Combinatorics

Computational Methods

05-04

  1. David Abelson, Seok-Hee Hong, and D. E. Taylor, Geometric automorphism groups of graphs, Discrete Appl. Math. 155 (2007), no. 17, 2211–2226.[MR]
  2. David Abelson, Seok-Hee Hong, and Donald E. Taylor, A group-theoretic method for drawing graphs symmetrically, Graph Drawing, Lecture Notes in Comput. Sci., vol. 2528, Springer, Berlin, 2002, pp. 86–97.[MR]
  3. John M. Boyer and Wendy J. Myrvold, On the cutting edge: Simplified O(n) planarity by edge addition, J. Graph Algorithms Appl. 8 (2004), no. 3, 241–273 (electronic).[MR]
  4. Florent Hivert and Nicolas M. Thiéry, MuPAD-Combinat, an open-source package for research in algebraic combinatorics, Sém. Lothar. Combin. 51 (2004/05), Art. B51z, 70 pp. (electronic).[MR]
  5. M. Klin, G. A. Jones, A. Jurisic, M. Muzychuk, and I. Ponomarenko (eds.), Algorithmic algebraic combinatorics and gröbner bases, Springer, Berlin, 2009, pp. 309.
  6. C. Koukouvinos and S. Stylianou, On skew-Hadamard matrices, Discrete Math. 308 (2008), no. 13, 2723–2731.[MR]
  7. Paulette Lieby, Colouring planar graphs, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 315–330.[MR]
  8. Adolfo Piperno, Search space contraction in canonical labeling of graphs (preliminary version), preprint (2008).[arXiv]
  9. Leonard H. Soicher, Computing with graphs and groups, Topics in algebraic graph theory, Encyclopedia of Mathematics and its Applications, vol. 102, Cambridge University Press, Cambridge, 2004, pp. 250–266.[MR]
  10. Kozo Sugiyama, Seok-Hee Hong, and Atsuhiko Maeda, The puzzle layout problem, in Graph Drawing, Perugia, 2003, Springer, 2004, pp. 500-501.
  11. Doron Zeilberger, Deconstructing the Zeilberger algorithm, J. Difference Equ. Appl. 11 (2005), no. 9, 851–856.[MR]