Field Theory
- Alejandro Adem, Wenfeng Gao, Dikran B. Karagueuzian, and Ján Mináč, Field theory and the cohomology of some Galois groups, J. Algebra 235 (2001), no. 2, 608–635.[MR]
- Maximilian Albert and Annette Maier, Additive polynomials for finite groups of Lie type, preprint (2009), 59 pages.[arXiv]
- Bill Allombert, An efficient algorithm for the computation of Galois automorphisms, Math. Comp. 73 (2004), no. 245, 359–375 (electronic).[MR]
- R. D. Baker, G. L. Ebert, K. H. Leung, and Q. Xiang, A trace conjecture and flag-transitive affine planes, J. Combin. Theory Ser. A 95 (2001), no. 1, 158–168.[MR]
- Simeon Ball, Gary Ebert, and Michel Lavrauw, A geometric construction of finite semifields, J. Algebra 311 (2007), no. 1, 117–129.[MR]
- Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson, Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers, IACR (2007), 14 pages.[eprint]
- Cristina Bertone, Guillaume Chéze, and André Galligo, Modular Las Vegas algorithms for polynomial absolute factorization, J. Symbolic Comput. 45 (2010), no. 12, 1280–1295.[arXiv]
- Thomas Beth, Jörn Müller-Quade, and Rainer Steinwandt, Computing restrictions of ideals in finitely generated k-algebras by means of Buchberger's algorithm, J. Symbolic Comput. 41 (2006), no. 3-4, 372–380.[MR]
- Johan Bosman, A polynomial with Galois group SL2( F16), LMS J. Comput. Math. 10 (2007), 1461–1570 (electronic).[MR/arXiv]
- A. Bostan, G. Lecerf, B. Salvy, É. Schost, and B. Wiebelt, Complexity issues in bivariate polynomial factorization, in ISSAC '04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, NY, USA, 2004, pp. 42–49.[doi]
- Nigel Boston, Reducing the Fontaine-Mazur conjecture to group theory, Progress in Galois theory, Dev. Math., vol. 12, Springer, New York, 2005, pp. 39–50.[MR]
- Nigel Boston and Charles Leedham-Green, Explicit computation of Galois p-groups unramified at p, J. Algebra 256 (2002), no. 2, 402–413.[MR]
- Nigel Boston and Harris Nover, Computing pro-p-Galois groups, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 1–10.[MR]
- Nigel Boston and David Perry, Maximal 2-extensions with restricted ramification, J. Algebra 232 (2000), no. 2, 664–672.[MR]
- Guillaume Chèze and Grégoire Lecerf, Lifting and recombination techniques for absolute factorization, J. Complexity 23 (2007), no. 3, 380–420.[MR]
- Antoine Colin, Relative resolvents and partition tables in Galois group computations, in Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York, 1997, pp. 78–84 (electronic).[MR]
- Robert S. Coulter and Marie Henderson, Commutative presemifields and semifields, Adv. Math. 217 (2008), no. 1, 282–304.[MR]
- Robert S. Coulter, Marie Henderson, and Pamela Kosick, Planar polynomials for commutative semifields with specified nuclei, Des. Codes Cryptogr. 44 (2007), no. 1-3, 275–286.[MR]
- Lassina Dembélé, A non-solvable Galois extension of Q ramified at 2 only, C. R. Math. Acad. Sci. Paris 347 (2009), no. 3-4, 111–116.[MR/doi]
- Michael Dettweiler, Galois realizations of classical groups and the middle convolution, preprint (2006), 94 pages.[arXiv]
- G. L. Ebert, O. Polverino, G. Marino, and R. Trombetti, Semifields in class F4(a), Electron. J. Combin. 16 (2009), no. 1, 20.[MR]
- Gary L. Ebert, Giuseppe Marino, Olga Polverino, and Rocco Trombetti, On the multiplication of some semifields of order q6, Finite Fields Appl. 15 (2009), no. 2, 160–173.[MR]
- Pilar Fernandez-Ferreiros and M. Angeles Gomez-Molleda, Deciding the nilpotency of the Galois group by computing elements in the centre, Math. Comp. 73 (2004), no. 248, 2043–2060 (electronic).[MR]
- Akpodigha Filatei, Xin Li, Marc Moreno Maza, and Éric Schost, Implementation techniques for fast polynomial arithmetic in a high-level programming environment, in ISSAC '06: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, NY, USA, 2006, pp. 93–100.[doi]
- Katharina Geißler and Jürgen Klüners, Galois group computation for rational polynomials, J. Symbolic Comput. 30 (2000), no. 6, 653–674.[MR]
- Louis Granboulan, Construction d'une extension régulière de Q(T) de groupe de Galois M24, Experiment. Math. 5 (1996), no. 1, 3–14.[MR]
- Farshid Hajir, On the Galois group of generalized Laguerre polynomials, J. Théor. Nombres Bordeaux 17 (2005), no. 2, 517–525.[MR]
- Farshid Hajir, Tame pro-p Galois groups: A survey of recent work, Arithmetic, Geometry and Coding Theory (AGCT 2003), Sémin. Congr., vol. 11, Soc. Math. France, Paris, 2005, pp. 111–124.[MR]
- Emmanuel Hallouin, Study and computation of a Hurwitz space and totally real PSL2(F8)-extensions of Q, J. Algebra 292 (2005), no. 1, 259–281.[MR]
- G. Hanrot and F. Morain, Solvability by radicals from an algorithmic point of view, in Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 175–182 (electronic).[MR]
- Jill Hanson and Michael J. Kallaher, Finite Bol quasifields are nearfields, Utilitas Math. 37 (1990), 45–64.[MR]
- K. J. Horadam and D. G. Farmer, Bundles, presemifields and nonlinear functions, Des. Codes Cryptogr. 49 (2008), no. 1-3, 79–94.[MR]
- Norman L. Johnson, Giuseppe Marino, Olga Polverino, and Rocco Trombetti, On a generalization of cyclic semifields, J. Algebraic Combin. 29 (2009), no. 1, 1–34.[MR/doi]
- Florent Jouve, Emmanuel Kowalski, and David Zywina, An explicit integral polynomial whose splitting field has galois group W(E8), J. Théor. Nombres Bordeaux 20 (2008), no. 3, 761–782.[MR]
- Kiran S. Kedlaya, Search techniques for root-unitary polynomials, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 71–81.[MR/arXiv]
- Gregor Kemper and Gunter Malle, Invariant fields of finite irreducible reflection groups, Math. Ann. 315 (1999), no. 4, 569–586.[MR]
- Sara Khodadad and Michael Monagan, Fast rational function reconstruction, ISSAC 2006, ACM, New York, 2006, pp. 184–190.[MR]
- Masanari Kida, Guénaël Renault, and Kazuhiro Yokoyama, Quintic polynomials of Hashimoto-Tsunogai, Brumer and Kummer, Int. J. Number Theory 5 (2009), no. 4, 555–571.[MR/doi]
- Jürgen Klüners and Gunter Malle, Explicit Galois realization of transitive groups of degree up to 15, J. Symbolic Comput. 30 (2000), no. 6, 675–716.[MR]
- Aristides Kontogeorgis, The group of automorphisms of cyclic extensions of rational function fields, J. Algebra 216 (1999), no. 2, 665–706.[MR]
- Grégoire Lecerf, New recombination algorithms for bivariate polynomial factorization based on Hensel lifting, Appl. Algebra Engrg. Comm. Comput. 21 (2010), no. 2, 151–176.[MR/doi]
- Hsin-Chao Liao and Richard J. Fateman, Evaluation of the heuristic polynomial GCD, in ISSAC '95: Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, NY, USA, 1995, pp. 240–247.[doi]
- Giuseppe Marino and Rocco Trombetti, A new semifield of order 210, Discrete Math. 310 (2010), no. 22, 3108–3113.
- Michael Monagan, Maximal quotient rational reconstruction: An almost optimal algorithm for rational reconstruction, ISSAC 2004, ACM, New York, 2004, pp. 243–249.[MR]
- Jörn Müller-Quade and Rainer Steinwandt, Basic algorithms for rational function fields, J. Symbolic Comput. 27 (1999), no. 2, 143–170.[MR]
- Jörn Müller-Quade and Rainer Steinwandt, Gröbner bases applied to finitely generated field extensions, J. Symbolic Comput. 30 (2000), no. 4, 469–490.[MR]
- Jörn Müller-Quade and Rainer Steinwandt, Recognizing simple subextensions of purely transcendental field extensions, Appl. Algebra Engrg. Comm. Comput. 11 (2000), no. 1, 35–41.[MR]
- B. V. Petrenko, On the product of two primitive elements of maximal subfields of a finite field, J. Pure Appl. Algebra 178 (2003), no. 3, 297–306.[MR]
- B. V. Petrenko, On the sum of two primitive elements of maximal subfields of a finite field, Finite Fields Appl. 9 (2003), no. 1, 102–116.[MR]
- Renault Guénaél Renault, Computation of the splitting field of a dihedral polynomial, in ISSAC '06: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, ACM Press, New York, NY, USA, 2006, pp. 290–297.[doi]
- I. F. Rúa, Elías F. Combarro, and J. Ranilla, Classification of semifields of order 64, J. Algebra 322 (2009), no. 11, 4011–4029.[MR/doi]
- Fatima K. Abu Salem and Rawan N. Soudah, An empirical study of cache-oblivious polygon indecomposability testing, Computing 88 (2010), no. 8, 55–78.[doi]
- Núria Vila Sara Arias-de-Reyna, Tame Galois realizations of GSp4(Fl) over Q, preprint (2009), 29 pages.[arXiv]
- Ruth Schwingel, The tensor product of polynomials, Experiment. Math. 8 (1999), no. 4, 395–397.[MR]
- Romyar T. Sharifi, On Galois groups of unramified pro-p extensions, Math. Ann. 342 (2008), no. 2, 297–308.[MR]
- Kirby C. Smith and Leon van Wyk, A concrete matrix field description of some Galois fields, Linear Algebra Appl. 403 (2005), 159–164.[MR]
- Leonard Soicher and John McKay, Computing Galois groups over the rationals, J. Number Theory 20 (1985), no. 3, 273–281.[MR]
- Blair K. Spearman, Kenneth S. Williams, and Qiduan Yang, The 2-power degree subfields of the splitting fields of polynomials with Frobenius Galois groups, Comm. Algebra 31 (2003), no. 10, 4745–4763.[MR]
- Allan Steel, A new scheme for computing with algebraically closed fields, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 491–505.[MR]
- Allan K. Steel, Computing with algebraically closed fields, J. Symbolic Comput. 45 (2010), no. 3, 342–372.
- Rainer Steinwandt, On computing a separating transcendence basis, SIGSAM Bulletin 34 (2000), no. 4.
- Rainer Steinwandt and Jörn Müller-Quade, Freeness, linear disjointness, and implicitization—a classical approach, Beiträge Algebra Geom. 41 (2000), no. 1, 57–66.[MR]