Combinatorial Codes
- Makoto Araya, Masaaki Harada, and Hadi Kharaghani, Some Hadamard matrices of order 32 and their binary codes, J. Combin. Des. 12 (2004), no. 2, 142–146.[MR]
- E. F. Assmus, Jr., The coding theory of finite geometries and designs, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Rome, 1988), Lecture Notes in Comput. Sci., vol. 357, Springer, Berlin, 1989, pp. 1–6.[MR]
- E. F. Assmus, Jr. and Arthur A. Drisko, Binary codes of odd-order nets, Des. Codes Cryptogr. 17 (1999), no. 1-3, 15–36.[MR]
- E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: A coding-theoretic approach, Trans. Amer. Math. Soc. 330 (1992), no. 1, 269–293.[MR]
- E. F. Assmus, Jr. and J. D. Key, Designs and codes: an update, Des. Codes Cryptogr. 9 (1996), no. 1, 7–27.[MR]
- E. F. Assmus, Jr. and J. D. Key, Polynomial codes and finite geometries, Handbook of Coding Theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 1269–1343.[MR]
- Robert F. Bailey and John N. Bray, Decoding the Mathieu group M12, Adv. Math. Commun. 1 (2007), no. 4, 477–487.[MR]
- R. D. Baker and K. L. Wantz, Unitals in the code of the Hughes plane, J. Combin. Des. 12 (2004), no. 1, 35–38.[MR]
- Koichi Betsumiya, T. Aaron Gulliver, Masaaki Harada, and Akihiro Munemasa, On type II codes over F4, IEEE Trans. Inform. Theory 47 (2001), no. 6, 2242–2248.[MR]
- Neil J. Calkin, Jennifer D. Key, and Marialuisa J. de Resmini, Minimum weight and dimension formulas for some geometric codes, Des. Codes Cryptogr. 17 (1999), no. 1-3, 105–120.[MR]
- L. L. Carpenter and J. D. Key, Reed-Muller codes and Hadamard designs from ovals, J. Combin. Math. Combin. Comput. 22 (1996), 79–85.[MR]
- Ying Cheng and N. J. A. Sloane, Codes from symmetry groups, and a [32,17,8] code, SIAM J. Discrete Math. 2 (1989), no. 1, 28–37.[MR]
- Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Permutation groups and binary self-orthogonal codes, J. Algebra 309 (2007), no. 2, 610–621.[MR]
- Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Some self-dual codes invariant under the Hall-Janko group, J. Algebra 316 (2007), no. 2, 578–590.[MR]
- K. L. Clark, J. D. Key, and M. J. de Resmini, Dual codes of translation planes, European J. Combin. 23 (2002), no. 5, 529–538.[MR]
- Marston Conder and John McKay, Markings of the Golay code, New Zealand J. Math. 25 (1996), no. 2, 133–139.[MR]
- A. Cossidente and A. Sonnino, A geometric construction of a [110,5,90]9-linear code admitting the Mathieu group M11, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5251-5252.[doi]
- Antonio Cossidente and Alessandro Siciliano, A geometric construction of an optimal [67,9,30] binary code, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1187–1189.[MR]
- M. R. Darafsheh, A. Iranmanesh, and R. Kahkeshani, Some designs and codes invariant under the groups S9 and A8, Des. Codes Cryptogr. 51 (2009), no. 2, 211–223.[MR/doi]
- M. van Dijk, S. Egner, M. Greferath, and A. Wassermann, Geometric codes over fields of odd prime power order, in IEEE International Symposium on Information Theory (ISIT), Yokohama, 2003.
- Steven T. Dougherty, Jon-Lark Kim, and Patrick Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), no. 1, 45–64.[MR]
- Sean V. Droms, Keith E. Mellinger, and Chris Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr. 40 (2006), no. 3, 343–356.[MR]
- D. G. Farmer and K. J. Horadam, Presemifield bundles over GF(p3), IEEE International Symposium on Information Theory, 2008. ISIT 2008 (2008), 2613-2616.[doi]
- W. Fish, J. D. Key, and E. Mwambene, Graphs, designs and codes related to the n-cube, Discrete Math. 309 (2009), no. 10, 3255–3269.[MR]
- W. Fish, J. D. Key, and E. Mwambene, Binary codes from the line graph of the n-cube, J. Symbolic Comput. 45 (2010), no. 7, 800–812.[MR/doi]
- W. Fish, J. D. Key, and E. Mwambene, Codes from incidence matrices and line graphs of Hamming graphs, Discrete Math. 310 (2010), no. 13-14, 1884–1897.[MR/doi]
- S. Gao and J. D. Key, Bases of minimum-weight vectors for codes from designs, Finite Fields Appl. 4 (1998), no. 1, 1–15.[MR]
- D. Ghinelli, M. J. de Resmini, and J. D. Key, Minimum words of codes from affine planes, J. Geom. 91 (2009), no. 1-2, 43–51.
- Markus Grassl and T. Aaron Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), no. 1, 57–81.[MR]
- Willem H. Haemers, Christopher Parker, Vera Pless, and Vladimir Tonchev, A design and a code invariant under the simple group Co3, J. Combin. Theory Ser. A 62 (1993), no. 2, 225–233.[MR]
- Masaaki Harada, Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptogr. 38 (2006), no. 1, 5–16.[MR]
- Masaaki Harada and Vladimir D. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math. 264 (2003), no. 1-3, 81–90.[MR]
- K. J. Horadam and P. Udaya, A new class of ternary cocyclic Hadamard codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 1, 65–73.[MR]
- J. D. Key, Bases for codes of designs from finite geometries, in Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), vol. 102, 1994, pp. 33–44.[MR]
- J. D. Key, Some applications of Magma in designs and codes: Oval designs, Hermitian unitals and generalized Reed-Muller codes, J. Symbolic Comput. 31 (2001), no. 1-2, 37–53.[MR]
- J. D. Key, Recent developments in permutation decoding, Not. S. Afr. Math. Soc. 37 (2006), no. 1, 2–13.[MR]
- J. D. Key, T. P. McDonough, and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl. 12 (2006), no. 2, 232–247.[MR]
- J. D. Key, T. P. McDonough, and V. C. Mavron, Partial permutation decoding for codes from affine geometry designs, J. Geom. 88 (2008), no. 1-2, 101–109.[MR]
- J. D. Key and J. Moori, Some irreducible codes invariant under the Janko group, J1 or J2, preprint (2008), 20 pages.
- J. D. Key, J. Moori, and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, J. Combin. Math. Combin. Comput. 45 (2003), 3–19.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Binary codes from graphs on triples, Discrete Math. 282 (2004), no. 1-3, 171–182.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin. 25 (2004), no. 1, 113–123.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Some binary codes from symplectic geometry of odd characteristic, Util. Math. 67 (2005), 121–128.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Partial permutation decoding of some binary codes from graphs on triples, Ars Combin. 91 (2009), 363–371.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Ternary codes from graphs on triples, Discrete Math. 309 (2009), no. 14, 4663–4681.[MR/doi]
- J. D. Key, J. Moori, and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding, International Journal of Information and Coding Theory 1 (2010), no. 3, 334–349 pages.
- J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom. 61 (1998), no. 1-2, 83–104.[MR]
- J. D. Key and M. J. de Resmini, Ternary dual codes of the planes of order nine, J. Statist. Plann. Inference 95 (2001), no. 1-2, 229–236.[MR]
- J. D. Key and P. Seneviratne, Permutation decoding for binary codes from lattice graphs, Discrete Math. 308 (2008), no. 13, 2862–2867.[MR]
- Jon-Lark Kim and Vera Pless, Designs in additive codes over GF(4), Des. Codes Cryptogr. 30 (2003), no. 2, 187–199.[MR]
- Jon-Lark Kim and Patrick Solé, Skew Hadamard designs and their codes, Des. Codes Cryptogr. 49 (2008), no. 1-3, 135–145.[MR]
- Heisook Lee and Yoonjin Lee, Construction of self-dual codes over finite rings Zpm, J. Combin. Theory Ser. A 115 (2008), no. 3, 407–422.[MR]
- Ka Hin Leung and Qing Xiang, On the dimensions of the binary codes of a class of unitals, Discrete Math. 309 (2009), no. 3, 570–575.[MR/doi]
- San Ling and Chaoping Xing, Polyadic codes revisited, IEEE Trans. Inform. Theory 50 (2004), no. 1, 200–207.[MR]
- Kirsten Mackenzie, Codes of designs, PhD Thesis, University of Birmingham, 1989.
- Johannes Maks and Juriaan Simonis, Optimal subcodes of second order Reed-Muller codes and maximal linear spaces of bivectors of maximal rank, Des. Codes Cryptogr. 21 (2000), no. 1-3, 165–180.[MR]
- Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, NMDS codes of maximal length over Fq, 8 ≤ q ≤ 11, IEEE Trans. Inform. Theory 48 (2002), no. 4, 963–966.[MR]
- Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, Classification of the (n,3)-arcs in PG(2,7), J. Geom. 80 (2004), no. 1-2, 179–184.[MR]
- Gary McGuire and Harold N. Ward, A determination of the weight enumerator of the code of the projective plane of order 5, Note Mat. 18 (1998), no. 1, 71–99 (1999).[MR]
- Gary McGuire and Harold N. Ward, The weight enumerator of the code of the projective plane of order 5, Geom. Dedicata 73 (1998), no. 1, 63–77.[MR]
- Jamshid Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra 316 (2007), no. 2, 649–661.[MR]
- Akihiro Munemasa and Vladimir D. Tonchev, A new quasi-symmetric 2-(56,16,6) design obtained from codes, Discrete Math. 284 (2004), no. 1-3, 231–234.[MR]
- Mona B. Musa, On some double circulant binary extended quadratic residue codes, IEEE Trans. Inform. Theory 54 (2008), no. 2, 898–905.[MR]
- Christopher Parker and Vladimir D. Tonchev, Linear codes and doubly transitive symmetric designs, Linear Algebra Appl. 226/228 (1995), 237–246.[MR]
- Steven R. Weller and Sarah J. Johnson, Iterative decoding of codes from oval designs, Defence Applications of Signal Processing, 2001 Workshop (2001), 1-19.