Coding Theory

Cyclic Codes

94B15

  1. Taher Abualrub, Ali Ghrayeb, Nuh Aydin, and Irfan Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inform. Theory 56 (2010), no. 5, 2081–2090.[doi/arXiv]
  2. Maria Carmen V. Amarra and Fidel R. Nemenzo, On: "(1 – u)-cyclic codes over Fpk+u Fpk", Appl. Math. Lett. 21 (2008), no. 11, 1129–1133.[MR]
  3. Makoto Araya and Masaaki Harada, MDS codes over F9 related to the ternary Golay code, Discrete Math. 282 (2004), no. 1-3, 233–237.[MR]
  4. Marc A. Armand, List decoding of generalized Reed-Solomon codes over commutative rings, IEEE Trans. Inform. Theory 51 (2005), no. 1, 411–419.[MR]
  5. T. P. Berger, Quasi-cyclic Goppa codes, in IEEE International Symposium on Information Theory, ISIT 2000, 2000.[doi]
  6. Grégoire Bommier and Francis Blanchet, Binary quasi-cyclic Goppa codes, Des. Codes Cryptogr. 20 (2000), no. 2, 107–124.[MR]
  7. A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over F2+uF2, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250–1255.[MR]
  8. Nigel Boston, The minimum distance of the [137,69] binary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282.[MR]
  9. Nigel Boston, Bounding minimum distances of cyclic codes using algebraic geometry, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001, pp. 10 pp. (electronic).[MR]
  10. Nigel Boston and Gary McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbolic Comput. 45 (2010), no. 7, 723–733.[MR/doi]
  11. D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 379–389.[MR/arXiv]
  12. Anne Desideri Bracco, Ann Marie Natividad, and Patrick Solé, On quintic quasi-cyclic codes, Discrete Appl. Math. 156 (2008), no. 18, 3362–3375.[MR/doi]
  13. Danyo Danev and Jonas Olsson, On a sequence of cyclic codes with minimum distance six, IEEE Trans. Inform. Theory 46 (2000), no. 2, 673–674.[MR]
  14. Rumen Daskalov and Markus Grassl, New cyclic and quasi-cyclic quaternary linear codes, Proceedings Fifth International Workshop on Optimal Codes and Related Topics, (OC 2007) Balchik, Bulgaria, June 2007, 2007, pp. 56-61.
  15. Anne Desideri Bracco, Treillis de codes quasi-cycliques, European J. Combin. 25 (2004), no. 4, 505–516.[MR]
  16. Cunsheng Ding and Tor Helleseth, Generalized cyclotomic codes of length p1e1…ptet, IEEE Trans. Inform. Theory 45 (1999), no. 2, 467–474.[MR]
  17. Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Note on the g-fold joint weight enumerators of self-dual codes over Zk, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 437–445.[MR]
  18. M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), no. 3, 375–386.[MR]
  19. Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory 51 (2005), no. 1, 402–407.[MR]
  20. Markus Grassl, On the minimum distance of some quadratic-residue codes, in ISlT 2000. Sorrento, Italy, June 25-30, 2000, 2000, pp. 253–253.
  21. Markus Grassl, New binary codes from a chain of cyclic codes, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1178–1181.[MR]
  22. Markus Grassl and Greg White, New codes from chains of quasi-cyclic codes, in IEEE International Symposium on Information Theory (ISIT), Adelaide, 2005.
  23. T. Aaron Gulliver and Masaaki Harada, Orthogonal frames in the Leech lattice and a type II code over Z22, J. Combin. Theory Ser. A 95 (2001), no. 1, 185–188.[MR]
  24. Cem Güneri and Ferruh Özbudak, Cyclic codes and reducible additive equations, IEEE Trans. Inform. Theory 53 (2007), no. 2, 848–853.[MR]
  25. K. J. Horadam and P. Udaya, A new class of ternary cocyclic Hadamard codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 1, 65–73.[MR]
  26. Doug Kuhlman, The minimum distance of the [83,42] ternary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282.[MR]
  27. San Ling and Patrick Solé, Duadic codes over F2+uF2, Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 5, 365–379.[MR]
  28. San Ling and Patrick Solé, Nonlinear p-ary sequences, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 117–125.[MR]
  29. Teo Mora and Massimiliano Sala, On the Gröbner bases of some symmetric systems and their application to coding theory, J. Symbolic Comput. 35 (2003), no. 2, 177–194.[MR]
  30. Carmen-Simona Nedeloaia, On weight distribution of cyclic self-dual codes, in IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland,, 2002.
  31. Carmen-Simona Nedeloaia, Weight distributions of cyclic self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1582–1591.[MR]
  32. Emmanuela Orsini and Massimiliano Sala, General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63, IEEE Trans. Inform. Theory 53 (2007), no. 3, 1095–1107.[MR]
  33. Massimiliano Sala, Groebner bases and distance of cyclic codes, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 2, 137–162.[MR]
  34. Massimiliano Sala, Upper bounds on the dual distance of BCH(255,k), Des. Codes Cryptogr. 30 (2003), no. 2, 159–168.[MR]
  35. Massimiliano Sala, Gröbner basis techniques to compute weight distributions of shortened cyclic codes, J. Algebra Appl. 6 (2007), no. 3, 403–414.[MR]
  36. C. Tjhai and M. Tomlinson, Results on binary cyclic codes, Electronics Letters 43 (2007), no. 4, 234–235.
  37. José Felipe Voloch, Computing the minimal distance of cyclic codes, Comput. Appl. Math. 24 (2005), no. 3, 393–398.[MR]