.[MR]
- J. D. Key and F. D. Shobe, Some transitive Steiner triple systems of Bagchi and Bagchi, J. Statist. Plann. Inference 58 (1997), no. 1, 79–86.[MR]
- J. D. Key and F. E. Sullivan, Codes of Steiner triple and quadruple systems, Des. Codes Cryptogr. 3 (1993), no. 2, 117–125.[MR]
- J. D. Key and F. E. Sullivan, Steiner triple systems with many affine hyperplanes, in Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995), vol. 107, 1995, pp. 105–112.[MR]
- Michael Kiermaier and Sascha Kurz, Maximal integral point sets in affine planes over finite fields, Discrete Math. 309 (2009), no. 13, 4564–4575.[MR]
- Jon-Lark Kim and Vera Pless, Designs in additive codes over GF(4), Des. Codes Cryptogr. 30 (2003), no. 2, 187–199.[MR]
- Jon-Lark Kim and Patrick Solé, Skew Hadamard designs and their codes, Des. Codes Cryptogr. 49 (2008), no. 1-3, 135–145.[MR]
- I. S. Kotsireas and C. Koukouvinos, Inequivalent hadamard matrices from orthogonal designs, in PASCO '07: Proceedings of the 2007 International Workshop on Parallel Symbolic Computation, ACM, New York, NY, USA, 2007, pp. 95–96.[doi]
- Ilias S. Kotsireas and Christos Koukouvinos, Constructions for Hadamard matrices of Williamson type, J. Combin. Math. Combin. Comput. 59 (2006), 17–32.[MR]
- Ilias S. Kotsireas and Christos Koukouvinos, Orthogonal designs via computational algebra, J. Combin. Des. 14 (2006), no. 5, 351–362.[MR]
- Ilias S. Kotsireas, Christos Koukouvinos, and Jennifer Seberry, Hadamard ideals and Hadamard matrices with circulant core, J. Combin. Math. Combin. Comput. 57 (2006), 47–63.[MR]
- Ilias S. Kotsireas, Christos Koukouvinos, and Jennifer Seberry, Hadamard ideals and Hadamard matrices with two circulant cores, European J. Combin. 27 (2006), no. 5, 658–668.[MR]
- C. Koukouvinos and S. Stylianou, On skew-Hadamard matrices, Discrete Math. 308 (2008), no. 13, 2723–2731.[MR]
- Christos Koukouvinos and Dimitris E. Simos, Improving the lower bounds on inequivalent Hadamard matrices through orthogonal designs and meta-programming techniques, Applied Numerical Mathematics, to appear (2009).
- Warwick de Launey and Richard M. Stafford, On cocyclic weighing matrices and the regular group actions of certain Paley matrices, Discrete Appl. Math. 102 (2000), no. 1-2, 63–101.[MR]
- Wolfgang Lempken, Two new symmetric 2-(144,66,30) designs, Preprint.
- Keith E. Mellinger, Designs, Geometry, and a Golfer's Dilemma, Math. Mag. 77 (2004), no. 4, 275–282.[MR]
- Jamshid Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra 316 (2007), no. 2, 649–661.[MR]
- Akihiro Munemasa and Vladimir D. Tonchev, A new quasi-symmetric 2-(56,16,6) design obtained from codes, Discrete Math. 284 (2004), no. 1-3, 231–234.[MR]
- Werner Nickel, Alice C. Niemeyer, Christine M. O'Keefe, Tim Penttila, and Cheryl E. Praeger, The block-transitive, point-imprimitive 2-(729,8,1) designs, Appl. Algebra Engrg. Comm. Comput. 3 (1992), no. 1, 47–61.[MR]
- Christopher Parker, Edward Spence, and Vladimir D. Tonchev, Designs with the symmetric difference property on 64 points and their groups, J. Combin. Theory Ser. A 67 (1994), no. 1, 23–43.[MR]
- Christopher Parker and Vladimir D. Tonchev, Linear codes and doubly transitive symmetric designs, Linear Algebra Appl. 226/228 (1995), 237–246.[MR]
- E. M. Rains, N. J. A. Sloane, and John Stufken, The lattice of N-run orthogonal arrays, J. Statist. Plann. Inference 102 (2002), no. 2, 477–500.[MR]
- Colin Ramsay, Trades and defining sets: theoretical and computational results, PhD Thesis, University of Queensland, 1998.
- B. G. Rodrigues, Self-orthogonal designs and codes from the symplectic groups S4(3) and S4(4), Discrete Math. 308 (2008), no. 10, 1941–1950.[MR]
- Nagwa Kamal Ahmed Rostom, On the p-rank of t-designs, Master's Thesis, University of Birmingham, 1985.
- Chekad Sarami and Vladimir D. Tonchev, Cyclic quasi-symmetric designs and self-orthogonal codes of length 63, J. Statist. Plann. Inference 138 (2008), no. 1, 80–85.[MR]
- Bernd Schmalz, t-Designs zu vorgegebener Automorphismengruppe, Bayreuth. Math. Schr. (1992), no. 41, 164.[MR]
- Michel Sebille, On a result of Cameron and Praeger on block-transitive point-imprimitive t-designs, Algebraic Combinatorics and Applications (Gößweinstein, 1999), Springer, Berlin, 2001, pp. 316–323.[MR]
- Martin J. Sharry, Partitioning sets of quintuples into designs, J. Combin. Math. Combin. Comput. 6 (1989), 67–103.[MR]
- Junichi Shigezumi, On 3-lattices and spherical designs, preprint (2008), 199 pages.[arXiv]
- Pawel Wocjan, Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays, Phy. Rev. A. 73 (2006), no. 6, 7.