Physics
- Joseph L. Awange and Erik W. Grafarend, Solving Algebraic Computational Problems in Geodesy and Geoinformatics, Springer-Verlag, Berlin, 2005, pp. xviii+333.[MR]
- Ingemar Bengtsson, Wojciech Bruzda, Asa Ericsson, Jan-Ake Larsson, Wojciech Tadej, and Karol Zyczkowski, Mutually unbiased bases and Hadamard matrices of order six, J. Math. Phys. 48 (2007), no. 052106, 1–21.[doi/arXiv]
- Thomas Beth, Christopher Charnes, Markus Grassl, Gernot Alber, Aldo Delgado, and Michael Mussinger, A new class of designs which protect against quantum jumps, Des. Codes Cryptogr. 29 (2003), no. 1-3, 51–70.[MR]
- J. Buhler and Z. Reichstein, Symmetric functions and the phase problem in crystallography, Trans. Amer. Math. Soc. 357 (2005), no. 6, 2353–2377 (electronic).[MR]
- J. S. Dowker and Peter Chang, Analytic torsion on spherical factors and tessellations, preprint 2009, 28 pages.[arXiv]
- Bettina Eick and Bernd Souvignier, Algorithms for crystallographic groups, Int. J. Quantum. Chem 106 (2006), no. 1, 316–343.
- G. David Forney, Jr., Markus Grassl, and Saikat Guha, Convolutional and tail-biting quantum error-correcting codes, IEEE Trans. Inform. Theory 53 (2007), no. 3, 865–880.[MR]
- Peter J. Forrester and Eric M. Rains, Interrelationships between orthogonal, unitary and symplectic matrix ensembles, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 171–207.[MR]
- S. Fritzsche, Application of point-group symmetries in chemistry and physics: a computer-algebraic approach, Int. J. Quantum. Chem 106 (2006), 98-129.
- M. Grassl, Thomas Beth, and T. Pellizzari, Codes for the quantum erasure channel, Phys. Rev. A (3) 56 (1997), no. 1, 33–38.[MR]
- M. Grassl, Thomas Beth, and M. Rötteler, Computing local invariants of quantum-bit systems, Phys. Rev. A. 58 (1998), no. 3, 833-1839.
- Markus Grassl, On SIC-POVMs and MUBs in dimension 6, preprint (2004), 8 pages.[arXiv]
- Markus Grassl, Tomography of quantum states in small dimensions, in Proceedings of the Workshop on Discrete Tomography and its Applications, Electron. Notes Discrete Math., vol. 20, Elsevier, Amsterdam, 2005, pp. 151–164 (electronic).[MR]
- Markus Grassl, Martin Rötteler, and Thomas Beth, Computing local invariants of quantum-bit systems, Phys. Rev. A (3) 58 (1998), no. 3, 1833–1839.[MR]
- Marshall Hampton and Richard Moeckel, Finiteness of stationary configurations of the four-vortex problem, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1317-1332.
- Marshall Hampton and Manuele Santoprete, Seven-body central configurations: A family of central configurations in the spatial seven-body problem, Cel. Mec. Dynam. Astron 99 (2007), no. 4, 293–305.[doi/arXiv]
- Russell John Higgs, Nice error bases and Sylow subgroups, IEEE Trans. Inform. Theory 54 (2008), no. 9, 4199–4207.[MR/doi]
- Min-Hsiu Hsieh, Igor Devetak, and Todd Brun, General entanglement-assisted quantum error-correcting codes, Physical Review A (Atomic, Molecular, and Optical Physics) 76 (2007), no. 6, 062313.[doi]
- Andreas Klappenecker and Martin Rötteler, Beyond stabilizer codes I: Nice error bases, IEEE Trans. Inform. Theory 48 (2002), no. 8, 2392–2395.[MR/doi]
- Andreas Klappenecker and Martin Rötteler, Unitary error bases: Constructions, equivalence, and applications, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Toulouse, 2003), Lecture Notes in Comput. Sci., vol. 2643, Springer, Berlin, 2003, pp. 139–149.[MR]
- Andreas Klappenecker and Martin Rötteler, On the structure of nonstabilizer Clifford codes, Quantum Inf. Comput. 4 (2004), no. 2, 152–160.[MR]
- I. Kotsireas and D. Lazard, Central configurations of the 5-body problem with equal masses in three-dimensional space, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 258 (1999), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 4, 292–317, 360–361.[MR]
- Samuel J. Lomonaco, Jr. and Louis H. Kauffman, Quantum hidden subgroup algorithms: A mathematical perspective, Quantum Computation and Information (Washington, DC, 2000), Contemp. Math., vol. 305, Amer. Math. Soc., Providence, RI, 2002, pp. 139–202.[MR]
- Peter Lorimer, Models for a finite universe, Internat. J. Theoret. Phys. 41 (2002), no. 7, 1201–1274.[MR]
- Jean-Gabriel Luque, Jean-Yves Thibon, and Frédéric Toumazet, Unitary invariants of qubit systems, Math. Structures Comput. Sci. 17 (2007), no. 6, 1133–1151.[MR/arXiv]
- Dhagash B. Mehta, Lattice vs. Continuum: Landau Gauge Fixing and 't Hooft-Polyakov Monopoles, PhD Thesis, University of Adelaide, 2010.[link]
- Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006, pp. xxviii+430.[MR]
- J. Opgenorth, W. Plesken, and T. Schulz, Crystallographic algorithms and tables, Acta Cryst. Sect. A 54 (1998), no. 5, 517–531.[MR]
- Francesco Dalla Piazza, More on superstring chiral measures, Nuclear Physics B 844 (2011), no. 3, 471–499.
- Michel Planat, Clifford group dipoles and the enactment of Weyl/Coxeter group W(E8) by entangling gates, preprint (2009).[arXiv]
- Michel Planat, Peter Levay, and Metod Saniga, Balanced tripartite entanglement, the alternating group A4 and the Lie algebra sl(3,C)⊕u(1), preprint (2009), 14 pages.[arXiv]
- Joseph M. Renes, Robin Blume-Kohout, A. J. Scott, and Carlton M. Caves, Symmetric informationally complete quantum measurements, J. Math. Phys. 45 (2004), no. 6, 2171–2180.[MR]
- Thomas Schulte-Herbräggen, Uwe Sander, and Robert Zeier, Symmetry principles in quantum system theory of multi-qubit systems made simple, Proceedings of the 4th International Symposium on Communications, Control and Signal Processing, ISCCSP 2010, Limassol, Cyprus, 3–5 March 2010, IEEE, 2010, pp. 1–5.[doi]
- Thomas Schulte-Herbriiggen, Uwe Sander, and and Robert Zeier, Symmetry principles in quantum system theory of multi-qubit systems made simple, Communications, Control and Signal Processing, ISCCSP 2010. Proceedings of the 4th International Symposium, IEEE, 2010, pp. 1–5.[doi]
- A. J. Scott and M. Grassl, Symmetric informationally complete positive-operator-valued measures: A new computer study, J. Math. Phys. 51 (2010), no. 4, 042203.[arXiv]
- Marcus Palmer da Silva, Erasure thresholds for efficient linear optics quantum computation, Master's Thesis, University of Waterloo, 2004.
- Barbara M. Terhal, Isaac L. Chuang, David P. Di Vincenzo, Markus Grassl, and John A. Smolin, Simulating quantum operations with mixed environments, Phys. Rev 60 (1999), no. 2, 881-885.[MR]
- Craig A. Tracy, Larry Grove, and M. F. Newman, Modular properties of the hard hexagon model, J. Statist. Phys. 48 (1987), no. 3-4, 477–502.[MR]
- A. A. Ungar, Hyperbolic trigonometry in the Einstein relativistic velocity model of hyperbolic geometry, Comput. Math. Appl. 40 (2000), no. 2-3, 313–332.[MR]
- Abraham A. Ungar, Beyond the Einstein Addition Law and its Gyroscopic Thomas Precession, Fundamental Theories of Physics, vol. 117, Kluwer Academic Publishers Group, Dordrecht, 2001, pp. xlii+413.[MR/link]
- D. W. Vasco, Intersections, ideals, and inversion, Inverse Problems 15 (1999), no. 6, 1573–1602.[MR]
- H. E. Winkelnkemper, AP theory II: Intrinsic 4D quantum YM theory with mass gap, preprint (2007), 54 pages.[arXiv]
- H. E. Winkelnkemper, AP Theory III: Cone-like graded SUSY, Dynamic Dark Energy and the YM Millenium problem, preprint (2010), 15 pages.[arXiv]
- Pawel Wocjan, Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays, Phy. Rev. A. 73 (2006), no. 6, 7.
- Pawel Wocjan, Martin Rötteler, Dominik Janzing, and Thomas Beth, Universal simulation of Hamiltonians using a finite set of control operations, Quantum Inf. Comput. 2 (2002), no. 2, 133–150.[MR]
- Robert Michael Zeier, Lie-theoretischer zugang zur erzeugung unitärer transformationen auf quantenrechnern, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 2006.