

[128] William F. Reynolds, *Noncommutators and the number of projective characters of a finite group*, The Arcata Conference on Representations of Finite Groups (Arcata,

Abstract Finite Groups
20Dxx

[52] ______; *The poset of elementary abelian p-subgroups having rank at least 2*, J. Group. Th (To appear).

[147] Colin Reid, A problem in the Kourovka notebook concerning the number of conjugacy classes of a finite group, 2008.

[174] Ivan Yudin, *Presentation for parabolic subgroups of GL_n(F_2)*, 2010.
Structure and Classification

20Exx

Special Aspects of Finite or Infinite Groups

[34] Symmetric presentations. II. The Janko group J_1, J. London Math. Soc. (2) 47 (1993), no. 2, 294–308. MR MR1207950 (94b:20039)

[102] Jian-Yi Shi, *Congruence classes of presentations for the complex reflection groups $G(m, 1, n)$ and $G(m, m, n)$*, Indag. Math. (N.S.) 16 (2005), no. 2, 267–288.

Linear Algebraic Groups

20Gxx

[56] , On the (2, 3)-generation of matrix groups over the ring of integers, Algebra i Analiz 19 (2007), no. 6, 22–58. MR MR2411638

[57] Maxim Vsemirnov, The group $GL(6, \mathbb{Z})$ is (2, 3)-generated, J. Group Theory 10 (2007), no. 4, 425–430. MR MR2334749

Cohomology

20Jxx

Loops, Quasigroups and Semigroups
20Mxx, 20Nxx

[65] George Havas and Edmund F. Robertson, Application of computational tools for finitely presented groups, Computational support for discrete mathematics (Piscat-

