Analysis

Analysis: General

26Xxx

  1. Michael Clausen, Fast Fourier transforms for metabelian groups, SIAM J. Comput. 18 (1989), no. 3, 584–593.[MR]
  2. Jeffrey B. Farr and Shuhong Gao, Gröbner bases and generalized Padé approximation, Math. Comp. 75 (2006), no. 253, 461–473 (electronic).[MR]
  3. Jean-Charles Faugère, François Moreau de Saint-Martin, and Fabrice Rouillier, Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques, IEEE Trans. Signal Process. 46 (1998), no. 4, 845–856.[MR]
  4. M. Kasatani, T. Miwa, A. N. Sergeev, and A. P. Veselov, Coincident root loci and Jack and Macdonald polynomials for special values of the parameters, Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 207–225.[MR]
  5. Kiran S. Kedlaya, Search techniques for root-unitary polynomials, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 71–81.[MR/arXiv]
  6. J. C van der Meer, Generic one-parameter versal unfoldings of symmetric hamiltonian systems in 1 : 1 resonance, Int. J. Pure Appl. Math 53 (2009), no. 4, 547–561.
  7. A. J. Scott and M. Grassl, Symmetric informationally complete positive-operator-valued measures: A new computer study, J. Math. Phys. 51 (2010), no. 4, 042203.[arXiv]
  8. Shayne Waldron and Nick Hay, On computing all harmonic frames of n vectors in Cd, Appl. Comput. Harmon. Anal. 21 (2006), no. 2, 168–181.[MR]