Surfaces and Higher Dimensional Varieties
- Selma Altınok, Gavin Brown, and Miles Reid, Fano 3-folds, K3 surfaces and graded rings, Topology and Geometry: Commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 25–53.[MR]
- Arthur Baragar and Ronald van Luijk, K3 surfaces with Picard number three and canonical vector heights, Math. Comp. 76 (2007), no. 259, 1493–1498 (electronic).[MR]
- I. C. Bauer, F. Catanese, and F. Grunewald, The classification of surfaces with pg = q = 0 isogenous to a product of curves, Pure Appl. Math. Q. 4 (2008), no. 2, part 1, 547–586.[MR/arXiv]
- Ingrid C. Bauer and Fabrizio Catanese, A volume maximizing canonical surface in 3-space, Comment. Math. Helv. 83 (2008), no. 2, 387–406.[MR]
- Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald, Beauville surfaces without real structures, Geometric Methods in Algebra and Number Theory, Progr. Math., vol. 235, Birkhäuser Boston, Boston, MA, 2005, pp. 1–42.[MR]
- Ingrid Bauer, Fabrizio Catanese, and Fritz Grunewald, The absolute Galois group acts faithfully on the connected components of the moduli space of surfaces of general type, preprint (2007), 13 pages.[arXiv]
- Ingrid Bauer, Fabrizio Catanese, Fritz Grunewald, and Roberto Pignatelli, Quotients of a product of curves by a finite group and their fundamental groups, preprint (2008), 37 pages.[arXiv]
- Ingrid C. Bauer, Fabrizio Catanese, and Roberto Pignatelli, Complex surfaces of general type: Some recent progress, Global Aspects of Complex Geometry, Springer, Berlin, 2006, pp. 1–58.[MR]
- Ingrid C. Bauer, Fabrizio Catanese, and Roberto Pignatelli, The moduli space of surfaces with K2 = 6 and pg = 4, Math. Ann. 336 (2006), no. 2, 421–438.[MR]
- Ingrid Bauer, Fabrizio Catanese, and Roberto Pignatelli, Surfaces of general type with geometric genus zero: A survey, preprint (2010), 41 pages.[arXiv]
- Ingrid Bauer and Roberto Pignatelli, The classification of minimal product-quotient surfaces with pg = 0, preprint (2010), 53 pages.[arXiv]
- Tobias Beck, Formal desingularization of surfaces: the Jung method revisited, J. Symb. Comput. 44 (2009), no. 2, 131–160.[doi/arXiv]
- Tobias Beck and Josef Schicho, Adjoint computation for hypersurfaces using formal desingularizations, J. Algebra 320 (2008), no. 11, 3984–3996.[MR/doi]
- Gilberto Bini, Quotients of hypersurfaces in weighted projective space, preprint (2009), 13 pages.[arXiv]
- Hans-Christian Graf v. Bothmer, Finite field experiments, Higher-dimensional Geometry over Finite Fields, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur., vol. 16, IOS, Amsterdam, 2008, pp. 1–62.[MR]
- Martin Bright, Brauer groups of diagonal quartic surfaces, J. Symbolic Comput. 41 (2006), no. 5, 544–558.[MR]
- S. Allen Broughton, Enumeration of the equisymmetric strata of the moduli space of surfaces of low genus, Preprint, 25 pages.
- Gavin Brown, Datagraphs in algebraic geometry and K3 surfaces, Symbolic and Numerical Scientific Computation (Hagenberg, 2001), Lecture Notes in Comput. Sci., vol. 2630, Springer, Berlin, 2003, pp. 210–224.[MR]
- Gavin Brown, Graded rings and special K3 surfaces, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 137–159.[MR]
- Gavin Brown, A database of polarized K3 surfaces, Experiment. Math. 16 (2007), no. 1, 7–20.[MR]
- Gavin Brown, Alexander Kasprzyk, and Daniel Ryder, Computational birational geometry of minimal rational surfaces, preprint (2009), 20 pages.[arXiv]
- Gavin Brown and Kaori Suzuki, Computing certain Fano 3-folds, Japan J. Indust. Appl. Math. 24 (2007), no. 3, 241–250.[MR/link]
- Gavin Brown and Kaori Suzuki, Fano 3-folds with divisible anticanonical class, Manuscripta Math. 123 (2007), no. 1, 37–51.[MR/doi]
- Nils Bruin, Visualising Sha[2] in abelian surfaces, Math. Comp. 73 (2004), no. 247, 1459–1476 (electronic).[MR]
- Anita Buckley and Balázs Szendröi, Orbifold Riemann-Roch for threefolds with an application to Calabi-Yau geometry, J. Algebraic Geom. 14 (2005), no. 4, 601–622.[MR]
- Jorge Caravantes, Low codimension Fano–Enriques threefolds, preprint (2006), 27 pages.[arXiv]
- A. Clingher, C. F. Doran, J. Lewis, and U. Whitcher, Normal forms, K3 surface moduli, and modular parametrizations, in Groups and Symmetries: Proceedings of the CRM conference in honor of John McKay,, CRM-AMS Proceedings and Lecture Notes, vol. 47, 2008, 18 pages.
- Patrick Corn, Tate-Shafarevich groups and K3 surfaces, Math. Comp., to appear (2007), 17 pages.
- Alessio Corti and Miles Reid, Weighted Grassmannians, Algebraic Geometry, de Gruyter, Berlin, 2002, pp. 141–163.[MR]
- Ulrich Derenthal, On the Cox ring of del Pezzo surfaces, preprint (2006), 17 pages.[arXiv]
- Ulrich Derenthal, Universal torsors of del Pezzo surfaces and homogeneous spaces, Adv. Math. 213 (2007), no. 2, 849–864.[MR]
- Luis V. Dieulefait, Computing the level of a modular rigid Calabi-Yau threefold, Exp. Math 13 (2004), no. 2, 165-169.
- Noam D. Elkies, Three lectures on elliptic surfaces and curves of high rank, preprint (2007), 14 pages.[arXiv]
- Pavel Etingof, Alexei Oblomkov, and Eric Rains, Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces, Adv. Math. 212 (2007), no. 2, 749–796.[MR]
- Alice Garbagnati and Alessandra Sarti, Elliptic fibrations and symplectic automorphisms on K3 surfaces, Comm. Algebra 37 (2009), no. 10, 3601–3631.[MR/doi]
- Shelly Garion and Matteo Penegini, New Beauville surfaces, moduli spaces and finite groups, preprint (2009), 36 pages.[arXiv]
- Victor Ginzburg, Calabi-Yau algebras, preprint (2007), 79 pages.[arXiv]
- Willem A. de Graaf, Michael Harrison, Jana Pílniková, and Josef Schicho, A Lie algebra method for rational parametrization of Severi-Brauer surfaces, J. Algebra 303 (2006), no. 2, 514–529.[MR]
- Willem A. de Graaf, Jana Pílniková, and Josef Schicho, Parametrizing del Pezzo surfaces of degree 8 using Lie algebras, J. Symbolic Comput. 44 (2009), no. 1, 1–14.[arXiv]
- V. A. Gritsenko, K. Hulek, and G. K. Sankaran, The Kodaira dimension of the moduli of K3 surfaces, Invent. Math. 169 (2007), no. 3, 519–567.[MR]
- Johan P. Hansen, Toric surfaces and codes, techniques and examples, Preprint Series No.1., University of Aarhus, Department of Mathematics, Aarhus, Denmark (2004), 12 pages.
- Brendan Hassett, Anthony Vàrilly-Alvarado, and Patrick Varilly, Transcendental obstructions to weak approximation on general K3 surfaces, preprint (2010), 24 pages.[arXiv]
- Kiran S. Kedlaya, Computing zeta functions of surfaces, Mathematisches Forschungsinstitut Oberwolfach Report 32 (2005), 1808–1810.
- Adam Logan, The Brauer-Manin obstruction on del Pezzo surfaces of degree 2 branched along a plane section of a Kummer surface, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 603–622.[MR]
- Ronald van Luijk, Quartic K3 surfaces without nontrivial automorphisms, Math. Res. Lett. 13 (2006), no. 2-3, 423–439.[MR/arXiv]
- Ronald van Luijk, K3 surfaces with Picard number one and infinitely many rational points, Algebra and Number Theory 1 (2007), no. 1, 1–15.
- Ronald van Luijk, An elliptic K3 surface associated to Heron triangles, J. Number Theory 123 (2007), no. 1, 92–119.[MR]
- Stefan Maubach and Roel Willems, Polynomial automorphisms over finite fields: Mimicking non-tame and tame maps by the Derksen group, preprint (2009), 22 pages.[arXiv]
- Jan-Steffen Müller, Explicit Kummer surface theory for arbitrary characteristic, London Math. Soc. J. Comput. Math. 13 (2010), 47–64.[arXiv]
- Francesco Polizzi, Standard isotrivial fibrations with pg = q = 1, Journal of Algebra 321 (2009), no. 6, 1600–1631.[doi/arXiv]
- Gopal Prasad and Sai-Kee Yeung, Fake projective planes, Invent. Math. 168 (2007), no. 2, 321–370.[MR]
- Carlos Rito, On surfaces with pg = q = 1 and non-ruled bicanonial involution, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 81–102.[MR/arXiv]
- Carlos Rito, A note on Todorov surfaces, Osaka J. Math. 46 (2009), no. 3, 685–693.[MR/link]
- Carlos Rito, Involutions on surfaces with pg = q = 1, Collectanea Mathematica 61 (2010), no. 1, 81–106.[arXiv]
- Carlos Rito, On equations of double planes with pg = q = 1, Math. Comp 79 (2010), 1091–1108.[arXiv]
- Maria Marti Sanchez, Even sets of (-4)-curves on rational surface, preprint (2010), 17 pages.[arXiv]
- Stefan Schröer, Kummer surfaces for the self-product of the cuspidal rational curve, J. Algebraic Geom. 16 (2007), no. 2, 305–346.[MR/arXiv]
- Matthias Schütt, Tetsuji Shioda, and Ronald van Luijk, Lines on Fermat surfaces, J. Number Theory 130 (2010), no. 9, 1939–1963.[doi]
- James P Smith, Picard-Fuchs differential equations for families of K3 surfaces, PhD Thesis, University of Warwick, 2007.[arXiv]
- Kaori Suzuki, On Fano indices of Q-Fano 3-folds, Manuscripta Math. 114 (2004), no. 2, 229–246.[MR]
- Damiano Testa, Anthony Vàrilly-Alvarado, and Mauricio Velasco, Cox rings of degree one del Pezzo surfaces, Algebra and Number Theory 3 (2009), 729–761.[arXiv]
- Anthony Várilly-Alvarado, Weak approximation on del Pezzo surfaces of degree 1, Adv. Math. 219 (2008), no. 6, 2123–2145.[MR]
- Anthony Vàrilly-Alvarado and Bianca Viray, Failure of the Hasse principle for Enriques surfaces, Advances in Mathematics 226 (2011), 4884–4901.[arXiv]
- Anthony Várilly-Alvarado and David Zywina, Arithmetic E8 lattices with maximal Galois action, LMS J. Comput. Math. 12 (2009), 144–165.[MR/arXiv]
- Bogdan G. Vioreanu, Mordell-Weil problem for cubic surfaces, numerical evidence, preprint (2008), 22 pages.[arXiv]
- Bianca Viray, A family of varieties with exactly one pointless rational fiber, preprint (2009), 4 pages.[arXiv]