Combinatorics

Algebraic Combinatorics

05Exx

  1. Christine Bachoc, Harmonic weight enumerators of nonbinary codes and MacWilliams identities, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 1–23.[MR]
  2. Andries E. Brouwer, Naoyuki Horiguchi, Masaaki Kitazume, and Hiroyuki Nakasora, A construction of the sporadic Suzuki graph from U3(4), J. Combin. Theory Ser. A 116 (2009), no. 5, 1056–1062.[MR]
  3. J. Buhler and Z. Reichstein, Symmetric functions and the phase problem in crystallography, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2353–2377 (electronic).[MR]
  4. Marston Conder, Group actions on graphs, maps and surfaces with maximum symmetry, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser., vol. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 63–91.[MR]
  5. M. R. Darafsheh, A. Iranmanesh, and R. Kahkeshani, Some designs and codes invariant under the groups S9 and A8, Des. Codes Cryptogr. 51 (2009), no. 2, 211–223.[MR/doi]
  6. Paul-Olivier Dehaye, Joint moments of derivatives of characteristic polynomials, Algebra Number Theory 2 (2008), no. 1, 31–68.[MR]
  7. Alice Devillers, Michael Giudici, Cai Heng Li, and Cheryl E. Praeger, A remarkable Mathieu graph tower, preprint, 23 pages.
  8. Steven T. Dougherty, Jon-Lark Kim, and Patrick Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), no. 1, 45–64.[MR]
  9. Yan-Quan Feng, Jin Ho Kwak, and Chuixiang Zhou, Constructing even radius tightly attached half-arc-transitive graphs of valency four, J. Algebraic Combin. 26 (2007), no. 4, 431–451.[MR]
  10. Anna Fukshansky and Corinna Wiedorn, C-extensions of the Petersen geometry for M22, European J. Combin. 20 (1999), no. 3, 233–238.[MR]
  11. George Havas and Edmund F. Robertson, Two groups which act on cubic graphs, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 65–68.[MR]
  12. Naoyuki Horiguchi, Masaaki Kitazume, and Hiroyuki Nakasora, The Hall-Janko graph and the Witt system W10, European J. Combin. 29 (2008), no. 1, 1–8.[MR]
  13. Naoyuki Horiguchi, Hiroyuki Nakasora, and Takehisa Wakabayashi, On the strongly regular graphs obtained from quasi-symmetric 2-(31,7,7) designs, Bull. Yamagata Univ. Natur. Sci. 16 (2005), no. 1, 1–6.[MR]
  14. M. Kasatani, T. Miwa, A. N. Sergeev, and A. P. Veselov, Coincident root loci and Jack and Macdonald polynomials for special values of the parameters, Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 207–225.[MR]
  15. J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput. 40 (2002), 143–159.[MR]
  16. J. D. Key, J. Moori, and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, J. Combin. Math. Combin. Comput. 45 (2003), 3–19.[MR]
  17. M. Klin, G. A. Jones, A. Jurisic, M. Muzychuk, and I. Ponomarenko (eds.), Algorithmic algebraic combinatorics and gröbner bases, Springer, Berlin, 2009, pp. 309.
  18. Klavdija Kutnar, Dragan Marušič, Štefko Miklavič, and Primož Šparl, Strongly regular tri-Cayley graphs, European J. Combin. 30 (2009), no. 4, 822–832.[MR]
  19. Dimitri Leemans, Locally s-arc-transitive graphs related to sporadic simple groups, J. Algebra 322 (2009), no. 3, 882–892.[MR/doi]
  20. Cai Heng Li, Tian Khoon Lim, and Cheryl E. Praeger, Homogeneous factorisations of complete graphs with edge-transitive factors, J. Algebraic Combin. 29 (2009), no. 1, 107–132.[MR]
  21. Jamshid Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL : 2, J. Combin. Theory Ser. A 110 (2005), no. 1, 53–69.[MR]
  22. Hiroshi Nozaki, Geometrical approach to Seidel's switching for strongly regular graphs, preprint (2009), 9 pages.[arXiv]
  23. Ju-Mok Oh, Arc-transitive elementary abelian covers of the Pappus graph, Discrete Math. 309 (2009), no. 23-24, 6590–6611.[MR/doi]
  24. Patric R. J. Östergård, Classifying subspaces of Hamming spaces, Des. Codes Cryptogr. 27 (2002), no. 3, 297–305.[MR]
  25. Christopher Parker, Edward Spence, and Vladimir D. Tonchev, Designs with the symmetric difference property on 64 points and their groups, J. Combin. Theory Ser. A 67 (1994), no. 1, 23–43.[MR]
  26. Geoffrey Pearce, Examples of rank 3 product action transitive decompositions, Des. Codes Cryptogr. 47 (2008), no. 1-3, 289–303.[MR]
  27. Gary J. Sherman, Thomas J. Tucker, and Mark E. Walker, How Hamiltonian can a finite group be?, Arch. Math. (Basel) 57 (1991), no. 1, 1–5.[MR]
  28. Bruce W. Westbury, Invariant tensors and the cyclic sieving phenomenon, preprint (2010), 32 pages.[arXiv]
  29. Doron Zeilberger, Deconstructing the Zeilberger algorithm, J. Difference Equ. Appl. 11 (2005), no. 9, 851–856.[MR]
  30. Cui Zhang, Jin-Xin Zhou, and Yan-Quan Feng, Automorphisms of cubic Cayley graphs of order 2pq, Discrete Math. 309 (2009), no. 9, 2687–2695.[MR]
  31. Jin-Xin Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math. 309 (2009), no. 20, 6081–6086.[MR/doi]
  32. Jin-Xin Zhou and Yan-Quan Feng, Tetravalent one-regular graphs of order 2pq, J. Algebraic Combin. 29 (2009), no. 4, 457–471.[MR]
  33. Jin-Xin Zhou and Yan-Quan Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Aust. Math. Soc. 88 (2010), no. 2, 277–288.[doi]