Group Theory
- A. Abduh and R. J. List, The characters of the centralizer of an involution in C1, Arch. Math. (Basel) 51 (1988), no. 6, 485–490.[MR]
- Edith Adan-Bante and Helena Verrill, Symmetric groups and conjugacy classes, J. Group Theory 11 (2008), no. 3, 371–379.[MR]
- A. Adem, J. F. Carlson, D. B. Karagueuzian, and R. James Milgram, The cohomology of the Sylow 2-subgroup of the Higman-Sims group, J. Pure Appl. Algebra 164 (2001), no. 3, 275–305.[MR]
- Alejandro Adem, Recent developments in the cohomology of finite groups, Notices Amer. Math. Soc. 44 (1997), no. 7, 806–812.[MR]
- Alejandro Adem, Dikran Karagueuzian, R. James Milgram, and Kristin Umland, The cohomology of the Lyons group and double covers of alternating groups, J. Algebra 208 (1998), no. 2, 452–479.[MR]
- Jaume Aguadé, The arboreal approach to pairs of involutions in rank two, Comm. Algebra 37 (2009), no. 3, 1104–1116.[MR/doi]
- Maximilian Albert and Annette Maier, Additive polynomials for finite groups of Lie type, preprint (2009), 59 pages.[arXiv]
- Faryad Ali and Jamshid Moori, The Fischer-Clifford matrices of a maximal subgroup of Fi'24, Represent. Theory 7 (2003), 300–321 (electronic).[MR]
- Faryad Ali and Jamshid Moori, Fischer-Clifford matrices of the non-split group extension 26·U4(2), Quaest. Math. 31 (2008), no. 1, 27–36.[MR/doi]
- Roger C. Alperin, Platonic triangles of groups, Experiment. Math. 7 (1998), no. 3, 191–219.[MR]
- Sophie Ambrose, Matrix Groups: Theory, Algorithms and Applications, PhD Thesis, University of Western Australia, 2005.
- Sophie Ambrose, Max Neunhöffer, Cheryl E. Praeger, and Csaba Schneider, Generalised sifting in black-box groups, LMS J. Comput. Math. 8 (2005), 217–250 (electronic).[MR]
- Habib Amiri, S. M. Jafarian Amiri, and I. M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), no. 9, 2978–2980.[MR/doi]
- Jianbei An, Dade's conjecture for the Tits group, New Zealand J. Math. 25 (1996), no. 2, 107–131.[MR]
- Jianbei An, The Alperin and Dade conjectures for the simple Held group, J. Algebra 189 (1997), no. 1, 34–57.[MR]
- Jianbei An, John J. Cannon, E. A. O'Brien, and W. R. Unger, The Alperin weight conjecture and Dade's conjecture for the simple group Fi24', LMS J. Comput. Math. 11 (2008), 100–145.[MR]
- Jianbei An and Marston Conder, The Alperin and Dade conjectures for the simple Mathieu groups, Comm. Algebra 23 (1995), no. 8, 2797–2823.[MR]
- Jianbei An and E. A. O'Brien, A local strategy to decide the Alperin and Dade conjectures, J. Algebra 206 (1998), no. 1, 183–207.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Fischer simple group Fi23, Internat. J. Algebra Comput. 9 (1999), no. 6, 621–670.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the O'Nan and Rudivalis simple groups, Comm. Algebra 30 (2002), no. 3, 1305–1348.[MR]
- Jianbei An and E. A. O'Brien, Conjectures on the character degrees of the Harada-Norton simple group HN, Israel J. Math. 137 (2003), 157–181.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Dade conjectures for the Conway simple group Co1, Algebr. Represent. Theory 7 (2004), no. 2, 139–158.[MR]
- Jianbei An and E. A. O'Brien, The Alperin and Uno conjectures for the Fischer simple group Fi22, Comm. Algebra 33 (2005), no. 5, 1529–1557.[MR]
- Jianbei An, E. A. O'Brien, and R. A. Wilson, The Alperin weight conjecture and Dade's conjecture for the simple group J4, LMS J. Comput. Math. 6 (2003), 119–140 (electronic).[MR]
- Jianbei An and R. A. Wilson, The Alperin weight conjecture and Uno's conjecture for the Baby Monster B, p odd, LMS J. Comput. Math. 7 (2004), 120–166 (electronic).[MR]
- Daniel Appel and Evija Ribnere, On the index of congruence subgroups of Aut(Fn), J. Algebra 321 (2009), no. 10, 2875–2889.[MR/arXiv]
- J. Araújo, P. V. Bünau, J. D. Mitchell, and M. Neunhöffer, Computing automorphisms of semigroups, J. Symbolic Comput. 45 (2010), no. 3, 373–392.[MR/doi]
- João Araújo and Csaba Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78 (2009), no. 3, 498–510.[MR/arXiv]
- Michael Asctbacher and Marshall Hall, Jr., Groups generated by a class of elements of order 3, Finite groups '72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972), North-Holland Amsterdam, 1973, pp. 12–18. North-Holland Math. Studies, Vol. 7.[MR]
- Björn Assmann and Stephen Linton, Using the Malcev correspondence for collection in polycyclic groups, J. Algebra 316 (2007), no. 2, 828–848.[MR]
- Sarah Astill, 3-local identifications of some finite simple groups, PhD Thesis, University of Birmingham, 2007.
- Sarah Astill and Chris Parker, A 3-local characterization of M12 and SL3(3), Arch. Math. (Basel) 92 (2009), no. 2, 99–110.[MR/arXiv]
- Roberto M. Avanzi, Mathias Kratzer, and Gerhard O. Michler, Janko's simple groups J2 and J3 are irreducible subgroups of SL85(5) with equal centralizers of an involution, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 21–37.[MR]
- Nir Avni and Shelly Garion, Connectivity of the product replacement graph of simple groups of bounded Lie rank, J. Algebra 320 (2008), no. 2, 945–960.[MR]
- Huseyin Aydin and Geoff C. Smith, Finite p-quotients of some cyclically presented groups, J. London Math. Soc. (2) 49 (1994), no. 1, 83–92.[MR]
- Henrik Bäärnhielm, Recognising the Ree groups in their natural representations, Preprint (2006), 22 pages.[link]
- Henrik Bäärnhielm, Recognising the Suzuki groups in their natural representations, J. Algebra 300 (2006), no. 1, 171–198.[MR]
- Henrik Bäärnhielm, Tensor decomposition of the Ree groups, Preprint (2006), 9 pages.[link]
- Henrik Bäärnhielm, Algorithmic problems in twisted groups of Lie type, preprint (2008), 131 pages.[arXiv]
- László Babai and Robert Beals, A polynomial-time theory of black box groups. I, Groups St. Andrews 1997 in Bath, I, London Math. Soc. Lecture Note Ser., vol. 260, Cambridge Univ. Press, Cambridge, 1999, pp. 30–64.[MR]
- László Babai and Igor Pak, Strong bias of group generators: An obstacle to the "product replacement algorithm", J. Algorithms 50 (2004), no. 2, 215–231.[MR]
- Robert F. Bailey and John N. Bray, Decoding the Mathieu group M12, Adv. Math. Commun. 1 (2007), no. 4, 477–487.[MR]
- Martina Balagovic and Arjun Puranik, Irreducible representations of the rational Cherednik algebra associated to the Coxeter group H3, preprint (2010), 28 pages.[arXiv]
- Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Two-variable identities for finite solvable groups, C. R. Math. Acad. Sci. Paris 337 (2003), no. 9, 581–586.[MR]
- Tatiana Bandman, Gert-Martin Greuel, Fritz Grunewald, Boris Kunyavskii, Gerhard Pfister, and Eugene Plotkin, Identities for finite solvable groups and equations in finite simple groups, Compos. Math. 142 (2006), no. 3, 734–764.[MR]
- Tatiana Bandman, Fritz Grunewald, Boris Kunyavskii, and Nathan Jones, Geometry and arithmetic of verbal dynamical systems on simple groups, Groups, Geometry, and Dynamics 4 (2010), no. 4, 607–655.[arXiv]
- Ayala Bar-Ilan, Tzviya Berrebi, Genadi Chereshnya, Ruth Leabovich, Mikhal Cohen, and Mary Schaps, Explicit tilting complexes for the Broué conjecture on 3-blocks, vol. 1, Cambridge University Press, 2005, pp. 8.[link]
- R. W. Barraclough and R. A. Wilson, The character table of a maximal subgroup of the Monster, LMS J. Comput. Math. 10 (2007), 161–175 (electronic).[MR]
- Richard William Barraclough, Some calculations related to the monster group, PhD Thesis, University of Birmingham, 2005.
- Tathagata Basak, On Coxeter diagrams of complex reflection groups, preprint (2008), 17 pages.[arXiv]
- C. Bates, D. Bundy, S. Hart, and P. Rowley, Commuting involution graphs for sporadic simple groups, J. Algebra 316 (2007), no. 2, 849–868.[MR]
- C. Bates, D. Bundy, S. Hart, and P. Rowley, A note on commuting graphs for symmetric groups, Electron. J. Combin. 16 (2009), no. 1, 13.[MR]
- C. Bates, D. Bundy, Sarah B. Perkins, and P. Rowley, Commuting involution graphs for finite Coxeter groups, J. Group Theory 6 (2003), no. 4, 461–476.[MR]
- C. Bates, D. Bundy, Sarah B. Perkins, and P. Rowley, Commuting involution graphs for symmetric groups, J. Algebra 266 (2003), no. 1, 133–153.[MR]
- C. Bates, D. Bundy, Sarah B. Perkins, and P. Rowley, Commuting involution graphs in special linear groups, Comm. Algebra 32 (2004), no. 11, 4179–4196.[MR]
- Chris Bates and Peter J. Rowley, Centralizers of strongly real elements in finite groups, Preprint (2003), 4 pages.
- Chris Bates and Peter Rowley, Involutions in Conway's largest simple group, LMS J. Comput. Math. 7 (2004), 337–351 (electronic).[MR]
- Chris Bates and Peter Rowley, Normalizers of p-subgroups in finite groups, Arch. Math. (Basel) 92 (2009), no. 1, 7–13.[MR]
- Barbara Baumeister and Alexander Stein, Commuting graphs of odd prime order elements in simple groups, preprint (2009), 28 pages.[arXiv]
- Gilbert Baumslag, Sean Cleary, and George Havas, Experimenting with infinite groups. I, Experiment. Math. 13 (2004), no. 4, 495–502.[MR]
- B. Bekka, P. de la Harpe, and A. Valette, Kazhdan's Property (t), New Mathematical Monographs, Cambridge University Press, Cambridge, 2008, 492 pages.[link]
- Sarah Marie Belcastro and Gary J. Sherman, Counting centralizers in finite groups, Math. Mag. 67 (1994), no. 5, 366–374.[MR]
- C. P. Bendel, D. K. Nakano, B. J. Parshall, and C. Pillen, Cohomology for quantum groups via the geometry of the Nullcone, Preprint (2007), 1–58.
- Christopher P. Bendel, Daniel K. Nakano, and Cornelius Pillen, Second cohomology groups for Frobenius kernels and related structures, Adv. Math. 209 (2007), no. 1, 162–197.[MR/link]
- D. J. Benson and J. F. Carlson, Cohomology of the double cover of the Mathieu group M12, J. Algebra 226 (2000), no. 1, 547–576.[MR]
- Dave Benson, Dickson invariants, regularity and computation in group cohomology, Illinois J. Math. 48 (2004), no. 1, 171–197.[MR/link]
- David J. Benson, Philip Bergonio, Brian D. Boe, Leonard Chastkofsky, Bobbe Cooper, Jeremiah Hower, Jo Jang Hyun, Jonathan Kujawa, Nadia Mazza, Daniel K. Nakano, Kenyon J. Platt, and Caroline Wright, Support varieties for Weyl modules over bad primes, J. Algebra 312 (2007), no. 2, 602–633.
- Thomas R. Berger and Marcel Herzog, Criteria for nonperfectness, Comm. Algebra 6 (1978), no. 9, 959–968.[MR]
- Hans Ulrich Besche and Bettina Eick, The groups of order at most 1000 except 512 and 768, J. Symbolic Comput. 27 (1999), no. 4, 405–413.[MR]
- Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, The groups of order at most 2000, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 1–4 (electronic).[MR]
- Hans Ulrich Besche, Bettina Eick, and E. A. O'Brien, A millennium project: Constructing small groups, Internat. J. Algebra Comput. 12 (2002), no. 5, 623–644.[MR]
- Christine Bessenrodt, Tensor products of representations of the symmetric groups and related groups, Sūrikaisekikenkyūsho Kōkyūroku (2000), no. 1149, 1–15.[MR]
- Joan S. Birman, Volker Gebhardt, and Juan González-Meneses, Conjugacy in Garside groups. III. Periodic braids, J. Algebra 316 (2007), no. 2, 746–776.[MR]
- Jonah Blasiak, W-graph versions of tensoring with the Sn defining representation, preprint (2008), 43 pages.[arXiv]
- Russell D. Blyth, Rewriting products of group elements I, J. Algebra 116 (1988), no. 2, 506–521.[MR]
- Russell D. Blyth, Rewriting products of group elements II, J. Algebra 119 (1988), no. 1, 246–259.[MR]
- Russell D. Blyth and Robert Fitzgerald Morse, Computing the nonabelian tensor squares of polycyclic groups, J. Algebra 321 (2009), no. 8, 2139–2148.[MR]
- Russell D. Blyth and Derek J. S. Robinson, Recent progress on rewritability in groups, Group theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 77–85.[MR]
- Russell D. Blyth and Derek J. S. Robinson, Solution of the solubility problem for rewritable groups, J. London Math. Soc. (2) 41 (1990), no. 3, 438–444.[MR]
- Russell D. Blyth and Derek J. S. Robinson, Insoluble groups with the rewriting property P8, J. Pure Appl. Algebra 72 (1991), no. 3, 251–263.[MR]
- Sean W. Bolt, John N. Bray, and Robert T. Curtis, Symmetric presentation of the Janko group J4, J. Lond. Math. Soc. (2) 76 (2007), no. 3, 683–701.[MR]
- John van Bon and Arjeh M. Cohen, Linear groups and distance-transitive graphs, European J. Combin. 10 (1989), no. 5, 399–411.[MR]
- John van Bon, Arjeh M. Cohen, and Hans Cuypers, Graphs related to Held's simple group, J. Algebra 123 (1989), no. 1, 6–26.[MR]
- John van Bon and Richard Weiss, A characterization of the groups Fi22, Fi23 and Fi24, Forum Math. 4 (1992), no. 4, 425–432.[MR]
- Arrigo Bonisoli and Pasquale Quattrocchi, Each invertible sharply d-transitive finite permutation set with d ≥ 4 is a group, J. Algebraic Combin. 12 (2000), no. 3, 241–250.[MR]
- Inger Christin Borge, A cohomological approach to the classification of p-groups, PhD Thesis, University of Oxford, 2001.[link]
- Alexandre V. Borovik, Centralisers of involutions in black box groups, Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 7–20.[MR]
- Alexandre V. Borovik, Evgenii I. Khukhro, and Alexei G. Myasnikov, The Andrews-Curtis conjecture and black box groups, Internat. J. Algebra Comput. 13 (2003), no. 4, 415–436.[MR]
- Nigel Boston, Embedding 2-groups in groups generated by involutions, J. Algebra 300 (2006), no. 1, 73–76.[MR]
- Nigel Boston, Walter Dabrowski, Tuval Foguel, and others, The proportion of fixed-point-free elements of a transitive permutation group, Comm. Algebra 21 (1993), no. 9, 3259–3275.[MR]
- Nigel Boston and Jordan S. Ellenberg, Pro-p groups and towers of rational homology spheres, Geom. Topol. 10 (2006), 331–334 (electronic).[MR/doi]
- Nigel Boston and Judy L. Walker, 2-groups with few conjugacy classes, Proc. Edinburgh Math. Soc. (2) 43 (2000), no. 1, 211–217.[MR]
- J. D. Bradley and R. T. Curtis, Symmetric generation and existence of J3 : 2, the automorphism group of the third Janko group, J. Algebra 304 (2006), no. 1, 256–270.[MR]
- J. D. Bradley and R. T. Curtis, Symmetric generation and existence of McL : 2, the automorphism group of the McLaughlin group, Comm. Algebra 38 (2010), no. 2, 601–617.[MR/doi]
- J. D. Bradley and P. E. Holmes, Improved bounds for the spread of sporadic groups, LMS J. Comput. Math. 10 (2007), 132–140 (electronic).[MR]
- L. Brailovsky, On (3,m)-special elements in groups, Comm. Algebra (1992), no. 11, 3301–3320.[MR]
- Rolf Brandl and Libero Verardi, Finite simple groups with few conjugacy classes of subgroups, Japan. J. Math. (N.S.) 18 (1992), no. 2, 347–359.[MR]
- J. N. Bray, R. T. Curtis, C. W. Parker, and C. B. Wiedorn, Symmetric presentations for the Fischer groups. I. The classical groups \rm Sp6(2),\ Sp8(2), and \rm 3·O7(3), J. Algebra 265 (2003), no. 1, 171–199.[MR]
- John N. Bray, An improved method for generating the centralizer of an involution, Arch. Math. (Basel) 74 (2000), no. 4, 241–245.[MR]
- John Bray and Henrik Bäärnhielm, Standard generators for the Suzuki groups, Preprint (2008), 1–13.[link]
- John Bray, Marston Conder, Charles Leedham-Green, and Eamonn O'Brien, Short presentations for alternating and symmetric groups, Preprint (2006), 24 pages.
- John N. Bray and Robert T. Curtis, A systematic approach to symmetric presentations II: Generators of order 3, Math. Proc. Cambridge Philos. Soc. 128 (2000), no. 1, 1–20.[MR]
- John N. Bray and Robert T. Curtis, Monomial modular representations and symmetric generation of the Harada-Norton group, J. Algebra 268 (2003), no. 2, 723–743.[MR]
- John N. Bray and Robert T. Curtis, Double coset enumeration of symmetrically generated groups, J. Group Theory 7 (2004), no. 2, 167–185.[MR]
- John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal, Certain classical groups are not well-defined, J. Group Theory 12 (2009), no. 2, 171–180.[MR]
- John N. Bray, Ibrahim A. I. Suleiman, Peter G. Walsh, and Robert A. Wilson, Generating maximal subgroups of sporadic simple groups, Comm. Algebra 29 (2001), no. 3, 1325–1337.[MR]
- John N. Bray, John S. Wilson, and Robert A. Wilson, A characterization of finite soluble groups by laws in two variables, Bull. London Math. Soc. 37 (2005), no. 2, 179–186.[MR]
- John N. Bray and Robert A. Wilson, Explicit representations of maximal subgroups of the Monster, J. Algebra 300 (2006), no. 2, 834–857.[MR]
- John N. Bray and Robert A. Wilson, On the orders of automorphism groups of finite groups. II, J. Group Theory 9 (2006), no. 4, 537–545.[MR]
- John N. Bray and Robert A. Wilson, Examples of 3-dimensional 1-cohomology for absolutely irreducible modules of finite simple groups, J. Group Theory 11 (2008), no. 5, 669–673.[MR]
- Peter A. Brooksbank, Fast constructive recognition of black box symplectic groups, J. Algebra 320 (2008), no. 2, 885–909.[MR]
- Peter A. Brooksbank and William M. Kantor, Fast constructive recognition of black box orthogonal groups, J. Algebra 300 (2006), no. 1, 256–288.[MR]
- Peter A. Brooksbank and Eugene M. Luks, Testing isomorphism of modules, J. Algebra 320 (2008), no. 11, 4020–4029.[MR/doi]
- Peter A. Brooksbank and E. A. O'Brien, Constructing the group preserving a system of forms, Internat. J. Algebra Comput. 18 (2008), no. 2, 227–241.[MR]
- Peter A. Brooksbank and E. A. O'Brien, On intersections of classical groups, J. Group Theory 11 (2008), no. 4, 465–478.[MR]
- Ronald Brown, Neil Ghani, Anne Heyworth, and Christopher D. Wensley, String rewriting for double coset systems, J. Symbolic Comput. 41 (2006), no. 5, 573–590.[MR/arXiv]
- F. Buekenhout, A. Delandtsheer, and J. Doyen, Finite linear spaces with flag-transitive groups, J. Combin. Theory Ser. A 49 (1988), no. 2, 268–293.[MR]
- F. Buekenhout and M. Hermand, On flag-transitive geometries and groups, Travaux de Mathématiques de l'Université Libre de Bruxelles 1 (1991), 45–78.
- Francis Buekenhout, The geometry of the finite simple groups, Buildings and the Geometry of Diagrams (Como, 1984), Lecture Notes in Math., vol. 1181, Springer, Berlin, 1986, pp. 1–78.[MR]
- Francis Buekenhout, Finite groups and geometries: A view on the present state and on the future, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 35–42.[MR]
- Francis Buekenhout and Dimitri Leemans, On the list of finite primitive permutation groups of degree ≤ 50, J. Symbolic Comput. 22 (1996), no. 2, 215–225.[MR]
- Francis Buekenhout and Dimitri Leemans, On a geometry of Ivanov and Shpectorov for the O'Nan sporadic simple group, J. Combin. Theory Ser. A 85 (1999), no. 2, 148–164.[MR]
- Francis Buekenhout and Sarah Rees, The subgroup structure of the Mathieu group M12, Math. Comp. 50 (1988), no. 182, 595–605.[MR]
- Emilio Bujalance, F. J. Cirre, and Marston Conder, On full automorphism groups of Riemann surfaces, J. Symbolic Comput. 24 (1997), 235-265.
- Emilio Bujalance, F. J. Cirre, and Marston Conder, On extendability of group actions on compact Riemann surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1537–1557 (electronic).[MR]
- Emilio Bujalance and Marston Conder, On cyclic groups of automorphisms of Riemann surfaces, J. London Math. Soc. (2) 59 (1999), no. 2, 573–584.[MR]
- David M. Bundy and Peter J. Rowley, Symmetric groups and completions of the Goldschmidt amalgams of type G1, J. Group Theory 9 (2006), no. 5, 627–640.[MR]
- Timothy C. Burness, Michael Giudici, and Robert A. Wilson, Prime order derangements in primitive permutation groups, Preprint (2010), 21 pages.
- Timothy C. Burness, Martin W. Liebeck, and Aner Shalev, Base sizes for simple groups and a conjecture of Cameron, Proc. Lond. Math. Soc. (3) 98 (2009), no. 1, 116–162.[MR/doi]
- Timothy C. Burness, E. A. O'Brien, and Robert A. Wilson, Base sizes for sporadic simple groups, Israel J. Math., to appear (2008), 19 pages.
- John Burns and Graham Ellis, On the nilpotent multipliers of a group, Math. Z. 226 (1997), no. 3, 405–428.[MR]
- G. Butler, The maximal subgroups of the Chevalley group G2(4), Groups—St. Andrews 1981 (St. Andrews, 1981), London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 186–200.[MR]
- G. Butler, S. S. Iyer, and E. A. O'Brien, A database of groups of prime-power order, Softw., Pract. Exper. 24 (1994), no. 10, 911-951.
- Greg Butler, The transitive groups of degree fourteen and fifteen, J. Symbolic Comput. 16 (1993), no. 5, 413–422.[MR]
- Gregory Butler, The maximal subgroups of the sporadic simple group of Held, J. Algebra 69 (1981), no. 1, 67–81.[MR]
- Peter J. Cameron, Permutation Groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999, pp. x+220.[MR]
- Peter J. Cameron, Partitions and permutations, Discrete Math. 291 (2005), no. 1-3, 45–54.[MR]
- Peter J. Cameron, Michael Giudici, Gareth A. Jones, William M. Kantor, Mikhail H. Klin, Dragan Marušič, and Lewis A. Nowitz, Transitive permutation groups without semiregular subgroups, J. London Math. Soc. (2) 66 (2002), no. 2, 325–333.[MR]
- A. R. Camina and L. Di Martino, The group of automorphisms of a transitive 2-(91,6,1) design, Geom. Dedicata 31 (1989), no. 2, 151–164.[MR]
- Alan R. Camina and Federica Spiezia, Sporadic groups and automorphisms of linear spaces, J. Combin. Des. 8 (2000), no. 5, 353–362.[MR]
- Colin Campbell, George Havas, Stephen Linton, and Edmund Robertson, Symmetric presentations and orthogonal groups, The Atlas of Finite Groups: Ten Years On (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 1–10.[MR]
- Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, Nice efficient presentations for all small simple groups and their covers, LMS J. Comput. Math. 7 (2004), 266–283 (electronic).[MR]
- Colin M. Campbell, George Havas, Colin Ramsay, and Edmund F. Robertson, On the efficiency of the simple groups of order less than a million and their covers, Experiment. Math. 16 (2007), no. 3, 347–358.[MR]
- Colin M. Campbell, George Havas, and Edmund F. Robertson, Addendum to: "An elementary introduction to coset table methods in computational group theory", Groups—St. Andrews 1981, London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 2007, pp. 361–364.[MR]
- John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing Sylow subgroups in permutation groups, J. Symbolic Comput. 24 (1997), no. 3-4, 303–316.[MR]
- John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing the subgroups of a permutation group, J. Symbolic Comput. 31 (2001), no. 1-2, 149–161.[MR]
- John J. Cannon, Bettina Eick, and Charles R. Leedham-Green, Special polycyclic generating sequences for finite soluble groups, J. Symbolic Comput. 38 (2004), no. 5, 1445–1460.[MR]
- John Cannon and George Havas, Algorithms for groups, Australian Computer Journal 24 (1992), 51–60.
- John J. Cannon and Derek F. Holt, Computing chief series, composition series and socles in large permutation groups, J. Symbolic Comput. 24 (1997), no. 3-4, 285–301.[MR]
- John J. Cannon and Derek F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), no. 3, 241–267.[MR]
- John Cannon and Derek F. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput. 37 (2004), no. 5, 589–609.[MR]
- John J. Cannon and Derek F. Holt, Computing conjugacy class representatives in permutation groups, J. Algebra 300 (2006), no. 1, 213–222.[MR]
- John J. Cannon and Derek F. Holt, The transitive permutation groups of degree 32, Experiment. Math. 17 (2008), no. 3, 307–314.[MR]
- John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel, Computing subgroups of bounded index in a finite group, J. Symbol. Comput. 40 (2005), no. 2, 1013–1022.[MR]
- John J. Cannon, John McKay, and Kiang Chuen Young, The nonabelian simple groups G, | G | < 105 — presentations, Comm. Algebra 7 (1979), no. 13, 1397–1406.[MR]
- John Cannon and Bernd Souvignier, On the computation of conjugacy classes in permutation groups, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York, 1997, pp. 392–399 (electronic).[MR]
- Lisa Carbone, Leigh Cobbs, and Scott H. Murray, Fundamental domains for congruence subgroups of SL2 in positive characteristic, preprint (2009).[arXiv]
- Lisa Carbone, Leigh Cobbs, and Scott H. Murray, Fundamental domains for congruence subgroups of SL2 in positive characteristic, J. Algebra 325 (2011), no. 1, 431–439.[arXiv]
- David P. Cargo, Warwick de Launey, Martin W. Liebeck, and Richard M. Stafford, Short two-variable identities for finite groups, J. Group Theory 11 (2008), no. 5, 675–690.[MR]
- Jon F. Carlson, Problems in the calculation of group cohomology, Computational Methods for Representations of Groups and Algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 107–120.[MR]
- Jon F. Carlson, Calculating group cohomology: Tests for completion, J. Symbolic Comput. 31 (2001), no. 1-2, 229–242.[MR]
- Jon F. Carlson, Coclass and cohomology, J. Pure Appl. Algebra 200 (2005), no. 3, 251–266.[MR]
- Jon F. Carlson, Cohomology, computations, and commutative algebra, Notices Amer. Math. Soc. 52 (2005), no. 4, 426–434.[MR]
- Jon F. Carlson, Constructing endotrivial modules, J. Pure Appl. Algebra 206 (2006), no. 1-2, 83–110.[MR]
- Jon F. Carlson, Support varieties for modules, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 187–204.[MR]
- Jon F. Carlson, The poset of elementary abelian p-subgroups having rank at least 2, J. Group. Th (To appear).
- Jon F. Carlson, When is projectivity detected on subalgebras?, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 205–220.[MR]
- Jon F. Carlson, Maximal elementary abelian subgroups of rank 2, J. Group Theory 10 (2007), no. 1, 5–13.[MR]
- Jon F. Carlson, Edward L. Green, and Gerhard J. A. Schnieder, Computing Ext algebras for finite groups, J. Symbolic Comput. 24 (1997), no. 3-4, 317–325.[MR]
- Jon F. Carlson, David J. Hemmer, and Nadia Mazza, The group of endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 1, 83–95.[MR/doi]
- Jon F. Carlson, John S. Maginnis, and R. James Milgram, The cohomology of the sporadic groups J2 and J3, J. Algebra 214 (1999), no. 1, 143–173.[MR]
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for finite groups of Lie type, J. Reine Angew. Math. 595 (2006), 93–119.[MR]
- Jon F. Carlson, Nadia Mazza, and Daniel K. Nakano, Endotrivial modules for the symmetric and alternating groups, Proc. Edinb. Math. Soc. (2) 52 (2009), 45–66.[MR/doi]
- Jon F. Carlson and Jacques Thévenaz, Torsion endo-trivial modules, Algebr. Represent. Theory 3 (2000), no. 4, 303–335.[MR]
- Jon F. Carlson and Jacques Thévenaz, The classification of endo-trivial modules, Invent. Math. 158 (2004), no. 2, 389–411.[MR]
- Jon F. Carlson and Jacques Thévenaz, The classification of torsion endo-trivial modules, Ann. of Math. (2) 162 (2005), no. 2, 823–883.[MR]
- Jon F. Carlson, Lisa Townsley, Luis Valeri-Elizondo, and Mucheng Zhang, Cohomology Rings of Finite Groups, Algebras and Applications, vol. 3, Kluwer Academic Publishers, Dordrecht, 2003, pp. xvi+776.[MR]
- Donald I. Cartwright, Groups acting simply transitively on the vertices of a building of type An, Groups of Lie Type and Their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., vol. 207, Cambridge Univ. Press, Cambridge, 1995, pp. 43–76.[MR]
- Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type A2. I, Geom. Dedicata 47 (1993), no. 2, 143–166.[MR]
- Donald I. Cartwright, Anna Maria Mantero, Tim Steger, and Anna Zappa, Groups acting simply transitively on the vertices of a building of type A2. II. The cases q = 2 and q = 3, Geom. Dedicata 47 (1993), no. 2, 167–223.[MR]
- Bill Casselman, Computation in Coxeter groups. II. Constructing minimal roots, Represent. Theory 12 (2008), 260–293.[MR]
- Alberto Cavicchioli, E. A. O'Brien, and Fulvia Spaggiari, On some questions about a family of cyclically presented groups, J. Algebra 320 (2008), no. 11, 4063–4072.[MR]
- Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer, and E. A. O'Brien, Generating random elements of a finite group, Comm. Algebra 23 (1995), no. 13, 4931–4948.[MR]
- Tracey Cicco, Algorithms for Computing Restricted Root Systems and Weyl Groups, PhD Thesis, North Carolina State University, 2006.
- Fokko du Cloux, The state of the art in the computation of Kazhdan-Lusztig polynomials, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 3, 211–219.
- Arjeh M. Cohen, Sergei Haller, and Scott H. Murray, Computing in unipotent and reductive algebraic groups, LMS J. Comput. Math. 11 (2008), 343–366.[MR/arXiv]
- Arjeh M. Cohen, Sergei Haller, and Scott H. Murray, Computing with root subgroups of twisted reductive groups, preprint Submitted (2009).
- Arjeh M. Cohen and Scott H. Murray, An algorithm for Lang's Theorem, J. Algebra 322 (2009), no. 3, 675–702.[MR/arXiv]
- Arjeh M. Cohen, Scott H. Murray, and D. E. Taylor, Computing in groups of Lie type, Math. Comp. 73 (2004), no. 247, 1477–1498 (electronic).[MR]
- Arjeh M. Cohen and Luis Paris, On a theorem of Artin, J. Group Theory 6 (2003), no. 4, 421–441.[MR]
- Marston Conder, Generators for alternating and symmetric groups, J. London Math. Soc. (2) 22 (1980), no. 1, 75–86.[MR]
- Marston Conder, More on generators for alternating and symmetric groups, Quart. J. Math. Oxford Ser. (2) 32 (1981), no. 126, 137–163.[MR]
- Marston Conder, On the group of Rubik's "magic" cube, Bull. Inst. Math. Appl. 17 (1981), no. 11-12, 241–243.[MR]
- Marston Conder, Some results on quotients of triangle groups, Bull. Austral. Math. Soc. 30 (1984), no. 1, 73–90.[MR]
- Marston Conder, The symmetric genus of alternating and symmetric groups, J. Combin. Theory Ser. B 39 (1985), no. 2, 179–186.[MR]
- Marston Conder, A family of Hurwitz groups with nontrivial centres, Bull. Austral. Math. Soc. 33 (1986), no. 1, 123–130.[MR]
- Marston Conder, Hurwitz groups with arbitrarily large centres, Bull. London Math. Soc. 18 (1986), no. 3, 269–271.[MR]
- Marston Conder, Groups of minimal genus including C2 extensions of PSL(2,q) for certain q, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 449–460.[MR]
- Marston Conder, The genus of compact Riemann surfaces with maximal automorphism group, J. Algebra 108 (1987), no. 1, 204–247.[MR]
- Marston Conder, Three-relator quotients of the modular group, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 152, 427–447.[MR]
- Marston Conder, Maximal automorphism groups of symmetric Riemann surfaces with small genus, J. Algebra 114 (1988), no. 1, 16–28.[MR]
- Marston Conder, A surprising isomorphism, J. Algebra 129 (1990), no. 2, 494–501.[MR]
- Marston Conder, Hurwitz groups: a brief survey, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 359–370.[MR]
- Marston Conder, A question by Graham Higman concerning quotients of the (2,3,7) triangle group, J. Algebra 141 (1991), no. 2, 275–286.[MR]
- Marston Conder, Experimental algebra, Math. Chronicle 20 (1991), 1–11.[MR]
- Marston Conder, Random walks in large finite groups, Australas. J. Combin. 4 (1991), 49–57.[MR]
- Marston Conder, The symmetric genus of the Mathieu groups, Bull. London Math. Soc. 23 (1991), no. 5, 445–453.[MR]
- Marston Conder, Group actions on the cubic tree, J. Algebraic Combin. 1 (1992), no. 3, 209–218.[MR]
- Marston Conder, Generating the Mathieu groups and associated Steiner systems, Discrete Math. 112 (1993), no. 1-3, 41–47.[MR]
- Marston Conder, Two element generation of the finite reflection groups, Quart. J. Math. Oxford Ser. (2) 46 (1995), no. 181, 95–106.[MR]
- Marston Conder, Group actions on graphs, maps and surfaces with maximum symmetry, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser., vol. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 63–91.[MR]
- Marston Conder, Combinatorial and computational group-theoretic methods in the study of graphs, maps and polytopes with maximal symmetry, Jack Koolen and Jin Ho Kwak and Ming-Yao Xu, Eds. Applications of Group Theory to Combinatorics, Taylor &Francis Group, London, 2008, pp. 1–11.
- Marston Conder and Peter Dobcsányi, Applications and adaptations of the low index subgroups procedure, Math. Comp. 74 (2005), no. 249, 485–497 (electronic).[MR]
- Marston Conder and Peter Dobcsányi, Normal subgroups of the modular group and other Hecke groups, Combinatorial group theory, discrete groups, and number theory, Contemp. Math., vol. 421, Amer. Math. Soc., Providence, RI, 2006, pp. 65–86.[MR]
- Marston Conder, George Havas, and Colin Ramsay, Efficient presentations for the Mathieu simple group M22 and its cover, Finite geometries, groups, and computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 33–41.[MR]
- Marston Conder and I. M. Isaacs, Derived subgroups of products of an abelian and a cyclic subgroup, J. London Math. Soc. (2) 69 (2004), no. 2, 333–348.[MR]
- Marston Conder and Vaughan Jones, Highly transitive imprimitivities, J. Algebra 300 (2006), no. 1, 44–56.[MR]
- Marston Conder, C. R. Leedham-Green, and E. A. O'Brien, Constructive recognition of PSL(2,q), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1203–1221 (electronic).[MR]
- Marston Conder and Charles R. Leedham-Green, Fast recognition of classical groups over large fields, Groups and Computation III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 113–121.[MR]
- Marston Conder, C. Maclachlan, G. J. Martin, and E. A. O'Brien, 2-generator arithmetic Kleinian groups. III, Math. Scand. 90 (2002), no. 2, 161–179.[MR]
- Marston Conder, Primož Potočnik, and Jozef Širáň, Regular hypermaps over projective linear groups, J. Aust. Math. Soc. 85 (2008), 155–175 pages.
- Marston Conder, Edmund Robertson, and Peter Williams, Presentations for 3-dimensional special linear groups over integer rings, Proc. Amer. Math. Soc. 115 (1992), no. 1, 19–26.[MR]
- Marston Conder, R. A. Wilson, and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc. 116 (1992), no. 3, 653–663.[MR]
- Marston Conder, R. A. Wilson, and A. J. Woldar, The symmetric genus of sporadic groups: Announced results, Coding Theory, Design Theory, Group Theory (Burlington, VT, 1990), Wiley-Intersci. Publ., Wiley, New York, 1993, pp. 163–169.[MR]
- S. B. Conlon, p-groups with an abelian maximal subgroup and cyclic center, J. Austral. Math. Soc. Ser. A 22 (1976), no. 2, 221–233.[MR]
- John H. Conway, Alexander Hulpke, and John McKay, On transitive permutation groups, LMS J. Comput. Math. 1 (1998), 1–8 (electronic).[MR]
- G. D. Cooperman, W. Lempken, G. O. Michler, and M. Weller, A new existence proof of Janko's simple group J4, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 161–175.[MR]
- Gene Cooperman, Larry Finkelstein, and Michael Tselman, Computing with matrix groups using permutation representations, in ISSAC '95: Proceedings of the 1995 international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 1995, pp. 259–264.[doi]
- Gene Cooperman, Larry Finkelstein, Michael Tselman, and Bryant York, Constructing permutation representations for matrix groups, J. Symbolic Comput. 24 (1997), no. 3-4, 471–488.[MR]
- Gene Cooperman and Eric Robinson, Memory-based and disk-based algorithms for very high degree permutation groups, in ISSAC '03: Proceedings of the 2003 international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 2003, pp. 66–73.[doi]
- Adán Cortés-Medina and Luis Valero-Elizondo, A computational verification of Alperin's weight conjecture for groups of small order and their prime fields, Rev. Colomb. Mat. 41 (2007), no. 2, 325–331.
- John Cossey and Trevor Hawkes, On the largest conjugacy class size in a finite group, Rend. Sem. Mat. Univ. Padova 103 (2000), 171–179.[MR]
- John Cossey and Stewart E. Stonehewer, The embedding of a cyclic permutable subgroup in a finite group, Illinois J. Math. 47 (2003), no. 1-2, 89–111.[MR/link]
- Antonio Cossidente and Sam K. J. Vereecke, Some geometry of the isomorphism Sp(4,q)≅O(5,q), q even, J. Geom. 70 (2001), no. 1-2, 28–37.[MR]
- Hannah J. Coutts, Martyn Quick, and Colva M. Roney-Dougal, The primitive permutation groups of degree less than 4096, Preprint (2010), 1–23.
- David A. Craven, Simple modules for groups with abelian Sylow 2-subgroups are algebraic, J. Algebra 321 (2009), no. 5, 1473–1479.[MR/arXiv]
- M. Cuntz and I. Heckenberger, Finite Weyl groupoids of rank three, preprint (2009), 31 pages.[arXiv]
- R. T. Curtis, Natural constructions of the Mathieu groups, Math. Proc. Cambridge Philos. Soc. 106 (1989), no. 3, 423–429.[MR]
- R. T. Curtis, Symmetric presentations. I. Introduction, with particular reference to the Mathieu groups M12 and M24, Groups, combinatorics &geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 380–396.[MR]
- R. T. Curtis, Symmetric presentations. II. The Janko group J1, J. London Math. Soc. (2) 47 (1993), no. 2, 294–308.[MR]
- R. T. Curtis, Symmetric generation of the Higman-Sims group, J. Algebra 171 (1995), no. 2, 567–586.[MR]
- R. T. Curtis, Symmetric generation and existence of the Janko group J1, J. Group Theory 2 (1999), no. 4, 355–366.[MR]
- R. T. Curtis and B. T. Fairbairn, Symmetric representation of the elements of the Conway group ·0, J. Symbolic Comput. 44 (2009), no. 8, 1044–1067.[MR]
- R. T. Curtis, A. M. A. Hammas, and J. N. Bray, A systematic approach to symmetric presentations I: Involutory generators, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 23–34.[MR]
- R. T. Curtis and Z. Hasan, Symmetric representation of the elements of the Janko group J1, J. Symbolic Comput. 22 (1996), no. 2, 201–214.[MR]
- Robert T. Curtis, A fresh approach to the exceptional automorphism and covers of the symmetric groups, Arab. J. Sci. Eng. Sect. A Sci. 27 (2002), no. 1, 93–107.[MR]
- Robert T. Curtis, Symmetric generation of groups, Encyclopedia of Mathematics and its Applications, vol. 111, Cambridge University Press, Cambridge, 2007, pp. xiv+317.[MR]
- Susanne Danz, On vertices of exterior powers of the natural simple module for the symmetric group in odd characteristic, Arch. Math. (Basel) 89 (2007), no. 6, 485–496.[MR]
- Susanne Danz, Vertices of low-dimensional simple modules for symmetric groups, Comm. Algebra 36 (2008), no. 12, 4521–4539.[MR]
- Susanne Danz, On vertices of completely spittable modules for symmetric groups and simple modules labelled by two part partitions, J. Group Theory 12 (2009), no. 3, 351–385.[MR]
- Susanne Danz and Karin Erdmann, The vertices of a class of Specht modules and simple modules for symmetric groups in characteristic 2, Preprint (2010), 1–32.
- Susanne Danz and Burkhard Külshammer, The vertices and sources of the basic spin module for the symmetric group in characteristic 2, J. Pure Appl. Algebra 213 (2009), no. 7, 1264–1282.[MR]
- Susanne Danz and Burkhard Külshammer, Vertices of simple modules for symmetric groups: A survey, in Proceedings of the International Conference on Modules and Representation Theory, Presa Univ. Clujeană, Cluj-Napoca, 2009, pp. 61–77.[MR/link]
- Susanne Danz and Burkhard Külshammer, Vertices, sources and Green correspondents of the simple modules for the large Mathieu groups, J. Algebra 322 (2009), no. 11, 3919–3949.[MR/doi]
- Susanne Danz, Burkhard Külshammer, and René Zimmermann, On vertices of simple modules for symmetric groups of small degrees, J. Algebra 320 (2008), no. 2, 680–707.[MR]
- Susanne Danz and René Zimmermann, Vertices of simple modules for the symmetric groups in blocks of small weights, Beiträge Algebra Geom. 49 (2008), no. 2, 409–427.[MR]
- M. R. Darafsheh, A. R. Ashrafi, and G. A. Moghani, (p,q,r)-generations of the Conway group Co1 for odd p, Kumamoto J. Math. 14 (2001), 1–20.[MR]
- A. Delgado and R. Weiss, On certain coverings of generalized polygons, Bull. London Math. Soc. 21 (1989), no. 3, 235–242.[MR]
- Alberto L. Delgado, Amalgams of type F3, J. Algebra 117 (1988), no. 1, 149–161.[MR]
- Vincent Delwiche, Recherche de notations structurales pour les groupes d'ordre inférieur ou égal á 100 á l'aide de cayley, PhD Thesis, Universite Libre De Bruxelles, 1990.
- A. S. Detinko and D. L. Flannery, Algorithms for computing with nilpotent matrix groups over infinite domains, J. Symbolic Comput. 43 (2008), no. 1, 8–26.[MR]
- A. S. Detinko and D. L. Flannery, On deciding finiteness of matrix groups, J. Symbolic Comput. 44 (2009), no. 8, 1037–1043.[MR]
- A. S. Detinko, D. L. Flannery, and E. A. O'Brien, Deciding finiteness of matrix groups in positive characteristic, J. Algebra 322 (2009), no. 11, 4151–4160.[MR/doi]
- Alice Devillers and Michael Giudici, Involution graphs where the product of two adjacent vertices has order three, J. Aust. Math. Soc. 85 (2008), no. 3, 305–322.
- Alice Devillers, Michael Giudici, Cai Heng Li, Geoffrey Pearce, and Cheryl E. Praeger, On imprimitive rank 3 permutation groups, preprint (2010).[arXiv]
- Alice Devillers, Michael Giudici, Cai Heng Li, and Cheryl E. Praeger, Locally s-distance transitive graphs, preprint (2010).[arXiv]
- L. Di Martino, A. Previtali, and R. Radina, Sets of transvections generating subgroups isomorphic to special linear groups, Comm. Algebra 33 (2005), no. 6, 1663–1691.[MR]
- Matthew J. Dyer, Elementary roots and admissible subsets of coxeter groups, J. Group Theory, to appear (2009).
- Bettina Eick, Computational group theory, Jahresber. Deutsch. Math.-Verein. 107 (2005), no. 3, 155–170.[MR/link]
- Bettina Eick and Delaram Kahrobaei, Polycyclic groups: a new platform for cryptology?, preprint (2004), 47 pages.[arXiv]
- Bettina Eick, C. R. Leedham-Green, and E. A. O'Brien, Constructing automorphism groups of p-groups, Comm. Algebra 30 (2002), no. 5, 2271–2295.[MR]
- Bettina Eick, M. F. Newman, and E. A. O'Brien, The class-breadth conjecture revisited, J. Algebra 300 (2006), no. 1, 384–393.[MR]
- Bettina Eick and E. A. O'Brien, Enumerating p-groups, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 191–205.[MR]
- Ben Elias, Lior Silberman, and Ramin Takloo-Bighash, Minimal permutation representations of nilpotent groups, Experiment. Math. 19 (2010), no. 1, 121–128.[link]
- Harald Ellers and John Murray, Branching rules for Specht modules, J. Algebra 307 (2007), no. 1, 278–286.[MR/arXiv]
- Graham Ellis, On groups with a finite nilpotent upper central quotient, Arch. Math. (Basel) 70 (1998), no. 2, 89–96.[MR]
- Graham Ellis, On the relation between upper central quotients and lower central series of a group, Trans. Amer. Math. Soc. 353 (2001), no. 10, 4219–4234 (electronic).[MR]
- Graham Ellis and Irina Kholodna, Computing second cohomology of finite groups with trivial coefficients, Homology Homotopy Appl. 1 (1999), 163–168 (electronic).[MR]
- Graham Ellis and Irina Kholodna, Three-dimensional presentations for the groups of order at most 30, LMS J. Comput. Math. 2 (1999), 93–117+2 appendixes (HTML and source code) (electronic).[MR]
- Graham Ellis and Frank Leonard, Computing Schur multipliers and tensor products of finite groups, Proc. Roy. Irish Acad. Sect. A 95 (1995), no. 2, 137–147.[MR]
- Pavel Etingof, Frédéric Latour, and Eric Rains, On central extensions of preprojective algebras, J. Algebra 313 (2007), no. 1, 165–175.[MR]
- Pavel Etingof and Eric Rains, Central extensions of preprojective algebras, the quantum Heisenberg algebra, and 2-dimensional complex reflection groups, J. Algebra 299 (2006), no. 2, 570–588.[MR/arXiv]
- Pavel Etingof and Eric Rains, New deformations of group algebras of Coxeter groups. II, Geom. Funct. Anal. 17 (2008), no. 6, 1851–1871.[MR/link]
- Anthony B. Evans, The admissibility of sporadic simple groups, Journal of Algebra 321 (2009), no. 1, 105–116.[doi]
- Susan Evans-Riley, On the derived length of finite, graded Lie rings with prime-power order and groups with prime-power order., Bull. Austral. Math. Soc. 64 (2001), no. 1, 171-172.[doi]
- Susan Evans-Riley, M. F. Newman, and Csaba Schneider, On the soluble length of groups with prime-power order, Bull. Austral. Math. Soc. 59 (1999), no. 2, 343–346.[MR/doi]
- Ben Fairbairn, Improved upper bounds on the spreads of some large sporadic groups, preprint (2009), 11 pages.[arXiv]
- Ben Fairbairn, Recent progress in the symmetric generation of groups, preprint (2010), 14 pages.[arXiv]
- Reza Rezaeian Farashahi, Ruud Pellikaan, and Andrey Sidorenko, Extractors for binary elliptic curves, Des. Codes Cryptogr. 49 (2008), no. 1-3, 171–186.[MR]
- Arash Farzan and J. Ian Munro, Succinct representation of finite abelian groups, in ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 2006, pp. 87–92.[doi]
- Rene P. Felix, The finite quotient groups of the plane crystallographic group p6m, Matimyás Mat. (1989), no. 1, 39–49.[MR]
- Claus Fieker, Minimizing representations over number fields, J. Symbolic Comput. 38 (2004), no. 1, 833–842.[MR]
- Claus Fieker, Minimizing representations over number fields II. Computations in the Brauer group, J. Algebra 322 (2009), no. 3, 752–765.[MR/doi]
- Claus Fieker and Willem A. de Graaf, Finding integral linear dependencies of algebraic numbers and algebraic Lie algebras, LMS J. Comput. Math. 10 (2007), 271–287 (electronic).[MR]
- Claus Fieker and Jürgen Klüners, Minimal discriminants for fields with small Frobenius groups as Galois groups, J. Number Theory 99 (2003), no. 2, 318–337.[MR]
- J. Fischer and J. McKay, The nonabelian simple groups G, | G | < 106—maximal subgroups, Math. Comp. 32 (1978), no. 144, 1293–1302.[MR]
- D. L. Flannery, Cocyclic Hadamard matrices and Hadamard groups are equivalent, J. Algebra 192 (1997), no. 2, 749–779.[MR]
- D. L. Flannery, Irreducible monomial linear groups of degree four over finite fields, Internat. J. Algebra Comput. 14 (2004), no. 3, 253–294.[MR]
- D. L. Flannery and E. A. O'Brien, Computing 2-cocycles for central extensions and relative difference sets, Comm. Algebra 28 (2000), no. 4, 1939–1955.[MR]
- D. L. Flannery and E. A. O'Brien, Linear groups of small degree over finite fields, Internat. J. Algebra Comput. 15 (2005), no. 3, 467–502.[MR]
- P. Fleischmann, W. Lempken, and A. E. Zalesskii, Linear groups over GF(2k) generated by a conjugacy class of a fixed point free element of order 3, J. Algebra 244 (2001), no. 2, 631–663.[MR]
- Peter Fleischmann, On pointwise conjugacy of distinguished coset representatives in Coxeter groups, J. Group Theory 5 (2002), no. 3, 269–283.[MR]
- Tuval Foguel, Groups, transversals, and loops, Comment. Math. Univ. Carolin. 41 (2000), no. 2, 261–269.[MR]
- Tuval Foguel and Abraham A. Ungar, Involutory decomposition of groups into twisted subgroups and subgroups, J. Group Theory 3 (2000), no. 1, 27–46.[MR]
- Tuval Foguel and Abraham A. Ungar, Gyrogroups and the decomposition of groups into twisted subgroups and subgroups, Pacific J. Math. 197 (2001), no. 1, 1–11.[MR]
- Thomas A. Fournelle and Kenneth W. Weston, Verbal embeddings and a geometric approach to some group presentations, J. Algebra 124 (1989), no. 2, 300–316.[MR]
- Thomas A. Fournelle and Kenneth W. Weston, A geometric approach to some group presentations, Combinatorial Group Theory (College Park, MD, 1988), Contemp. Math., vol. 109, Amer. Math. Soc., Providence, RI, 1990, pp. 25–33.[MR]
- Andrew Francis, The minimal basis for the centre of an Iwahori-Hecke algebra, J. Algebra 221 (1999), no. 1, 1–28.[MR]
- A. Fukshansky and G. Stroth, Semiclassical parabolic systems related to M24, Geom. Dedicata 70 (1998), no. 3, 305–329.[MR]
- Jason Fulman, Random matrix theory over finite fields, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 1, 51–85 (electronic).[MR]
- Skip Garibaldi and Michael Carr, Geometries, the principle of duality, and algebraic groups, Expo. Math. 24 (2006), no. 3, 195–234.[MR]
- Shelly Garion and Aner Shalev, Commutator maps, measure preservation, and T-systems, Trans. Amer. Math. Soc. 361 (2009), no. 9, 4631–4651.[MR]
- Volker Gebhardt, Constructing a short defining set of relations for a finite group, J. Algebra 233 (2000), no. 2, 526–542.[MR]
- Volker Gebhardt, Two short presentations for Lyons' sporadic simple group, Experiment. Math. 9 (2000), no. 3, 333–338.[MR]
- Volker Gebhardt, Efficient collection in infinite polycyclic groups, J. Symbolic Comput. 34 (2002), no. 3, 213–228.[MR]
- Volker Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra 292 (2005), no. 1, 282–302.[MR]
- Volker Gebhardt, Computer aided discovery of a fast algorithm for testing conjugacy in braid groups, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 261–285.[MR]
- Volker Gebhardt, Conjugacy search in braid groups: From a braid-based cryptography point of view, Appl. Algebra Engrg. Comm. Comput. 17 (2006), no. 3-4, 219–238.[MR]
- Michael Giudici, Factorisations of sporadic simple groups, J. Algebra 304 (2006), no. 1, 311–323.[MR]
- S. P. Glasby, C. R. Leedham-Green, and E. A. O'Brien, Writing projective representations over subfields, J. Algebra 295 (2006), no. 1, 51–61.[MR]
- S. P. Glasby and Cheryl E. Praeger, Towards an efficient Meat-axe algorithm using f-cyclic matrices: the density of uncyclic matrices in M(n,q), J. Algebra 322 (2009), no. 3, 766–790.
- H. W. Gollan and T. W. Ostermann, Operation of class sums on permutation modules, J. Symbolic Comput. 9 (1990), no. 1, 39–47.[MR]
- Holger W. Gollan, A new existence proof for Ly, the sporadic simple group of R. Lyons, J. Symbolic Comput. 31 (2001), no. 1-2, 203–209.[MR]
- María Isabel González Vasco, Martin Rötteler, and Rainer Steinwandt, On minimal length factorizations of finite groups, Experiment. Math. 12 (2003), no. 1, 1–12.[MR]
- Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, On the number of conjugates defining the solvable radical of a finite group, C. R. Math. Acad. Sci. Paris 343 (2006), no. 6, 387–392.[MR]
- Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A commutator description of the solvable radical of a finite group, Groups Geom. Dyn. 2 (2008), no. 1, 85–120.[MR]
- Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, A description of Baer-Suzuki type of the solvable radical of a finite group, J. Pure Appl. Algebra 213 (2009), no. 2, 250–258.[MR/doi]
- Nikolai Gordeev, Fritz Grunewald, Boris Kunyavskii, and Eugene Plotkin, From Thompson to Baer-Suzuki: A sharp characterization of the solvable radical, J. Algebra 323 (2010), no. 10, 2888–2904.[arXiv]
- Neil A. Gordon, Trevor M. Jarvis, and Ron Shaw, Aspects of the linear groups GL(n,2), n < 7, J. Combin. Math. Combin. Comput. 53 (2005), 13–31.[MR]
- Neil A. Gordon, Guglielmo Lunardon, and Ron Shaw, Linear sections of GL(4,2), Bull. Belg. Math. Soc. Simon Stevin 5 (1998), no. 2-3, 287–311.[MR]
- Willem A. de Graaf and Andrea Pavan, Constructing arithmetic subgroups of unipotent groups, J. Algebra 322 (2009), no. 11, 3950–3970.[MR/doi]
- Willem A. de Graaf and Oksana S. Yakimova, Good index behaviour of θ-representations, i, preprint (2010).[arXiv]
- Jan E. Grabowski, Examples of quantum cluster algebras associated to partial flag varieties, J. Pure Appl. Algebra, to appear (2010), 19 pages.[arXiv]
- Jan E. Grabowski and Stéphane Launois, Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: The finite-type cases, Int.Math.Res. Not, to appear (2010), 24 pages.[doi]
- Gerhard Grams, Erzeugende und Relationen gewisser orthogonaler und symplektischer Gruppen über GF(2), Mitt. Math. Sem. Giessen (1987), no. 183, 55–75.[MR]
- Markus Grassl, Constructing matrix representations of finite groups in characteristic zero, Proceedings 10th Rhine Workshop on Computer Algebra (RWCA06, 2006, pp. 143-148.
- David J. Green, Gröbner Bases and the Computation of Group Cohomology, Lecture Notes in Mathematics, vol. 1828, Springer-Verlag, Berlin, 2003, pp. xii+138.[MR]
- David J. Green, Gröbner bases for p-group algebras, preprint (2009).[arXiv]
- Robert L. Griess, Jr. and A. J. E. Ryba, Embeddings of SL(2,27) in complex exceptional algebraic groups, Michigan Math. J. 50 (2002), no. 1, 89–99.[MR]
- Anja Groch, Dennis Hofheinz, and Rainer Steinwandt, A practical attack on the root problem in braid groups, Algebraic methods in cryptography, Contemp. Math., vol. 418, Amer. Math. Soc., Providence, RI, 2006, pp. 121–131.[MR/link]
- Benedict H. Gross and Gabriele Nebe, Globally maximal arithmetic groups, J. Algebra 272 (2004), no. 2, 625–642.[MR]
- Fritz Grunewald and Alexander Lubotzky, Linear representations of the automorphism group of a free group, Geometric and Functional Analysis 18 (2010), no. 5, 1564–1608.[doi/arXiv]
- Simon Guest, A solvable version of the Baer–Suzuki theorem, Trans. Amer. Math. Soc. 362 (2010), 5909–5946.[MR/arXiv]
- R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Presentations of finite simple groups: A quantitative approach, J. Amer. Math. Soc. 21 (2008), no. 3, 711–774.[MR/arXiv]
- R. M. Guralnick, W. M. Kantor, M. Kassabov, and A. Lubotzky, Remarks on proficient groups, J. Algebra 326 (2011), no. 1, 169–184.
- Robert Guralnick and Susan Montgomery, Frobenius-Schur indicators for subgroups and the Drinfeld double of Weyl groups, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3611–3632.[MR/arXiv]
- R. Haas and A. G. Helminck, Algorithms for twisted involutions in Weyl groups, Preprint (2006), 10 pages.
- George Havas, Coset enumeration strategies, Watt, Stephen M. (ed.), ISSAC '91. Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation. Bonn, Germany, July 15–17, 1991. New York, NY: ACM Press, 1991, pp. 191–199.
- George Havas and Derek F. Holt, On Coxeter's families of group presentations, J. Algebra 324 (2010), no. 5, 1076–1082.[MR/doi]
- George Havas, Derek F. Holt, P. E. Kenne, and Sarah Rees, Some challenging group presentations, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 206–213.[MR]
- George Havas, Derek F. Holt, and M. F. Newman, Certain cyclically presented groups are infinite, Comm. Algebra 29 (2001), no. 11, 5175–5178.[MR]
- George Havas, C. R. Leedham-Green, E. A. O'Brien, and Michael C. Slattery, Computing with elation groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 95–102.[MR]
- George Havas, M. F. Newman, Alice C. Niemeyer, and Charles C. Sims, Computing in groups with exponent six, Computational and Geometric Aspects of Modern Algebra, London Math. Soc. Lecture Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 1998, pp. 87–100.
- George Havas, M. F. Newman, Alice C. Niemeyer, and Charles C. Sims, Groups with exponent six, Comm. Algebra 27 (1999), no. 8, 3619–3638.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, Groups of deficiency zero, Geometric and Computational Perspectives on Infinite Groups (Minneapolis, MN and New Brunswick, NJ, 1994), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 25, Amer. Math. Soc., Providence, RI, 1996, pp. 53–67.[MR]
- George Havas, M. F. Newman, and E. A. O'Brien, On the efficiency of some finite groups, Comm. Algebra 32 (2004), no. 2, 649–656.[MR]
- George Havas and Colin Ramsay, Proving a group trivial made easy: A case study in coset enumeration, Bull. Austral. Math. Soc. 62 (2000), no. 1, 105–118.[MR]
- George Havas and Colin Ramsay, Short balanced presentations of perfect groups, Groups St. Andrews 2001 in Oxford. Vol. I, London Math. Soc. Lecture Note Ser., vol. 304, Cambridge Univ. Press, Cambridge, 2003, pp. 238–243.[MR]
- George Havas and Colin Ramsay, On proofs in finitely presented groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 457–474.[MR]
- George Havas, J. S. Richardson, and Leon S. Sterling, The last of the Fibonacci groups, Proc. Roy. Soc. Edinburgh Sect. A 83 (1979), no. 3-4, 199–203.[MR]
- George Havas and Edmund F. Robertson, Two groups which act on cubic graphs, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 65–68.[MR]
- George Havas and Edmund F. Robertson, Application of computational tools for finitely presented groups, Computational support for discrete mathematics (Piscataway, NJ, 1992), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 15, Amer. Math. Soc., Providence, RI, 1994, pp. 29–39.[MR]
- George Havas and Edmund F. Robertson, Central factors of deficiency zero groups, Comm. Algebra 24 (1996), no. 11, 3483–3487.[MR]
- George Havas, Edmund F. Robertson, and Dale C. Sutherland, Behind and beyond a theorem on groups related to trivalent graphs, J. Aust. Math. Soc. 85 (2008), no. 3, 323–332.
- George Havas and Charles C. Sims, A presentation for the Lyons simple group, Computational methods for representations of groups and algebras (Essen, 1997), Progr. Math., vol. 173, Birkhäuser, Basel, 1999, pp. 241–249.[MR]
- George Havas and M. R. Vaughan-Lee, 4-Engel groups are locally nilpotent, Internat. J. Algebra Comput. 15 (2005), no. 4, 649–682.[MR]
- George Havas and M. R. Vaughan-Lee, Computing with 4-Engel groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 475–485.[MR]
- George Havas and Michael Vaughan-Lee, On counterexamples to the Hughes conjecture, J. Algebra 322 (2009), no. 3, 791–801.
- T. Hawkes, I. M. Isaacs, and M. Özaydin, On the Möbius function of a finite group, Rocky Mountain J. Math. 19 (1989), no. 4, 1003–1034.[MR]
- David J. Hemmer, The complexity of certain Specht modules for the symmetric group, J. Algebraic Combin. 30 (2009), no. 4, 421–427.[MR/doi]
- Stuart Hendren, Extra special defect groups of order p3 and exponent p, J. Algebra 313 (2007), no. 2, 724–760.[MR]
- R. J. Higgs, The bad behavior of representation groups, J. Algebra Appl. 4 (2005), no. 2, 139–151.[MR]
- R. J. Higgs and J. F. Humphreys, Projective character degree patterns of 2-groups, Comm. Algebra 28 (2000), no. 3, 1189–1210.[MR]
- G. Hiss, Algorithms of representation theory, Computer Algebra Handbook, vol. 17, Springer, Berlin, 2003, pp. 84–88.
- Gerhard Hiss, Hermitian function fields, classical unitals, and representations of 3-dimensional unitary groups, Indag. Math. (N.S.) 15 (2004), no. 2, 223–243.[MR]
- Miles Lee Holloway, Derived equivalences for group algebras, PhD Thesis, University of Bristol, 2001.
- Miles Holloway, Broué's conjecture for the Hall-Janko group and its double cover, Proc. London Math. Soc. (3) 86 (2003), no. 1, 109–130.[MR]
- P. E. Holmes, On minimal factorisations of sporadic groups, Experiment. Math. 13 (2004), no. 4, 435–440.[MR]
- P. E. Holmes, A classification of subgroups of the Monster isomorphic to S4 and an application, J. Algebra 319 (2008), no. 8, 3089–3099.[MR]
- P. E. Holmes, S. A. Linton, E. A. O'Brien, A. J. E. Ryba, and R. A. Wilson, Constructive membership in black-box groups, J. Group Theory 11 (2008), no. 6, 747–763.[MR]
- P. E. Holmes and R. A. Wilson, A new maximal subgroup of the Monster, J. Algebra 251 (2002), no. 1, 435–447.[MR]
- Petra E. Holmes and Robert A. Wilson, A new computer construction of the Monster using 2-local subgroups, J. London Math. Soc. (2) 67 (2003), no. 2, 349–364.[MR]
- D. F. Holt, The computation of normalizers in permutation groups, J. Symbolic Comput. 12 (1991), no. 4-5, 499–516.[MR]
- Derek F. Holt, The Meataxe as a tool in computational group theory, The Atlas of Finite Groups: Ten Years On (Birmingham, 1995), London Math. Soc. Lecture Note Ser., vol. 249, Cambridge Univ. Press, Cambridge, 1998, pp. 74–81.[MR]
- Derek F. Holt, Computing automorphism groups of finite groups, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 201–208.[MR]
- Derek F. Holt, Cohomology and group extensions in Magma, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 221–241.[MR]
- Derek F. Holt, Bettina Eick, and Eamonn A. O'Brien, Handbook of Computational Group Theory, Discrete Mathematics and its Applications (Boca Raton), Chapman &Hall/CRC, Boca Raton, FL, 2005, pp. xvi+514.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Computing matrix group decompositions with respect to a normal subgroup, J. Algebra 184 (1996), no. 3, 818–838.[MR]
- Derek F. Holt, C. R. Leedham-Green, E. A. O'Brien, and Sarah Rees, Testing matrix groups for primitivity, J. Algebra 184 (1996), no. 3, 795–817.[MR]
- Derek F. Holt and E. A. O'Brien, A computer-assisted analysis of some matrix groups, J. Algebra 300 (2006), no. 1, 199–212.[MR]
- Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1–16.[MR]
- Derek F. Holt and Sarah Rees, Computing with abelian sections of finitely presented groups, J. Algebra 214 (1999), no. 2, 714–728.[MR]
- Derek F. Holt and Colva M. Roney-Dougal, Constructing maximal subgroups of classical groups, LMS J. Comput. Math. 8 (2005), 46–79 (electronic).[MR]
- Derek F. Holt and Mark J. Stather, Computing a chief series and the soluble radical of a matrix group over a finite field, LMS J. Comput. Math. 11 (2008), 223–251.[MR]
- Derek F. Holt and Jacqueline Walton, Representing the quotient groups of a finite permutation group, J. Algebra 248 (2002), no. 1, 307–333.[MR]
- R. B. Howlett, L. J. Rylands, and D. E. Taylor, Matrix generators for exceptional groups of Lie type, J. Symbolic Comput. 31 (2001), no. 4, 429–445.[MR]
- Robert B. Howlett and Yunchuan Yin, Computational construction of irreducible W-graphs for types E6 and E7, J. Algebra 321 (2009), no. 8, 2055–2067.[MR]
- Shih-Chang Huang, Uno's conjecture for the Chevalley simple groups G2(3) and G2(4), New Zealand J. Math. 35 (2006), no. 2, 155–182.[MR]
- Mervyn C. Hughes and Alun O. Morris, Root systems for two dimensional complex reflection groups, Sém. Lothar. Combin. 45 (2000/01), Art. B45e, 18 pp. (electronic).[MR]
- Alexander Hulpke, Computing subgroups invariant under a set of automorphisms, J. Symbolic Comput. 27 (1999), no. 4, 415–427.[MR]
- Alexander Hulpke, Representing subgroups of finitely presented groups by quotient subgroups, Experiment. Math. 10 (2001), no. 3, 369–381.[MR]
- Alexander Hulpke, Constructing transitive permutation groups, J. Symbolic Comput. 39 (2005), no. 1, 1–30.[MR]
- Stephen P. Humphries, Generators for the mapping class group, Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722, Springer, Berlin, 1979, pp. 44–47.[MR]
- Stephen P. Humphries, Some subgroups of SL(3,Z) generated by involutions, Glasgow Math. J. 32 (1990), no. 2, 127–136.[MR]
- Stephen P. Humphries, Quotients of Coxeter complexes, fundamental groupoids and regular graphs, Math. Z. 217 (1994), no. 2, 247–273.[MR]
- Stephen P. Humphries, Some linear representations of braid groups, J. Knot Theory Ramifications 9 (2000), no. 3, 341–366.[MR]
- Stephen P. Humphries, Action of braid groups on determinantal ideals, compact spaces and a stratification of Teichmüller space, Invent. Math. 144 (2001), no. 3, 451–505.[MR/link]
- Stephen P. Humphries, Finite Hurwitz braid group actions on sequences of Euclidean reflections, J. Algebra 269 (2003), no. 2, 556–588.[MR]
- Stephen P. Humphries, Finite Hurwitz braid group actions for Artin groups, Israel J. Math. 143 (2004), 189–222.[MR]
- Stephen P. Humphries, Representations and rigidity of Aut(F3), Internat. J. Algebra Comput. 16 (2006), no. 5, 925–929.[MR]
- Stephen P. Humphries, Subgroups of pure braid groups generated by powers of Dehn twists, Rocky Mountain J. Math. 37 (2007), no. 3, 801–828.[MR]
- Stephen P. Humphries, Subgroups of free groups generated by conjugates of powers of the generators, J. Group Theory 12 (2009), no. 3, 465–485.[MR/doi]
- Stephen P. Humphries and Kenneth W. Johnson, Fusions of character tables II. p-groups, Comm. Algebra 37 (2009), no. 12, 4296–4315.[MR/doi]
- I. M. Isaacs, Counting characters of upper triangular groups, J. Algebra 315 (2007), no. 2, 698–719.[MR]
- I. M. Isaacs and Dikran Karagueuzian, Conjugacy in groups of upper triangular matrices, J. Algebra 202 (1998), no. 2, 704–711.[MR]
- I. M. Isaacs and Dikran Karagueuzian, Erratum: "Conjugacy in groups of upper triangular matrices" [J. Algebra 202 (1998), no. 2, 704–711; MR1617655 (99b:20011)], J. Algebra 208 (1998), no. 2, 722.[MR]
- I. M. Isaacs and Dikran B. Karagueuzian, Involutions and characters of upper triangular matrix groups, Math. Comp. 74 (2005), no. 252, 2027–2033 (electronic).[MR]
- I. M. Isaacs and Tom Wilde, Primitive characters of maximal subgroups of solvable groups, J. Algebra 323 (2010), no. 2, 419–436.[MR/doi]
- Enrico Jabara, Automorphisms with finite Reidemeister number in residually finite groups, J. Algebra 320 (2008), no. 10, 3671–3679.[MR]
- A. Jaikin-Zapirain, M. F. Newman, and E. A. O'Brien, On p-groups having the minimal number of conjugacy classes of maximal size, Israel J. Math. 172 (2009), 119–123.[MR/doi]
- Rodney James, M. F. Newman, and E. A. O'Brien, The groups of order 128, J. Algebra 129 (1990), no. 1, 136–158.[MR]
- Christoph Jansen, The minimal degrees of faithful representations of the sporadic simple groups and their covering groups, LMS J. Comput. Math. 8 (2005), 122–144 (electronic).[MR]
- D. Joyner, Arithmetic of characters of generalized symmetric groups, Arch. Math. (Basel) 81 (2003), no. 2, 113–120.[MR]
- David Joyner, Richard Kreminski, and Joann Turisco, Applied abstract algebra, Johns Hopkins University Press, Baltimore, MD, 2004, pp. xii+329.[MR]
- Sadok Kallel and Denis Sjerve, On the group of automorphisms of cyclic covers of the Riemann sphere, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 2, 267–287.[MR]
- William M. Kantor, Sylow's theorem in polynomial time, J. Comput. System Sci. 30 (1985), no. 3, 359–394.[MR]
- William M. Kantor, Simple groups in computational group theory, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 77–86 (electronic).[MR]
- William M. Kantor and Tim Penttila, Reconstructing simple group actions, Geometric Group Theory Down Under (Canberra, 1996), de Gruyter, Berlin, 1999, pp. 147–180.[MR]
- William M. Kantor and Ákos Seress, Black box classical groups, Mem. Amer. Math. Soc. 149 (2001), no. 708, viii+168.[MR]
- William M. Kantor and Ákos Seress, Computing with matrix groups, Groups, combinatorics &geometry (Durham, 2001), World Sci. Publishing, River Edge, NJ, 2003, pp. 123–137.[MR]
- Luise-Charlotte Kappe and Robert Fitzgerald Morse, On commutators in groups, Groups St. Andrews 2005. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 340, Cambridge Univ. Press, Cambridge, 2007, pp. 531–558.[MR]
- D. B. Karagueuzian and P. Symonds, The module structure of a group action on a polynomial ring: Examples, generalizations, and applications, Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, vol. 35, Amer. Math. Soc., Providence, RI, 2004, pp. 139–158.[MR/link]
- Dikran B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring, J. Algebra 218 (1999), no. 2, 672–692.[MR]
- Dikran B. Karagueuzian and Peter Symonds, The module structure of a group action on a polynomial ring: a finiteness theorem, J. Amer. Math. Soc. 20 (2007), no. 4, 931–967 (electronic).[MR]
- W. F. Ke and K. S. Wang, On the Frobenius groups with kernel of order 64, Contributions to general algebra, 7 (Vienna, 1990), Hölder-Pichler-Tempsky, Vienna, 1991, pp. 221–233.[MR]
- Andrei Kelarev, Graph algebras and automata, Monographs and Textbooks in Pure and Applied Mathematics, vol. 257, Marcel Dekker Inc., New York, 2003, pp. viii+366.[MR]
- P. E. Kenne, Presentations for some direct products of groups, Bull. Austral. Math. Soc. 28 (1983), no. 1, 131–133.[MR]
- P. E. Kenne, Efficient presentations for three simple groups, Comm. Algebra 14 (1986), no. 5, 797–800.[MR]
- P. E. Kenne, Some new efficient soluble groups, Comm. Algebra 18 (1990), no. 8, 2747–2753.[MR]
- Jennifer D. Key and Johannes Siemons, Closure properties of the special linear groups, Ars Combin. 22 (1986), 107–117.[MR]
- Jennifer D. Key and Johannes Siemons, On the k-closure of finite linear groups, Boll. Un. Mat. Ital. B (7) 1 (1987), no. 1, 31–55.[MR]
- Jennifer D. Key and Johannes Siemons, Regular sets and geometric groups, Results Math. 11 (1987), no. 1-2, 97–116.[MR]
- Hyun Kyu Kim, Representation theoretic existence proof for Fischer group Fi23, Master's Thesis, Cornell University, 2009.[arXiv]
- Hyun Kyu Kim and Gerhard O. Michler, Construction of Co1 from an irreducible subgroup M24 of GL11(2), preprint (2009), 220 pages.[arXiv]
- Jason S. Kimberley and Guyan Robertson, Groups acting on products of trees, tiling systems and analytic K-theory, New York J. Math. 8 (2002), 111–131 (electronic).[MR]
- Markus Kirschmer, Finite symplectic matrix groups, preprint, 21 pages.[arXiv]
- Anastasia V. Kisil, Gromov conjecture on surface subgroups: Computational experiments, preprint (2010), 11 pages.[arXiv]
- Peter Köhler, Thomas Meixner, and Michael Wester, Triangle groups, Comm. Algebra 12 (1984), no. 13-14, 1595–1625.[MR]
- Joachim König, Solvability of generalized monomial groups, J. Group Theory, to appear (2009).
- Joachim König, Solvability of generalized monomial groups, preprint (2009), 21 pages.[arXiv]
- L. G. Kovács and Ralph Stöhr, Lie powers of the natural module for GL(2), J. Algebra 229 (2000), no. 2, 435–462.[MR]
- M. Kratzer, G. O. Michler, and M. Weller, Harada group uniquely determined by centralizer of a 2-central involution, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 303–372.[MR]
- Mathias Kratzer, Konkrete Charaktertafeln und kompatible Charaktere, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 30, Universität Essen Fachbereich Mathematik, Essen, 2001, pp. vi+106.[MR]
- Mathias Kratzer, Uniform and natural existence proofs for Janko's sporadic groups J2 and J3, Arch. Math. (Basel) 79 (2002), no. 1, 5–18.[MR]
- Mathias Kratzer, Constructing pairs of compatible characters, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 285–302.[MR]
- Mathias Kratzer, Wolfgang Lempken, Gerhard O. Michler, and Katsushi Waki, Another existence and uniqueness proof for McLaughlin's simple group, J. Group Theory 6 (2003), no. 4, 443–459.[MR]
- P. H. Kropholler, S. Mohseni Rajaei, and J. Segal, Invariant rings of orthogonal groups over \bf F2, Glasg. Math. J. 47 (2005), no. 1, 7–54.[MR]
- Kenneth Kunen, G-loops and permutation groups, J. Algebra 220 (1999), no. 2, 694–708.[MR]
- Boris Kunyavskii, Eugene Plotkin, and Roman Shklyar, A strategy for human-computer study of equations and identities in finite groups, Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 57 (2003), no. 3-4, 97–101.[MR]
- Matthias Künzer, On representations of twisted group rings, J. Group Theory 7 (2004), no. 2, 197–229.[MR/link]
- Matthias Künzer and Andrew Mathas, Elementary divisors of Specht modules, European J. Combin. 26 (2005), no. 6, 943–964.[MR]
- Larry Lambe and Bhama Srinivasan, A computation of Green functions for some classical groups, Comm. Algebra 18 (1990), no. 10, 3507–3545.[MR]
- Rudolf Land, Computation of Pólya polynomials of primitive permutation groups, Math. Comp. 36 (1981), no. 153, 267–278.[MR]
- R. Laue, Construction of groups and the constructive approach to group actions, Symmetry and Structural Properties of Condensed Matter (Zajolhk Aczkowo, 1994), World Sci. Publishing, River Edge, NJ, 1995, pp. 404–416.[MR]
- Reinhard Laue, Computing double coset representatives for the generation of solvable groups, Computer algebra (Marseille, 1982), Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin, 1982, pp. 65–70.[MR]
- J. L. Leavitt, G. J. Sherman, and M. E. Walker, Rewriteability in finite groups, Amer. Math. Monthly 99 (1992), no. 5, 446–452.[MR]
- Alain LeBel, D. L. Flannery, and K. J. Horadam, Group algebra series and coboundary modules, J. Pure Appl. Algebra 214 (2010), no. 7, 1291–1300.[MR/doi]
- C. R. Leedham-Green and Scott H. Murray, Variants of product replacement, Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 97–104.[MR]
- C. R. Leedham-Green and E. A. O'Brien, Recognising tensor-induced matrix groups, J. Algebra 253 (2002), no. 1, 14–30.[MR]
- C. R. Leedham-Green and E. A. O'Brien, Constructive recognition of classical groups in odd characteristic, J. Algebra 322 (2009), no. 3, 833–881.[MR/doi]
- Charles R. Leedham-Green, The computational matrix group project, Groups and Computation III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 229–247.[MR]
- Dimitri Leemans, Two nearly isomorphic groups, Atti Sem. Mat. Fis. Univ. Modena 45 (1997), no. 2, 373–376.[MR]
- Dimitri Leemans, The rank 2 geometries of the simple Suzuki groups Sz(q), Beiträge Algebra Geom. 39 (1998), no. 1, 97–120.[MR]
- Dimitri Leemans, On a rank four geometry for the Hall-Janko sporadic group, J. Combin. Theory Ser. A 101 (2003), no. 1, 160–167.[MR]
- Dimitri Leemans, On computing the subgroup lattice of O'N, preprint (2008), 23.
- Dimitri Leemans, Locally s-arc-transitive graphs related to sporadic simple groups, J. Algebra 322 (2009), no. 3, 882–892.[MR/doi]
- Dimitri Leemans and Laurence Vauthier, An atlas of abstract regular polytopes for small groups, Aequationes Math. 72 (2006), no. 3, 313–320.[MR]
- G. I. Lehrer, The cohomology of the regular semisimple variety, J. Algebra 199 (1998), no. 2, 666–689.[MR]
- W. Lempken, Constructing J4 in GL(1333,11), Comm. Algebra 21 (1993), no. 12, 4311–4351.[MR]
- W. Lempken and R. Staszewski, A construction of \widehat 3McL and some representation theory in characteristic 5, Linear Algebra Appl. 192 (1993), 205–234.[MR]
- W. Lempken and R. Staszewski, Some 5-modular representation theory for the simple group McL, Comm. Algebra 21 (1993), no. 5, 1611–1629.[MR]
- W. Lempken and R. Staszewski, The structure of the projective indecomposable modules of \hat 3M22 in characteristic 2, Math. Comp. 62 (1994), no. 206, 841–850.[MR]
- Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He. II, in Proceedings of the First Sino-German Workshop on Representation Theory and Finite Simple Groups (Beijing, 2002), vol. 10, 2003, pp. 373–380.[MR]
- Wolfgang Lempken, 2-local amalgams for the simple groups GL(5,2), M24 and He, Illinois J. Math. 47 (2003), no. 1-2, 361–393.[MR]
- Wolfgang Lempken, On 2-local amalgams proving existence and uniqueness of McL and 3.McL, Preprint (IEM, Essen. 2002).
- Wolfgang Lempken, On the existence and uniqueness of the sporadic simple groups J2 and J3 of Z. Janko, J. Group Theory 4 (2001), no. 2, 223–232.[MR]
- Mark L. Lewis, Generalizing a theorem of Huppert and Manz, J. Algebra Appl. 6 (2007), no. 4, 687–695.[MR]
- Mark L. Lewis, A group with three real irreducible characters: answering a question of Moretó and Navarro, J. Algebra Appl. 8 (2009), no. 4, 453–459.[MR/doi/arXiv]
- Mark L. Lewis, Brauer pairs of Camina p-groups of nilpotence class 2, Arch. Math. (Basel) 92 (2009), no. 2, 95–98.[MR/arXiv]
- Mark L. Lewis, The vanishing-off subgroup, J. Algebra 321 (2009), no. 4, 1313–1325.[MR]
- Cai Heng Li, Zai Ping Lu, and Dragan Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), no. 2, 749–770.[MR]
- Martin W. Liebeck and E. A. O'Brien, Finding the characteristic of a group of Lie type, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 741–754.[MR]
- Martin W. Liebeck, Aner Shalev, Pham Huu Tiep, and E. A. O'Brien, The Ore conjecture, Preprint (2008).
- Kay Jin Lim, The varieties for some Specht modules, J. Algebra 321 (2009), no. 8, 2287–2301.[MR]
- Eddie H. Lo, A polycyclic quotient algorithm, J. Symbolic Comput. 25 (1998), no. 1, 61–97.[MR]
- Peter Lorimer, Hyperbolic pyritohedra constructed from the Coxeter group [4,3,5], Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 303–321.[MR]
- F. Lübeck, K. Magaard, and E. A. O'Brien, Constructive recognition of SL3(q), J. Algebra 316 (2007), no. 2, 619–633.[MR]
- Alexander Lubotzky and Igor Pak, The product replacement algorithm and Kazhdan's property (T), J. Amer. Math. Soc. 14 (2001), no. 2, 347–363 (electronic).[MR]
- Andrea Lucchini and Federico Menegazzo, Computing a set of generators of minimal cardinality in a solvable group, J. Symbolic Comput. 17 (1994), no. 5, 409–420.[MR]
- Eugene M. Luks and Pierre McKenzie, Parallel algorithms for solvable permutation groups, J. Comput. System Sci. 37 (1988), no. 1, 39–62.[MR]
- Eugene M. Luks and Takunari Miyazaki, Polynomial-time normalizers for permutation groups with restricted composition factors, in ISSAC '02: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2002, pp. 176–183 (electronic).[MR/link]
- Eugene M. Luks, Ferenc Rákóczi, and Charles R. B. Wright, Computing normalizers in permutation p-groups, in ISSAC '94: Proceedings of the international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 1994, pp. 139–146.[doi]
- Eugene M. Luks, Ferenc Rákóczi, and Charles R. B. Wright, Some algorithms for nilpotent permutation groups, J. Symbolic Comput. 23 (1997), no. 4, 335–354.[MR]
- K. Lux and H. Pahlings, Computational aspects of representation theory of finite groups, Representation theory of finite groups and finite-dimensional algebras (Bielefeld, 1991), Progr. Math., vol. 95, Birkhäuser, Basel, 1991, pp. 37–64.[MR]
- Klaus M. Lux and Magdolna Szőke, Computing homomorphism spaces between modules over finite dimensional algebras, Experiment. Math. 12 (2003), no. 1, 91–98.[MR]
- Yujie Ma, Cohomology of special 128-groups, Mathematics-Mechanization Research Preprints (1999), 5 pages.[link]
- A. M. Macbeath, Superimprimitive 2-generator finite groups, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 1, 103–113.[MR]
- Christopher Macmeikan, Toral arrangements, The COE Seminar on Mathematical Sciences 2004, Sem. Math. Sci., vol. 31, Keio Univ., Yokohama, 2004, pp. 37–54.[MR]
- Kay Magaard, E. A. O'Brien, and Ákos Seress, Recognition of small dimensional representations of general linear groups, J. Aust. Math. Soc. 85 (2008), no. 2, 229–250.[MR]
- Kay Magaard, Sergey Shpectorov, and Helmut Völklein, A GAP package for braid orbit computation and applications, Experiment. Math. 12 (2003), no. 4, 385–393.[MR]
- Arturo Magidin, Capability of nilpotent products of cyclic groups, J. Group Theory 8 (2005), no. 4, 431–452.[MR/arXiv]
- Ivan Marin and Jean Michel, Automorphisms of complex reflection groups, preprint (2007), 39 pages.[arXiv]
- Conchita Martinez-Perez and Wolfgang Willems, The trivial intersection problem for characters of principal indecomposable modules, Adv. Math. 222 (2009), no. 4, 1197–1219.
- John Martino and Stewart Priddy, Group extensions and automorphism group rings, Homology Homotopy Appl. 5 (2003), no. 1, 53–70 (electronic).[MR]
- Coy L. May and Jay Zimmerman, The groups of symmetric genus σ ≤ 8, Comm. Algebra 36 (2008), no. 11, 4078–4095.[MR]
- John McKay and Kiang Chuen Young, The nonabelian simple groups G, | G | < 106—minimal generating pairs, Math. Comp. 33 (1979), no. 146, 812–814.[MR]
- Steve Medvedoff and Kent Morrison, Groups of perfect shuffles, Math. Mag. 60 (1987), no. 1, 3–14.[MR]
- Gerhard O. Michler, An algorithm for determining the simplicity of a modular group representation, J. Symbolic Comput. 6 (1988), no. 1, 105–111.[MR]
- Gerhard O. Michler, Some problems in computational representation theory, J. Symbolic Comput. 9 (1990), no. 5-6, 571–582.[MR]
- Gerhard O. Michler, On the uniqueness of the finite simple groups with a given centralizer of a 2-central involution, Illinois J. Math. 47 (2003), no. 1-2, 419–444.[MR/link]
- Gerhard O. Michler, Theory of finite simple groups, New Mathematical Monographs, vol. 8, Cambridge University Press, Cambridge, 2006, pp. 426,583.
- Gerhard O. Michler and Andrea Previtali, Another existence and uniqueness proof for the Higman-Sims simple group, Algebra Colloq. 12 (2005), no. 3, 369–398.[MR]
- Gerhard O. Michler and Andrea Previtali, O'Nan group uniquely determined by the centralizer of a 2-central involution, J. Algebra Appl. 6 (2007), no. 1, 135–171.[MR]
- Gerhard O. Michler and Øyvind Solberg, Testing modules of groups of even order for simplicity, J. Algebra 202 (1998), no. 1, 229–242.[MR]
- Gerhard O. Michler and Lizhong Wang, Another existence and uniqueness proof of the Tits group, Algebra Colloq. 15 (2008), no. 2, 241–278.[MR]
- Gerhard O. Michler and Michael Weller, A new computer construction of the irreducible 112-dimensional 2-modular representation of Janko's group J4, Comm. Algebra 29 (2001), no. 4, 1773–1806.[MR]
- Gerhard O. Michler and Michael Weller, The character values of the irreducible constituents of a transitive permutation representation, Arch. Math. (Basel) 78 (2002), no. 6, 417–429.[MR]
- Gerhard O. Michler, Michael Weller, and Katsushi Waki, Natural existence proof for Lyons simple group, J. Algebra Appl. 2 (2003), no. 3, 277–315.[MR]
- Vanessa Miemietz, On representations of affine hecke algebras of type B, PhD Thesis, Universität Stuttgart, 2005.
- Torsten Minkwitz, On the computation of ordinary irreducible representations of finite groups, ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 1995, pp. 278–284.
- Torsten Minkwitz, Extensions of irreducible representations, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 5, 391–399.[MR]
- Torsten Minkwitz, An algorithm for solving the factorization problem in permutation groups, J. Symbolic Comput. 26 (1998), no. 1, 89–95.[MR]
- Takunari Miyazaki, Polynomial-time computation in matrix groups, PhD Thesis, University of Oregon, 1999.
- Mohammad Reza R. Moghaddam, Ali Reza Salemkar, and Taghi Karimi, Some inequalities for the order of the Schur multiplier of a pair of groups, Comm. Algebra 36 (2008), no. 7, 2481–2486.[MR]
- Jamshid Moori, Subgroups of 3-transposition groups generated by four 3-transpositions, Quaestiones Math. 17 (1994), no. 1, 83–94.[MR]
- Alexander Moretó, Complex group algebras of finite groups: Brauer's problem 1, Adv. Math. 208 (2007), no. 1, 236–248.[MR]
- Meinard Müller and Michael Clausen, DFT-based word normalization in finite supersolvable groups, Appl. Algebra Engrg. Comm. Comput. 15 (2004), no. 3-4, 213–231.[MR/doi]
- Scott H. Murray and E. A. O'Brien, Selecting base points for the Schreier-Sims algorithm for matrix groups, J. Symbolic Comput. 19 (1995), no. 6, 577–584.[MR]
- Gabriele Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998), 106–223 (electronic).[MR]
- J. Neubüser, An invitation to computational group theory, Groups '93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 457–475.[MR]
- J. Neubüser, H. Pahlings, and W. Plesken, CAS; design and use of a system for the handling of characters of finite groups, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, pp. 195–247.[MR]
- Peter M. Neumann and Cheryl E. Praeger, Cyclic matrices and the MEATAXE, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 291–300.[MR]
- Max Neunhöffer and Ákos Seress, A data structure for a uniform approach to computations with finite groups, ISSAC'06: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2006, pp. 254–261.[MR/doi]
- M. F. Newman, Addendum: "A computer aided study of a group defined by fourth powers" (Bull. Austral. Math. Soc. 14 (1976), no. 2, 293–297), Bull. Austral. Math. Soc. 15 (1976), no. 3, 477–479.[MR]
- M. F. Newman, Some group presentations and enforcing the associative law, Algebraic algorithms and error correcting codes (Grenoble, 1985), Lecture Notes in Comput. Sci., vol. 229, Springer, Berlin, 1986, pp. 228–237.[MR]
- M. F. Newman, On a family of cyclically-presented fundamental groups, J. Aust. Math. Soc. 71 (2001), no. 2, 235–241.[MR]
- M. F. Newman, Automorphism groups of free groups, J. Aust. Math. Soc. 85 (2008), no. 3, 341–345.[MR/doi]
- M. F. Newman, On coclass and trivial Schur multiplicator, J. Algebra 322 (2009), no. 3, 910–913.[MR/doi]
- M. F. Newman, Werner Nickel, and Alice C. Niemeyer, Descriptions of groups of prime-power order, J. Symbolic Comput. 25 (1998), no. 5, 665–682.[MR]
- M. F. Newman and E. A. O'Brien, A CAYLEY library for the groups of order dividing 128, Group Theory (Singapore, 1987), de Gruyter, Berlin, 1989, pp. 437–442.[MR]
- M. F. Newman and E. A. O'Brien, A computer-aided analysis of some finitely presented groups, J. Austral. Math. Soc. Ser. A 53 (1992), no. 3, 369–376.[MR]
- M. F. Newman and E. A. O'Brien, Application of computers to questions like those of Burnside. II, Internat. J. Algebra Comput. 6 (1996), no. 5, 593–605.[MR]
- M. F. Newman and E. A. O'Brien, Classifying 2-groups by coclass, Trans. Amer. Math. Soc. 351 (1999), no. 1, 131–169.[MR]
- M. F. Newman, E. A. O'Brien, and M. R. Vaughan-Lee, Groups and nilpotent Lie rings whose order is the sixth power of a prime, J. Algebra 278 (2004), no. 1, 383–401.[MR]
- M. F. Newman and Michael Vaughan-Lee, Engel-4 groups of exponent 5. II. Orders, Proc. London Math. Soc. (3) 79 (1999), no. 2, 283–317.[MR]
- Jeanne Nielsen, Rewritable sequencing of groups, Ars Combin. 36 (1993), 207–214.[MR]
- Alice C. Niemeyer, A finite soluble quotient algorithm, J. Symbolic Comput. 18 (1994), no. 6, 541–561.[MR]
- Alice C. Niemeyer, Computing finite soluble quotients, Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 75–82.[MR]
- Alice C. Niemeyer, Constructive recognition of normalizers of small extra-special matrix groups, Internat. J. Algebra Comput. 15 (2005), no. 2, 367–394.[MR]
- Alice C. Niemeyer and Cheryl E. Praeger, A recognition algorithm for classical groups over finite fields, Proc. London Math. Soc. (3) 77 (1998), no. 1, 117–169.[MR]
- Alice C. Niemeyer and Cheryl E. Praeger, A recognition algorithm for non-generic classical groups over finite fields, J. Austral. Math. Soc. Ser. A 67 (1999), no. 2, 223–253.[MR]
- Simon Norton, Computing in the Monster, J. Symbolic Comput. 31 (2001), no. 1-2, 193–201.[MR]
- E. A. O'Brien, The p-group generation algorithm, J. Symbolic Comput. 9 (1990), no. 5-6, 677–698.[MR]
- E. A. O'Brien, The groups of order 256, J. Algebra 143 (1991), no. 1, 219–235.[MR]
- E. A. O'Brien, Isomorphism testing for p-groups, J. Symbolic Comput. 17 (1994), no. 2, 131, 133–147.[MR]
- E. A. O'Brien, Computing automorphism groups of p-groups, Computational Algebra and Number Theory (Sydney, 1992), Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 83–90.[MR]
- E. A. O'Brien, Towards effective algorithms for linear groups, Finite Geometries, Groups, and Computation, Walter de Gruyter GmbH &Co. KG, Berlin, 2006, pp. 163–190.[MR]
- E. A. O'Brien and M. R. Vaughan-Lee, The groups with order p7 for odd prime p, J. Algebra 292 (2005), no. 1, 243–258.[MR]
- E. A. O'Brien and Michael Vaughan-Lee, The 2-generator restricted Burnside group of exponent 7, Internat. J. Algebra Comput. 12 (2002), no. 4, 575–592.[MR]
- J. Opgenorth, W. Plesken, and T. Schulz, Crystallographic algorithms and tables, Acta Cryst. Sect. A 54 (1998), no. 5, 517–531.[MR]
- Alen Orbanić, F-actions and parallel-product decomposition of reflexible maps, J. Algebraic Combin. 26 (2007), no. 4, 507–527.[MR]
- Elizabeth A. Ormerod, On the Wielandt length of metabelian p-groups, Arch. Math. (Basel) 57 (1991), no. 3, 212–215.[MR]
- Th. Ostermann, Charaktertafeln von Sylownormalisatoren sporadischer einfacher Gruppen, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 14, Universität Essen Fachbereich Mathematik, Essen, 1986, pp. x+187.[MR]
- Igor Pak, The product replacement algorithm is polynomial, 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 476–485.[MR]
- Igor Pak, What do we know about the product replacement algorithm?, Groups and Computation, III (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 8, de Gruyter, Berlin, 2001, pp. 301–347.[MR]
- Christopher Parker, Generators and relations for the Lyons sporadic simple group, Arch. Math. (Basel) 78 (2002), no. 2, 97–103.[MR]
- Christopher Parker and Peter Rowley, Classical groups in dimension 3 as completions of the Goldschmidt G3-amalgam, J. London Math. Soc. (2) 62 (2000), no. 3, 802–812.[MR]
- Christopher Parker and Peter Rowley, Sporadic simple groups which are completions of the Goldschmidt G3-amalgam, J. Algebra 235 (2001), no. 1, 131–153.[MR]
- Christopher Parker and Peter Rowley, Local characteristic p completions of weak BN-pairs, Proc. London Math. Soc. (3) 93 (2006), no. 2, 325–394.[MR]
- Christopher Parker and Peter Rowley, A 3-local identification of the alternating group of degree 8, the McLaughlin simple group and their automorphism groups, J. Algebra 319 (2008), no. 4, 1752–1775.[MR]
- Geoffrey Pearce, Examples of rank 3 product action transitive decompositions, Des. Codes Cryptogr. 47 (2008), no. 1-3, 289–303.[MR]
- M. A. Pellegrini and M. C. Tamburini, Hurwitz generation of the universal covering of Alt(n), J. Group Theory 13 (2010), no. 5, 649–657.
- Sarah B. Perkins and Peter J. Rowley, Minimal and maximal length involutions in finite Coxeter groups, Comm. Algebra 30 (2002), no. 3, 1273–1292.[MR]
- Sarah B. Perkins and Peter J. Rowley, On negative orbits of finite Coxeter groups, J. Algebraic Combin. 20 (2004), no. 1, 17–31.[MR]
- Kathleen L. Petersen, One-cusped congruence subgroups of Bianchi groups, Math. Ann. 338 (2007), no. 2, 249–282.[MR]
- Norbert Peyerimhoff and Alina Vdovina, Cayley graph expanders and groups of finite width, preprint (2008), 18 pages.[arXiv]
- W. Plesken, Finite unimodular groups of prime degree and circulants, J. Algebra 97 (1985), no. 1, 286–312.[MR]
- W. Plesken and A. Fabiańska, An L2-quotient algorithm for finitely presented groups, J. Algebra 322 (2009), no. 3, 914–935.[MR/doi]
- W. Plesken and D. Robertz, Representations, commutative algebra, and Hurwitz groups, J. Algebra 300 (2006), no. 1, 223–247.[MR]
- Wilhelm Plesken, Counting with groups and rings, J. Reine Angew. Math. 334 (1982), 40–68.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). I. The five and seven dimensional cases, Math. Comp. 31 (1977), no. 138, 536–551.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). II. The six dimensional case, Math. Comp. 31 (1977), no. 138, 552–573.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). III. The nine-dimensional case, Math. Comp. 34 (1980), no. 149, 245–258.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). IV. Remarks on even dimensions with applications to n = 8, Math. Comp. 34 (1980), no. 149, 259–275.[MR]
- Wilhelm Plesken and Michael Pohst, On maximal finite irreducible subgroups of GL(n, Z). V. The eight-dimensional case and a complete description of dimensions less than ten, Math. Comp. 34 (1980), no. 149, 277–301, loose microfiche suppl.[MR]
- Wilhelm Plesken and Tilman Schulz, Counting crystallographic groups in low dimensions, Experiment. Math. 9 (2000), no. 3, 407–411.[MR]
- Cheryl E. Praeger, Primitive prime divisor elements in finite classical groups, Groups St. Andrews 1997 in Bath, II, London Math. Soc. Lecture Note Ser., vol. 261, Cambridge Univ. Press, Cambridge, 1999, pp. 605–623.[MR]
- Cheryl E. Praeger and Leonard H. Soicher, Low Rank Representations and Graphs for Sporadic Groups, Australian Mathematical Society Lecture Series, vol. 8, Cambridge University Press, Cambridge, 1997, pp. xii+141.[MR]
- Andrea Previtali, Unitriangular actions on quadratic forms and character degrees, Linear Algebra Appl. 408 (2005), 120–150.[MR]
- Andrea Previtali, Irreducible constituents of monomial representations, J. Symbolic Comput. 41 (2006), no. 12, 1345–1359.[MR]
- M. Anwar Rao and Robert Sandling, The characterisation of modular group algebras having unit groups of nilpotency class 3, Canad. Math. Bull. 38 (1995), no. 1, 112–116.[MR]
- M. Anwar Rao and Robert Sandling, Vanishing orbit sums in group algebras of p-groups, Groups '93 Galway/St. Andrews, Vol. 2, London Math. Soc. Lecture Note Ser., vol. 212, Cambridge Univ. Press, Cambridge, 1995, pp. 507–511.[MR]
- Colin Reid, A problem in the Kourovka notebook concerning the number of conjugacy classes of a finite group, preprint (2008), 25 pages.[arXiv]
- Birgit Reinert and Dirk Zeckzer, Coset enumeration using prefix Gröbner bases: an experimental approach, LMS J. Comput. Math. 4 (2001), 74–134 (electronic).[MR/link]
- William F. Reynolds, Noncommutators and the number of projective characters of a finite group, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 71–74.[MR]
- Evija Ribnere, Sequences of words characterizing finite solvable groups, Monatsh. Math. 157 (2009), no. 4, 387–401.[MR/doi]
- Evija Ribnere, Sequences of words characterizing finite solvable groups, Monatsh. Math 157 (2009), no. 4, 387–401.
- Daniel Robbins, Broue's abelian defect group conjecture for the Tits group, preprint (2008), 23 pages.[arXiv]
- Eric Robinson and Gene Cooperman, A parallel architecture for disk-based computing over the baby monster and other large finite simple groups, in ISSAC '06: Proceedings of the 2006 international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 2006, pp. 298–305.[doi]
- Eric Robinson, Jürgen Müller, and Gene Cooperman, A disk-based parallel implementation for direct condensation of large permutation modules, ISSAC 2007, ACM, New York, 2007, pp. 315–322.[MR]
- José L. Rodríguez, Jérôme Scherer, and Antonio Viruel, Non-simple localizations of finite simple groups, J. Algebra 305 (2006), no. 2, 765–774.[MR]
- Colva M. Roney-Dougal, Conjugacy of subgroups of the general linear group, Experiment. Math. 13 (2004), no. 2, 151–163.[MR]
- Colva M. Roney-Dougal, The primitive permutation groups of degree less than 2500, J. Algebra 292 (2005), no. 1, 154–183.[MR]
- Colva M. Roney-Dougal and William R. Unger, The affine primitive permutation groups of degree less than 1000, J. Symbolic Comput. 35 (2003), no. 4, 421–439.[MR]
- Colva M. Roney-Dougal and William R. Unger, Computing the primitive permutation groups of degree less than 1000, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 243–260.[MR]
- Gerhard Rosenberger, Von Untergruppen der Triangel-Gruppen, Illinois J. Math. 22 (1978), no. 3, 404–413.[MR]
- Joseph J. Rotman, An Introduction to the Theory of Groups, Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995, pp. xvi+513.[MR]
- Gordon F. Royle, The transitive groups of degree twelve, J. Symbolic Comput. 4 (1987), no. 2, 255–268.[MR]
- Gordon F. Royle and Cheryl E. Praeger, Constructing the vertex-transitive graphs of order 24, J. Symbolic Comput. 8 (1989), no. 4, 309–326.[MR]
- Sasha Rubin, Automata presenting structures: a survey of the finite string case, Bull. Symbolic Logic 14 (2008), no. 2, 169–209.[MR]
- L. J. Rylands and D. E. Taylor, Matrix generators for the orthogonal groups, J. Symbolic Comput. 25 (1998), no. 3, 351–360.[MR]
- Robert Sandling, The modular group algebra of a central-elementary-by-abelian p-group, Arch. Math. (Basel) 52 (1989), no. 1, 22–27.[MR]
- Mark Sapir, Residual properties of 1-relator groups, preprint (2010), 19 pages.[arXiv]
- Neil Saunders, Minimal faithful permutation degrees for irreducible Coxeter groups, preprint (2008), 11 pages.[arXiv]
- Marcus du Sautoy and Luke Woodward, Nilpotent groups: explicit examples, Zeta Functions of Groups and Rings, Lecture Notes in Computer Science, vol. 1925/2008, Springer Berlin / Heidelberg, 2008, pp. 21–68.
- Mohamed Sayed, Nested symmetric representation of elements of the Suzuki chain groups, Int. J. Math. Math. Sci. 2003 (2003), no. 62, 3931–3948.[MR]
- Mohamed Sayed, Coset enumeration of groups generated by symmetric sets of involutions, Int. J. Math. Math. Sci. (2005), no. 23, 3739–3750.[MR]
- Mohamed Sayed, Double-coset enumeration algorithm for symmetrically generated groups, Int. J. Math. Math. Sci. (2005), no. 5, 699–715.[MR]
- Mohamed Sayed, Combinatorial method in the coset enumeration of symmetrically generated groups. II. Monomial modular representations, Int. J. Algebra 1 (2007), no. 9-12, 505–518.[MR/doi]
- Mohamed Sayed, Combinatorial method in the coset enumeration of symmetrically generated groups, Int. J. Comput. Math. 85 (2008), no. 7, 993–1001.[MR]
- Travis Schedler, Hochschild homology of preprojective algebras over the integers, preprint (2007), 103 pages.[arXiv]
- Csaba Schneider, Some results on the Derived Series of Finite p-groups, PhD Thesis, Australian National University, 1999.
- Csaba Schneider, Groups of prime-power order with a small second derived quotient, J. Algebra 266 (2003), no. 2, 539–551.[MR]
- Csaba Schneider, Small derived quotients in finite p-groups, Publ. Math. Debrecen 69 (2006), no. 3, 373–378.[MR]
- Gerhard J. A. Schneider, The vertices of the simple modules of M12 over a field of characteristic 2, J. Algebra 83 (1983), no. 1, 189–200.[MR]
- Gerhard J. A. Schneider, PSL(3,4) in characteristic 3, Comm. Algebra 15 (1987), no. 8, 1543–1547.[MR]
- Gerhard J. A. Schneider, Computing with endomorphism rings of modular representations, J. Symbolic Comput. 9 (1990), no. 5-6, 607–636.[MR]
- Gerhard J. A. Schneider, The structure of the projective indecomposable modules of the Suzuki group Sz(8) in characteristic 2, Math. Comp. 60 (1993), no. 202, 779–786, S29–S32.[MR]
- U. Schoenwaelder, Finite groups with a Sylow 2-subgroup of type M24. I, II, J. Algebra 28 (1974), 20–45; ibid. 28 (1974), 46–56.[MR]
- Ákos Seress, An introduction to computational group theory, Notices Amer. Math. Soc. 44 (1997), no. 6, 671–679.[MR]
- Ákos Seress, Nearly linear time algorithms for permutation groups: an interplay between theory and practice, Acta Appl. Math. 52 (1998), no. 1-3, 183–207.[MR]
- Ákos Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics, vol. 152, Cambridge University Press, Cambridge, 2003, pp. x+264.[MR]
- Ákos Seress, A unified approach to computations with permutation and matrix groups, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 245–258.[MR]
- Gary J. Sherman, Thomas J. Tucker, and Mark E. Walker, How Hamiltonian can a finite group be?, Arch. Math. (Basel) 57 (1991), no. 1, 1–5.[MR]
- Jian-Yi Shi, Congruence classes of presentations for the complex reflection groups G(m, 1, n) and G(m, m, n), Indag. Math. (N.S.) 16 (2005), no. 2, 267–288.
- Charles C. Sims, Computing with subgroups of automorphism groups of finite groups, in ISSAC '97: Proceedings of the 1997 international symposium on Symbolic and algebraic computation, ACM Press, New York, NY, USA, 1997, pp. 400–403.[doi]
- Michael C. Slattery, Computing character degrees in p-groups, J. Symbolic Comput. 2 (1986), no. 1, 51–58.[MR]
- Michael C. Slattery, Character degrees of finite p-groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 89–92.[MR]
- Michael C. Slattery, Character degrees and derived length in p-groups, Glasgow Math. J. 30 (1988), no. 2, 221–230.[MR]
- Michael C. Slattery, Computing double cosets in soluble groups, J. Symbolic Comput. 31 (2001), no. 1-2, 179–192.[MR]
- Michael C. Slattery, Generation of groups of square-free order, J. Symbolic Comput. 42 (2007), no. 6, 668–677.[MR]
- Michael C. Slattery, Character degrees of normally monomial maximal class 5-groups, Contemporary Mathematics 524 (2010), 153–159.
- B. de Smit and H. W. Lenstra, Jr., Linearly equivalent actions of solvable groups, J. Algebra 228 (2000), no. 1, 270–285.[MR]
- Leonard H. Soicher, A new uniqueness proof for the Held group, Bull. London Math. Soc. 23 (1991), no. 3, 235–238.[MR]
- Leonard H. Soicher, Computing with graphs and groups, Topics in algebraic graph theory, Encyclopedia of Mathematics and its Applications, vol. 102, Cambridge University Press, Cambridge, 2004, pp. 250–266.[MR]
- Bernd Souvignier, Decomposing homogeneous modules of finite groups in characteristic zero, J. Algebra 322 (2009), no. 3, 948–956.
- Britta Späth, The McKay conjecture for exceptional groups and odd primes, Math. Z. Online first (2008), 25.
- Pablo Spiga, CI-property of elementary abelian 3-groups, Discrete Math. 309 (2009), no. 10, 3393–3398.[MR]
- P. Christopher Staecker, Computing twisted conjugacy classes in free groups using nilpotent quotients, preprint (2007), 14 pages.[arXiv]
- P. Christopher Staecker, Remnant properties in nielsen coincidence theory, preprint (2008), 16 pages.[arXiv]
- R. Staszewski, H. Völklein, and G. Wiesend, Counting generating systems of a finite group from given conjugacy classes, Computational aspects of algebraic curves, Lecture Notes Ser. Comput., vol. 13, World Sci. Publ., Hackensack, NJ, 2005, pp. 256–263.[MR]
- Mark Stather, Constructive Sylow theorems for the classical groups, J. Algebra 316 (2007), no. 2, 536–559.[MR]
- Alexander Stein, On Bruck loops of 2-power exponent, II, preprint (2009), 30 pages.[arXiv]
- John R. Stembridge, Explicit matrices for irreducible representations of Weyl groups, Represent. Theory 8 (2004), 267–289 (electronic).[MR]
- David I. Stewart, The reductive subgroups of G2, J. Group Theory 13 (2010), no. 1, 117–130.[doi/arXiv]
- Polina Strogova, Finding a finite group presentation using rewriting, Symbolic Rewriting Techniques (Ascona, 1995), Progr. Comput. Sci. Appl. Logic, vol. 15, Birkhäuser, Basel, 1998, pp. 267–276.[MR]
- G. Stroth, Nonspherical spheres, Groups, combinatorics &geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 165, Cambridge Univ. Press, Cambridge, 1992, pp. 151–158.[MR]
- G. Stroth and R. Weiss, A new construction of the group Ru, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 162, 237–243.[MR]
- G. Stroth and R. Weiss, Groups with the BNB-property, Geom. Dedicata 35 (1990), no. 1-3, 251–282.[MR]
- Gernot Stroth, Algorithms in pure mathematics, Computational discrete mathematics, Lecture Notes in Comput. Sci., vol. 2122, Springer, Berlin, 2001, pp. 148–158.[MR]
- Gernot Stroth and Richard Weiss, Modified Steinberg relations for the group J4, Geom. Dedicata 25 (1988), no. 1-3, 513–525.[MR]
- Ibrahim A. I. Suleiman and Robert A. Wilson, Standard generators for J3, Experiment. Math. 4 (1995), no. 1, 11–18.[MR]
- Peter Symonds, Cyclic group actions on polynomial rings, Bull. Lond. Math. Soc. 39 (2007), no. 2, 181–188.[MR/link]
- M. Chiara Tamburini and M. Vsemirnov, Irreducible (2,3,7)-subgroups of PGLn(F), n ≤ 7, J. Algebra 300 (2006), no. 1, 339–362.[MR]
- M. Chiara Tamburini and M. A. Vsemirnov, Irreducible (237)-subgroups of n[less-than-or-equals slant]7 ii, Journal of Algebra, to appear (2009).[doi]
- Fritz Grunewald Tatiana Bandman, Shelly Garion, On the surjectivity of engel words on psl(2,q), preprint (2010), 1–22.[arXiv]
- Stephen Tawn, A presentation for the pure Hilden group, preprint (2009), 26 pages.[arXiv]
- Pham Huu Tiep and A. E. Zalesskii, Some aspects of finite linear groups: a survey, J. Math. Sci. (New York) 100 (2000), no. 1, 1893–1914.[MR]
- W. R. Unger, Computing the character table of a finite group, J. Symbolic Comput. 41 (2006), no. 8, 847–862.[MR]
- W. R. Unger, Computing the soluble radical of a permutation group, J. Algebra 300 (2006), no. 1, 305–315.[MR]
- Michael Vaughan-Lee, The restricted Burnside problem, London Mathematical Society Monographs. New Series, vol. 8, The Clarendon Press Oxford University Press, New York, 1993, pp. xiv+256.[MR]
- Michael Vaughan-Lee, Engel-4 groups of exponent 5, Proc. London Math. Soc. (3) 74 (1997), no. 2, 306–334.[MR]
- Michael Vaughan-Lee, On 4-Engel groups, LMS J. Comput. Math. 10 (2007), 341–353 (electronic).[MR]
- N. A. Vavilov, V. I. Mysovskikh, and Yu. G. Teterin, Computational group theory in St. Petersburg, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 236 (1997), no. Vopr. Teor. Predst. Algebr i Grupp. 5, 42–49, 215–216.[MR]
- John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469–491.[MR/link]
- Christopher Voll, Normal subgroup growth in free class-2-nilpotent groups, Math. Ann. 332 (2005), no. 1, 67–79.[MR]
- M. Vsemirnov, Hurwitz groups of intermediate rank, LMS J. Comput. Math. 7 (2004), 300–336 (electronic).[MR]
- M. Vsemirnov, Groups G2(p) as quotients of (2,3,7;2p), Transform. Groups 11 (2006), no. 2, 295–304.[MR]
- M. A. Vsemirnov, Is the group SL(6,Z) (2,3)-generated?, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), no. Vopr. Teor. Predst. Algebr. i Grupp. 13, 101–130, 272.[MR]
- M. A. Vsemirnov, On the (2,3)-generation of matrix groups over the ring of integers, Algebra i Analiz 19 (2007), no. 6, 22–58.[MR]
- Maxim Vsemirnov, The group GL(6,Z) is (2,3)-generated, J. Group Theory 10 (2007), no. 4, 425–430.[MR]
- Katsushi Waki, Calculation of direct summands of FG-modules, Sci. Rep. Hirosaki Univ. 44 (1997), no. 2, 193–200.[MR]
- Richard Weiss, A characterization of the group \hat M12, in Proceedings of the Conference on Groups and Geometry, Part B (Madison, Wis., 1985), Algebras, Groups and Geometries, vol. 2,4, 1985, pp. 555–563.[MR]
- Richard Weiss, A geometric characterization of the groups M12, He and Ru, J. Math. Soc. Japan 43 (1991), no. 4, 795–814.[MR]
- Richard Weiss, A geometric characterization of the groups McL and Co3, J. London Math. Soc. (2) 44 (1991), no. 2, 261–269.[MR]
- Uri Weiss, On Shephard groups with large triangles, preprint (2009), 30 pages.[arXiv]
- Michael Weller, Konstruktion der konjugiertenklassen von untergruppen mit kleinem index in p-gruppen, PhD Thesis, Universität-Gesamthochschule-Essen, 1993.
- Michael Weller, Construction of classes of subgroups of small index in p-groups, Arch. Math. (Basel) 68 (1997), no. 2, 89–99.[MR]
- Michael Weller, Construction of large permutation representations for matrix groups II, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 463–488.[MR]
- Michael Weller, Gerhard O. Michler, and Andrea Previtali, Thompson's sporadic group uniquely determined by the centralizer of a 2-central involution, J. Algebra 298 (2006), no. 2, 371–459.[MR]
- Stewart Wilcox, Reduction of the Hall-Paige conjecture to sporadic simple groups, J. Algebra 321 (2009), no. 5, 1407–1428.[MR]
- Mark Wildon, Character values and decomposition matrices of symmetric groups, J. Algebra 319 (2008), no. 8, 3382–3397.[MR/arXiv]
- Mark Wildon, Multiplicity-free representations of symmetric groups, J. Pure Appl. Algebra 213 (2009), no. 7, 1464–1477.[MR]
- Gerald Williams, The aspherical Cavicchioli-Hegenbarth-Pepovš generalized Fibonacci groups, J. Group Theory 12 (2009), no. 1, 139–149.[MR/doi]
- J. B. Wilson, Finding central decompositions of p-groups, J. Group Theory 12 (2009), 813–830.[doi]
- Robert A. Wilson, New computations in the monster, Preprint (2006), 11.
- Pawel Wocjan, Martin Rötteler, Dominik Janzing, and Thomas Beth, Universal simulation of Hamiltonians using a finite set of control operations, Quantum Inf. Comput. 2 (2002), no. 2, 133–150.[MR]
- Martin Wursthorn, Isomorphisms of modular group algebras: an algorithm and its application to groups of order 26, J. Symbolic Comput. 15 (1993), no. 2, 211–227.[MR]
- Şükrü Yalçinkaya, Black box groups, Turk. J. Math. 31 (2007), no. Suppl, 171–210.
- Ivan Yudin, Presentation for parabolic subgroups of GLn(F2), preprint (2010), 11 pages.[arXiv]
- Reza Zomorrodian, On a theorem of supersoluble automorphism groups, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2711–2713 (electronic).[MR]