- John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel, Computing subgroups of bounded index in a finite group, J. Symbol. Comput. 40 (2005), no. 2, 1013–1022.[MR]
- G. Havas, C. R. Leedham-Green, E. A. O'Brien, and M. C. Slattery, Certain Roman and flock generalized quadrangles have nonisomorphic elation groups, Adv. Geom. 6 (2006), no. 3, 389–395.[MR]
- George Havas, C. R. Leedham-Green, E. A. O'Brien, and Michael C. Slattery, Computing with elation groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 95–102.[MR]
- Michael C. Slattery, Computing character degrees in p-groups, J. Symbolic Comput. 2 (1986), no. 1, 51–58.[MR]
- Michael C. Slattery, Character degrees of finite p-groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 89–92.[MR]
- Michael C. Slattery, Character degrees and derived length in p-groups, Glasgow Math. J. 30 (1988), no. 2, 221–230.[MR]
- Michael C. Slattery, Computing double cosets in soluble groups, J. Symbolic Comput. 31 (2001), no. 1-2, 179–192.[MR]
- Michael C. Slattery, Generation of groups of square-free order, J. Symbolic Comput. 42 (2007), no. 6, 668–677.[MR]
- Michael C. Slattery, Character degrees of normally monomial maximal class 5-groups, Contemporary Mathematics 524 (2010), 153–159.