Algebras – Non-Associative

Computational Methods

17-04

  1. Serena Cicalò and Willem A. de Graaf, Non-associative Gröbner bases, finitely-presented Lie rings and the Engel condition: II, J. Symbolic Comput. 44 (2009), no. 7, 786–800.
  2. Lothar Gerritzen, Tree polynomials and non-associative Gröbner bases, J. Symbolic Comput. 41 (2006), no. 3-4, 297–316.[MR]
  3. W. A. de Graaf, Using Cartan subalgebras to calculate nilradicals and Levi subalgebras of Lie algebras, J. Pure Appl. Algebra 139 (1999), no. 1–3, 25–39.[MR]
  4. Willem A. de Graaf, Deciding isomorphism of Lie algebras, Proceedings of the Sixth Rhine Workshop on Computer Algebra, Sankt Augustin, March 31 - April 3, 1998, 1998, pp. 9.
  5. Willem A. de Graaf, Lie Algebras: Theory and Algorithms, North-Holland Mathematical Library, vol. 56, North-Holland Publishing Co., Amsterdam, 2000, pp. xii+393.[MR]
  6. Roberto La Scala and Viktor Levandovskyy, Letterplace ideals and non-commutative Gröbner bases, J. Symbolic Comp. 44 (2009), no. 10, 1374-1393.