Computer Science

Artificial Intelligence

68Txx

  1. Clemens Ballarin, Computer algebra and thereom proving, PhD Thesis, University of Cambridge, 1999.[link]
  2. Clemens Ballarin, Jacques Calmet, and Peter Kullmann, Integration of deduction and computation, Preprint (2000), 19 pages.
  3. Michael J. Beeson, The mechanization of mathematics, Alan Turing: Life and Legacy of a Great Thinker, Springer, Berlin, 2004, pp. 77–134.[MR]
  4. Mireille Boutin and Gregor Kemper, On reconstructing n-point configurations from the distribution of distances or areas, Adv. in Appl. Math. 32 (2004), no. 4, 709–735.[MR]
  5. Mireille Boutin and Gregor Kemper, On reconstructing configurations of points in P2 from a joint distribution of invariants, Appl. Algebra Engrg. Comm. Comput. 15 (2005), no. 6, 361–391.[MR]
  6. Arjeh Cohen, Scott H. Murray, Martin Pollet, and Volker Sorge, Certifying solutions to permutation group problems, Automated Deduction - CADE-19, Lecture Notes in Computer Science, vol. 2741, Springer Berlin/Heidelberg, 2003, pp. 258–273.
  7. James H. Davenport, Equality in computer algebra and beyond, J. Symbolic Comput. 34 (2002), no. 4, 259–270.[MR]
  8. Andreas Döring, Kooperation eines theorembeweisers und eines computeralgebrasystems, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 1994.
  9. Andreas Franke and Michael Kohlhase, System description: mathweb, an agent-based communication layer for distributed automated theorem proving, Automated Deduction - Cade-16: Proceedings of the 16th International Conference on Automated Deduction, Trento, Italy, July 1999, Lecture Notes in Computer Science, vol. 1632, Springer, Berlin, Heidelberg, 1999, pp. 243–258.
  10. Harald Ganzinger (ed.), Automated deduction—CADE-16, in Proceedings of the 16th International Conference held in Trento, July 7–10, 1999, Lecture Notes in Computer Science, vol. 1632, Springer-Verlag, Berlin, 1999, pp. xiv+429.[MR]
  11. Karsten Homann, Symbolisches lösung mathematischer probleme durch kooperation algorithmischer und logischer systeme, PhD Thesis, Fakultät für Informatik der Universität Karlsruhe, 1996.
  12. Karsten Homann and Jacques Calmet, Combining theorem proving and symbolic mathematical computing, Selected Papers from the Second International Conference on Integrating Symbolic Mathematical Computation and Artificial Intelligence, Lecture Notes in Comput. Sci., vol. 958, Springer, London, 1994, pp. 18–29.
  13. Cezary Kaliszyk and Freek Wiedijk, Certified computer algebra on top of an interactive theorem prover, Towards Mechanized Mathematical Assistants, Lecture Notes in Computer Science, vol. 4573/2007, Springer Berlin / Heidelberg, 2007, pp. 94–105.
  14. David Nister, Richard Hartley, and Henrik Stewenius, Using Galois theory to prove structure from motion algorithms are optimal, in Computer Vision and Pattern Recognition, 2007. CVPR '07, 17-22 June 2007, 8 pages.[doi]
  15. S. Petitjean, Algebraic geometry and computer vision: Polynomial systems, real and complex roots, J. Math. Imaging Vision 10 (1999), no. 3, 191–220.[MR]
  16. Tomaz Pisanski, Marko Boben, and Arjana Zitnik, Interactive conjecturing with VEGA, Fajtlowicz, Siemion (ed.) et al., Graphs and Discovery, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 69, American Mathematical Society (AMS), Providence, RI, 2005, pp. 351–364.
  17. Virgile Prevosto and Damien Doligez, Algorithms and proofs inheritance in the Foc language, J. Automat. Reason. 29 (2002), no. 3-4, 337–363.[MR]
  18. Fabrice Rouillier, Mohab Safey El Din, and Éric Schost, Solving the Birkhoff interpolation problem via the critical point method: an experimental study, ADG '00: Revised Papers from the Third International Workshop on Automated Deduction in Geometry (Zurich, 2000), Lecture Notes in Computer Science, vol. 2061, Springer-Verlag, Berlin, 2001, pp. viii+325.[MR]
  19. Lewis Stiller, Multilinear algebra and chess endgames, Games of no Chance (Berkeley, CA, 1994), Math. Sci. Res. Inst. Publ., vol. 29, Cambridge Univ. Press, Cambridge, 1996, pp. 151–192.[MR]
  20. Jürgen Zimmer and Louise A. Dennis, Inductive theorem proving and computer algebra in the MathWeb Software Bus, Artificial Intelligence, Automated Reasoning, and Symbolic Computation, Lecture Notes in Comput. Sci., vol. 2385, Springer, Berlin, 2002, pp. 319–331.[MR]