- Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), no. 2, 181–189.[MR/arXiv]
- Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, preprint (2008), 19 pages.[arXiv]
- Nils Bruin and Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math 13 (2010), 272–306.[arXiv]
- Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), no. 8, 859–885.[MR/arXiv]
- J. E. Cremona, T. A. Fisher, C. O'Neil, D. Simon, and M. Stoll, Explicit n-descent on elliptic curves. I. Algebra, J. reine angew. Math. 615 (2008), 121–155.[MR]
- J. E. Cremona, T. A. Fisher, C. O'Neil, D. Simon, and M. Stoll, Explicit n-descent on elliptic curves, II: Geometry, J. reine angew. Math 2009 (2009), no. 632, 63–84.[arXiv]
- J. E. Cremona, T. A. Fisher, and M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra and Number Theory 4 (2010), no. 6, 763–820.[arXiv]
- Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of X(7) and primitive solutions to x2+y3=z7, Duke Math. J. 137 (2007), no. 1, 103–158.[MR]
- Edward F. Schaefer and Michael Stoll, How to do a p-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), no. 3, 1209–1231 (electronic).[MR]
- Samir Siksek and Michael Stoll, On a problem of Hajdu and Tengely, preprint (2009), 8 pages.[arXiv]
- Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277.[MR]
- Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182.[MR]
- Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380.[arXiv]