Coding Theory
- Taher Abualrub, Ali Ghrayeb, Nuh Aydin, and Irfan Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inform. Theory 56 (2010), no. 5, 2081–2090.[doi/arXiv]
- T. L. Alderson and Keith E. Mellinger, 2-dimensional optical orthogonal codes from Singer groups, Discrete Appl. Math. 157 (2009), no. 14, 3008–3019.[MR/doi]
- Salah A. Aly, Asymmetric and symmetric subsystem BCH codes and beyond, preprint (2008), 10 pages.[arXiv]
- Salah A. Aly, Andreas Klappenecker, and Kiran Sarvepalli Pradeep, Subsystem codes, IEEE International Symposium on Information Theory, Toronto, Canada, 2008 (ISIT 08), IEEE, New York, 2008, pp. 369–373.[doi/arXiv]
- Maria Carmen V. Amarra and Fidel R. Nemenzo, On: "(1 – u)-cyclic codes over Fpk+u Fpk", Appl. Math. Lett. 21 (2008), no. 11, 1129–1133.[MR]
- Makoto Araya and Masaaki Harada, MDS codes over F9 related to the ternary Golay code, Discrete Math. 282 (2004), no. 1-3, 233–237.[MR]
- Makoto Araya, Masaaki Harada, and Hadi Kharaghani, Some Hadamard matrices of order 32 and their binary codes, J. Combin. Des. 12 (2004), no. 2, 142–146.[MR]
- Marc A. Armand, List decoding of generalized Reed-Solomon codes over commutative rings, IEEE Trans. Inform. Theory 51 (2005), no. 1, 411–419.[MR]
- Tsvetan Asamov and Nuh Aydin, A search algorithm for linear codes: Progressive dimension growth, Des. Codes Cryptogr. 45 (2007), no. 2, 213–217.[MR]
- E. F. Assmus, Jr., The coding theory of finite geometries and designs, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Rome, 1988), Lecture Notes in Comput. Sci., vol. 357, Springer, Berlin, 1989, pp. 1–6.[MR]
- E. F. Assmus, Jr. and Arthur A. Drisko, Binary codes of odd-order nets, Des. Codes Cryptogr. 17 (1999), no. 1-3, 15–36.[MR]
- E. F. Assmus, Jr. and J. D. Key, Hadamard matrices and their designs: A coding-theoretic approach, Trans. Amer. Math. Soc. 330 (1992), no. 1, 269–293.[MR]
- E. F. Assmus, Jr. and J. D. Key, Designs and codes: an update, Des. Codes Cryptogr. 9 (1996), no. 1, 7–27.[MR]
- E. F. Assmus, Jr. and J. D. Key, Polynomial codes and finite geometries, Handbook of Coding Theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 1269–1343.[MR]
- Daniel Augot and Lancelot Pecquet, A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2605–2614.[MR]
- Nuh Aydin, Tsvetan Asamov, and T. Aaron Gulliver, Some open problems on quasi-twisted and related code constructions and good quaternary codes, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 856-860.[doi]
- Christine Bachoc, On harmonic weight enumerators of binary codes, Des. Codes Cryptogr. 18 (1999), no. 1-3, 11–28.[MR]
- Christine Bachoc, Harmonic weight enumerators of nonbinary codes and MacWilliams identities, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 1–23.[MR]
- Christine Bachoc and Philippe Gaborit, On extremal additive F4 codes of length 10 to 18, J. Théor. Nombres Bordeaux 12 (2000), no. 2, 255–271.[MR]
- Christine Bachoc and Philippe Gaborit, On extremal additive F4 codes of length 10 to 18, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001, pp. 10 pp. (electronic).[MR]
- Christine Bachoc and Philippe Gaborit, Designs and self-dual codes with long shadows, J. Combin. Theory Ser. A 105 (2004), no. 1, 15–34.[MR]
- Christine Bachoc, T. Aaron Gulliver, and Masaaki Harada, Isodual codes over Z2k and isodual lattices, J. Algebraic Combin. 12 (2000), no. 3, 223–240.[MR]
- Robert F. Bailey and John N. Bray, Decoding the Mathieu group M12, Adv. Math. Commun. 1 (2007), no. 4, 477–487.[MR]
- R. D. Baker and K. L. Wantz, Unitals in the code of the Hughes plane, J. Combin. Des. 12 (2004), no. 1, 35–38.[MR]
- Eiichi Bannai, Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1194–1205.[MR]
- Lynn M. Batten, Michelle Davidson, and Leo Storme, An analysis of Chen's construction of minimum-distance five codes, IEEE Trans. Inform. Theory 46 (2000), no. 2, 505–511.[MR]
- Peter Beelen, The order bound for general algebraic geometric codes, Finite Fields Appl. 13 (2007), no. 3, 665–680.[MR]
- T. P. Berger, Quasi-cyclic Goppa codes, in IEEE International Symposium on Information Theory, ISIT 2000, 2000.[doi]
- Thierry P. Berger, Goppa and related codes invariant under a prescribed permutation, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2628–2633.[MR]
- Thomas Beth, Christopher Charnes, Markus Grassl, Gernot Alber, Aldo Delgado, and Michael Mussinger, A new class of designs which protect against quantum jumps, Des. Codes Cryptogr. 29 (2003), no. 1-3, 51–70.[MR]
- Koichi Betsumiya, Minimum Lee weights of type II codes over F2r, Discrete Math. 308 (2008), no. 14, 3018–3022.[MR]
- Koichi Betsumiya, T. Aaron Gulliver, and Masaaki Harada, Binary optimal linear rate 1/2 codes, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Honolulu, HI, 1999), Lecture Notes in Comput. Sci., vol. 1719, Springer, Berlin, 1999, pp. 462–471.[MR]
- Koichi Betsumiya, T. Aaron Gulliver, and Masaaki Harada, Extremal self-dual codes over F2×F2, Des. Codes Cryptogr. 28 (2003), no. 2, 171–186.[MR]
- Koichi Betsumiya, T. Aaron Gulliver, Masaaki Harada, and Akihiro Munemasa, On type II codes over F4, IEEE Trans. Inform. Theory 47 (2001), no. 6, 2242–2248.[MR]
- Koichi Betsumiya and Masaaki Harada, Binary optimal odd formally self-dual codes, Des. Codes Cryptogr. 23 (2001), no. 1, 11–21.[MR]
- Koichi Betsumiya and Masaaki Harada, Classification of formally self-dual even codes of lengths up to 16, Des. Codes Cryptogr. 23 (2001), no. 3, 325–332.[MR]
- Koichi Betsumiya and Masaaki Harada, Formally self-dual codes related to Type II codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 81–88.[MR]
- Daniel Bierbrauer, Codes auf hyperelliptischen und trigonalen kurven, PhD Thesis, Ruprecht-Karls-Universität Heidelberg, 2006.
- Ezio Biglieri, John K. Karlof, and Emanuele Viterbo, Representing group codes as permutation codes, IEEE Trans. Inform. Theory 45 (1999), no. 6, 2204–2207.[MR]
- Grégoire Bommier and Francis Blanchet, Binary quasi-cyclic Goppa codes, Des. Codes Cryptogr. 20 (2000), no. 2, 107–124.[MR]
- A. Bonnecaze, P. Solé, and P. Udaya, Tricolore 3-designs in type III codes, Discrete Math. 241 (2001), no. 1-3, 129–138.[MR]
- A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over F2+uF2, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1250–1255.[MR]
- Alexis Bonnecaze, Anne Desideri Bracco, Steven T. Dougherty, Luz R. Nochefranca, and Patrick Solé, Cubic self-dual binary codes, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2253–2259.[MR]
- Alexis Bonnecaze, Bernard Mourrain, and Patrick Solé, Jacobi polynomials, type II codes, and designs, Des. Codes Cryptogr. 16 (1999), no. 3, 215–234.[MR]
- J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà, and M. Villanueva, Z2 Z4-linear codes: generator matrices and duality, Des. Codes Cryptogr. 54 (2010), no. 2, 167–179.[MR/doi/arXiv]
- Nigel Boston, The minimum distance of the [137,69] binary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282.[MR]
- Nigel Boston, Bounding minimum distances of cyclic codes using algebraic geometry, International Workshop on Coding and Cryptography (Paris, 2001), Electron. Notes Discrete Math., vol. 6, Elsevier, Amsterdam, 2001, pp. 10 pp. (electronic).[MR]
- Nigel Boston and Gary McGuire, The weight distributions of cyclic codes with two zeros and zeta functions, J. Symbolic Comput. 45 (2010), no. 7, 723–733.[MR/doi]
- D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 379–389.[MR/arXiv]
- Delphine Boucher, Patrick Solé, and Felix Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273–292.[MR]
- Delphine Boucher and Felix Ulmer, Coding with skew polynomial rings, J. Symbolic Comput. 44 (2009), no. 12, 1644–1656.[MR/doi]
- Iliya Bouyukliev and Valentin Bakoev, A method for efficiently computing the number of codewords of fixed weights in linear codes, Discrete Appl. Math. 156 (2008), no. 15, 2986–3004.[MR]
- Iliya Bouyukliev, Markus Grassl, and Zlatko Varbanov, New bounds for n4(k,d) and classification of some optimal codes over GF(4), Discrete Math. 281 (2004), no. 1-3, 43–66.[MR]
- Iliya Bouyukliev and Juriaan Simonis, Some new results for optimal ternary linear codes, IEEE Trans. Inform. Theory 48 (2002), no. 4, 981–985.[MR]
- Stefka Bouyuklieva and Masaaki Harada, Extremal self-dual [50, 25, 10] codes with automorphisms of order 3 and quasi-symmetric 2-(49,9,6) designs, Des. Codes Cryptogr. 28 (2003), no. 2, 163–169.[MR]
- Stefka Bouyuklieva, E. A. O'Brien, and Wolfgang Willems, The automorphism group of a binary self-dual doubly even [72,36,16] code is solvable, IEEE Trans. Inform. Theory 52 (2006), no. 9, 4244–4248.[MR]
- Anne Desideri Bracco, Ann Marie Natividad, and Patrick Solé, On quintic quasi-cyclic codes, Discrete Appl. Math. 156 (2008), no. 18, 3362–3375.[MR/doi]
- John Brevik and Michael E. O'Sullivan, The performance of LDPC codes with large girth, Preprint (2005), 13 pages.
- Thomas Britz and Keisuke Shiromoto, Designs from subcode supports of linear codes, Des. Codes Cryptogr. 46 (2008), no. 2, 175–189.[MR]
- Stanislav Bulygin and Ruud Pellikaan, Bounded distance decoding of linear error-correcting codes with Gröbner bases, J. Symb. Comput. 44 (2009), no. 12, 1626–1643.
- Eimear Byrne, Marcus Greferath, and Michael E. O'Sullivan, The linear programming bound for codes over finite Frobenius rings, Des. Codes Cryptogr. 42 (2007), no. 3, 289–301.[MR]
- A. Robert Calderbank, Eric M. Rains, P. W. Shor, and Neil J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory 44 (1998), no. 4, 1369–1387.[MR]
- A. R. Calderbank and N. J. A. Sloane, Double circulant codes over Z4 and even unimodular lattices, J. Algebraic Combin. 6 (1997), no. 2, 119–131.[MR]
- Neil J. Calkin, Jennifer D. Key, and Marialuisa J. de Resmini, Minimum weight and dimension formulas for some geometric codes, Des. Codes Cryptogr. 17 (1999), no. 1-3, 105–120.[MR]
- Jean-Claude Carlach and Ayoub Otmani, A systematic construction of self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 11, 3005–3009.[MR]
- L. L. Carpenter and J. D. Key, Reed-Muller codes and Hadamard designs from ovals, J. Combin. Math. Combin. Comput. 22 (1996), 79–85.[MR]
- Robin Chapman, Steven T. Dougherty, Philippe Gaborit, and Patrick Solé, 2-modular lattices from ternary codes, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 73–85.[MR]
- Lionel Chaussade, Pierre Loidreau, and Felix Ulmer, Skew codes of prescribed distance or rank, Des. Codes Cryptogr. Online first (2008), 18.
- Chien-Yu Chen and Iwan M. Duursma, Geometric Reed-Solomon codes of length 64 and 65 over F8, IEEE Trans. Inform. Theory 49 (2003), no. 5, 1351–1353.[MR]
- Ying Cheng and N. J. A. Sloane, Codes from symmetry groups, and a [32,17,8] code, SIAM J. Discrete Math. 2 (1989), no. 1, 28–37.[MR]
- Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Cryptogr. 42 (2007), no. 1, 93–101.[MR]
- Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Permutation groups and binary self-orthogonal codes, J. Algebra 309 (2007), no. 2, 610–621.[MR]
- Naoki Chigira, Masaaki Harada, and Masaaki Kitazume, Some self-dual codes invariant under the Hall-Janko group, J. Algebra 316 (2007), no. 2, 578–590.[MR]
- K. L. Clark and J. D. Key, Geometric codes over fields of odd prime power order, in Proceedings of the Thirtieth Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), vol. 137, 1999, pp. 177–186.[MR]
- K. L. Clark, J. D. Key, and M. J. de Resmini, Dual codes of translation planes, European J. Combin. 23 (2002), no. 5, 529–538.[MR]
- Marston Conder and John McKay, Markings of the Golay code, New Zealand J. Math. 25 (1996), no. 2, 133–139.[MR]
- A. Cossidente and A. Sonnino, A geometric construction of a [110,5,90]9-linear code admitting the Mathieu group M11, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5251-5252.[doi]
- Antonio Cossidente and Alessandro Siciliano, A geometric construction of an optimal [67,9,30] binary code, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1187–1189.[MR]
- Andrew W. Cross, David P. DiVincenzo, and Barbara M. Terhal, A comparative code study for quantum fault-tolerance, preprint (2007), 33 pages.[arXiv]
- Daniel B. Dalan, New extremal binary [44,22,8] codes, IEEE Trans. Inform. Theory 49 (2003), no. 3, 747–748.[MR]
- Daniel B. Dalan, New extremal type I codes of lengths 40, 42, and 44, Des. Codes Cryptogr. 30 (2003), no. 2, 151–157.[MR]
- Danyo Danev and Jonas Olsson, On a sequence of cyclic codes with minimum distance six, IEEE Trans. Inform. Theory 46 (2000), no. 2, 673–674.[MR]
- Lars Eirik Danielsen and Matthew G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12, J. Combin. Theory Ser. A 113 (2006), no. 7, 1351–1367.[MR]
- M. R. Darafsheh, A. Iranmanesh, and R. Kahkeshani, Some designs and codes invariant under the groups S9 and A8, Des. Codes Cryptogr. 51 (2009), no. 2, 211–223.[MR/doi]
- Rumen Daskalov and Markus Grassl, New cyclic and quasi-cyclic quaternary linear codes, Proceedings Fifth International Workshop on Optimal Codes and Related Topics, (OC 2007) Balchik, Bulgaria, June 2007, 2007, pp. 56-61.
- Jennifer A. Davis, Algebraic geometric codes on anticanonical surfaces, PhD Thesis, University of Nebraska, 2007.[link]
- Anne Desideri Bracco, Treillis de codes quasi-cycliques, European J. Combin. 25 (2004), no. 4, 505–516.[MR]
- M. van Dijk, S. Egner, M. Greferath, and A. Wassermann, Geometric codes over fields of odd prime power order, in IEEE International Symposium on Information Theory (ISIT), Yokohama, 2003.
- M. van Dijk, S. Egner, M. Greferath, and A. Wassermann, On binary linear [160,80,24] codes, in IEEE International Symposium on Information Theory (ISIT), Yokohama, 2003.
- Marten van Dijk, Sebastian Egner, Marcus Greferath, and Alfred Wassermann, On two doubly even self-dual binary codes of length 160 and minimum weight 24, IEEE Trans. Inform. Theory 51 (2005), no. 1, 408–411.[MR]
- Cunsheng Ding and Tor Helleseth, Generalized cyclotomic codes of length p1e1…ptet, IEEE Trans. Inform. Theory 45 (1999), no. 2, 467–474.[MR]
- Cunsheng Ding, David Kohel, and San Ling, Elementary 2-group character codes, IEEE Trans. Inform. Theory 46 (2000), no. 1, 280–284.[MR]
- Cunsheng Ding, David R. Kohel, and San Ling, Split group codes, IEEE Trans. Inform. Theory 46 (2000), no. 2, 485–495.[MR]
- Cunsheng Ding, Harald Niederreiter, and Chaoping Xing, Some new codes from algebraic curves, IEEE Trans. Inform. Theory 46 (2000), no. 7, 2638–2642.[MR]
- Peng Ding and Jennifer D. Key, Minimum-weight codewords as generators of generalized Reed-Muller codes, IEEE Trans. Inform. Theory 46 (2000), no. 6, 2152–2158.[MR]
- Peng Ding and Jennifer D. Key, Subcodes of the projective generalized Reed-Muller codes spanned by minimum-weight vectors, Des. Codes Cryptogr. 26 (2002), no. 1-3, 197–211.[MR]
- Radinka Dontcheva and Masaaki Harada, Some extremal self-dual codes with an automorphism of order 7, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 75–79.[MR]
- Steven T. Dougherty, Philippe Gaborit, Masaaki Harada, and Patrick Solé, Type II codes over F2+uF2, IEEE Trans. Inform. Theory 45 (1999), no. 1, 32–45.[MR]
- Steven T. Dougherty, T. Aaron Gulliver, and Manabu Oura, Higher weights and graded rings for binary self-dual codes, Discrete Appl. Math. 128 (2003), no. 1, 121–143.[MR]
- Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Note on the g-fold joint weight enumerators of self-dual codes over Zk, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 437–445.[MR]
- Steven T. Dougherty, Masaaki Harada, and Manabu Oura, Note on the biweight enumerators of self-dual codes over Zk, Preprint (2004), 11 pages.
- Steven T. Dougherty, Jon-Lark Kim, and Patrick Solé, Double circulant codes from two class association schemes, Adv. Math. Commun. 1 (2007), no. 1, 45–64.[MR]
- Sean V. Droms, Keith E. Mellinger, and Chris Meyer, LDPC codes generated by conics in the classical projective plane, Des. Codes Cryptogr. 40 (2006), no. 3, 343–356.[MR]
- M. Esmaeili and S. Yari, On complementary-dual quasi-cyclic codes, Finite Fields Appl. 15 (2009), no. 3, 375–386.[MR]
- M. van Eupen and P. Lisonek, Classification of some optimal ternary linear codes of small length, Designs, Codes and Cryptography 10 (1997), 63–84.
- Giorgio Faina and Massimo Giulietti, Decoding Goppa codes with Magma, Ars Combin. 61 (2001), 221–232.[MR]
- Majid Farhadi and Marc Perret, Twisting geometric codes, Finite Fields Appl. 14 (2008), no. 4, 1091–1100.[MR]
- D. G. Farmer and K. J. Horadam, Presemifield bundles over GF(p3), IEEE International Symposium on Information Theory, 2008. ISIT 2008 (2008), 2613-2616.[doi]
- Thomas Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes, Adv. Math. Commun. 3 (2009), no. 4, 363–383.[MR/doi]
- J. E. Fields, P. Gaborit, W. C. Huffman, and V. Pless, On the classification of extremal even formally self-dual codes, Des. Codes Cryptogr. 18 (1999), no. 1-3, 125–148.[MR]
- J. E. Fields, P. Gaborit, W. C. Huffman, and V. Pless, On the classification of extremal even formally self-dual codes of lengths 20 and 22, Discrete Appl. Math. 111 (2001), no. 1-2, 75–86.[MR]
- Luís R. A. Finotti, Minimal degree liftings in characteristic 2, J. Pure Appl. Algebra 207 (2006), no. 3, 631–673.[MR]
- W. Fish, J. D. Key, and E. Mwambene, Graphs, designs and codes related to the n-cube, Discrete Math. 309 (2009), no. 10, 3255–3269.[MR]
- W. Fish, J. D. Key, and E. Mwambene, Binary codes from the line graph of the n-cube, J. Symbolic Comput. 45 (2010), no. 7, 800–812.[MR/doi]
- W. Fish, J. D. Key, and E. Mwambene, Codes from incidence matrices and line graphs of Hamming graphs, Discrete Math. 310 (2010), no. 13-14, 1884–1897.[MR/doi]
- G. David Forney, Jr., Markus Grassl, and Saikat Guha, Convolutional and tail-biting quantum error-correcting codes, IEEE Trans. Inform. Theory 53 (2007), no. 3, 865–880.[MR]
- Philippe Gaborit, Quadratic double circulant codes over fields, J. Combin. Theory Ser. A 97 (2002), no. 1, 85–107.[MR]
- Philippe Gaborit, A bound for certain s-extremal lattices and codes, Arch. Math. (Basel) 89 (2007), no. 2, 143–151.[MR]
- Philippe Gaborit, W. Cary Huffman, Jon-Lark Kim, and Vera Pless, On additive GF(4) codes, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 56, Amer. Math. Soc., Providence, RI, 2001, pp. 135–149.[MR]
- Philippe Gaborit and Oliver D. King, Linear constructions for DNA codes, Theoret. Comput. Sci. 334 (2005), no. 1-3, 99–113.[MR]
- Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, Weight enumerators of duadic and quadratic residue codes, in IEEE International Symposium on Information Theory (ISIT), Chicago, USA, 2004.
- Philippe Gaborit, Carmen-Simona Nedeloaia, and Alfred Wassermann, On the weight enumerators of duadic and quadratic residue codes, IEEE Trans. Inform. Theory 51 (2005), no. 1, 402–407.[MR]
- Philippe Gaborit and Ayoub Otmani, Experimental constructions of self-dual codes, Finite Fields Appl. 9 (2003), no. 3, 372–394.[MR]
- Julia Galstad and Gerald Hoehn, A new class of codes over Z2×Z2, preprint (2010), 29 pages.[arXiv]
- S. Gao and J. D. Key, Bases of minimum-weight vectors for codes from designs, Finite Fields Appl. 4 (1998), no. 1, 1–15.[MR]
- Cesar A. Garcia-Vazquez and Carlos A. Lopez-Andrade, D-Heaps as hash tables for vectors over a finite ring, 2009 WRI World Conference on Computer Science and Information Engineering, WRI World Congress on Computer Science and Information Engineering, vol. 3, IEEE, 2009, pp. 162–166.[doi]
- D. Ghinelli, M. J. de Resmini, and J. D. Key, Minimum words of codes from affine planes, J. Geom. 91 (2009), no. 1-2, 43–51.
- David G. Glynn, T. Aaron Gulliver, Johannes G. Maks, and Manish K. Gupta, The geometry of additive quantum codes, Springer, 2006, pp. 219.
- Santos González, Consuelo Martínez, and Alejandro P. Nicolás, Classic and quantum error correcting codes, Coding Theory and Applications, Lecture Notes in Computer Science, vol. 5228, Springer, 2008, pp. 56-68.
- Daniel M. Gordon, Victor Miller, and Peter Ostapenko, Optimal hash functions for approximate closest pairs on the n-cube, preprint (2008).[arXiv]
- M. Grassl, Thomas Beth, and T. Pellizzari, Codes for the quantum erasure channel, Phys. Rev. A (3) 56 (1997), no. 1, 33–38.[MR]
- M. Grassl, Thomas Beth, and M. Rötteler, On optimal quantum codes, International Journal of Quantum Information 2 (2004), no. 1, 55-64.
- M. Grassl and T. A. Gulliver, On self-dual MDS codes, IEEE International Symposium on Information Theory, 2008. ISIT 2008 (2008), 1954-1957.[doi]
- M. Grassl and G. White, New good linear codes by special puncturings, International Symposium on Information Theory, 2004. ISIT 2004 (2004), 454-.
- Markus Grassl, On the minimum distance of some quadratic-residue codes, in ISlT 2000. Sorrento, Italy, June 25-30, 2000, 2000, pp. 253–253.
- Markus Grassl, New binary codes from a chain of cyclic codes, IEEE Trans. Inform. Theory 47 (2001), no. 3, 1178–1181.[MR]
- Markus Grassl, Searching for linear codes with large minimum distance, Discovering Mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 287–313.[MR/doi]
- Markus Grassl, Computing extensions of linear codes, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 476-480.[doi]
- Markus Grassl and Thomas Beth, Quantum BCH codes, in Proceedings X Symposium on Theoretical Electrical Engineering. Magdeburg, Sept. 6–9, 1999, 1999, pp. 207-212.
- Markus Grassl and T. Aaron Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), no. 1, 57–81.[MR]
- Markus Grassl and T. Aaron Gulliver, On circulant self-dual codes over small fields, Des. Codes Cryptogr. 52 (2009), no. 1, 57–81.
- Markus Grassl and Martin Rötteler, Quantum block and convolutional codes from self-orthogonal product codes, in Proceedings 2005 IEEE International Symposium on Information Theory (ISIT 2005), 2005, pp. 1018-1022.[arXiv]
- Markus Grassl and Martin Rötteler, Quantum convolutional codes: Encoders and structural properties, Forty-Fourth Annual Allerton Conference,Allerton House, UIUC, Illinois, USA Sept 27-29, 2006, 2006, pp. 510–519.
- Markus Grassl and Greg White, New codes from chains of quasi-cyclic codes, in IEEE International Symposium on Information Theory (ISIT), Adelaide, 2005.
- M. Greferath, M. O'Sullivan, and R. Smarandache, Construction of good LDPC codes using dilation matrices, in Proc. IEEE Intern. Symp. on Inform. Theory, 2004.
- Marcus Greferath and Emanuele Viterbo, On Z4- and Z9-linear lifts of the Golay codes, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2524–2527.[MR]
- T. Aaron Gulliver and Masaaki Harada, Classification of extremal double circulant formally self-dual even codes, Des. Codes Cryptogr. 11 (1997), no. 1, 25–35.[MR]
- T. Aaron Gulliver and Masaaki Harada, Classification of extremal double circulant self-dual codes of lengths 64 to 72, Des. Codes Cryptogr. 13 (1998), no. 3, 257–269.[MR]
- T. Aaron Gulliver and Masaaki Harada, Double circulant self-dual codes over Z2k, IEEE Trans. Inform. Theory 44 (1998), no. 7, 3105–3123.[MR]
- T. Aaron Gulliver and Masaaki Harada, Double circulant self-dual codes over GF(5), Ars Combin. 56 (2000), 3–13.[MR]
- T. Aaron Gulliver and Masaaki Harada, Optimal double circulant Z4-codes, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Melbourne, 2001), Lecture Notes in Comput. Sci., vol. 2227, Springer, Berlin, 2001, pp. 122–128.[MR]
- T. Aaron Gulliver and Masaaki Harada, Orthogonal frames in the Leech lattice and a type II code over Z22, J. Combin. Theory Ser. A 95 (2001), no. 1, 185–188.[MR]
- T. Aaron Gulliver and Masaaki Harada, Classification of extremal double circulant self-dual codes of lengths 74–88, Discrete Math. 306 (2006), no. 17, 2064–2072.[MR]
- T. Aaron Gulliver and Masaaki Harada, On double circulant doubly even self-dual [72,36,12] codes and their neighbors, Australas. J. Combin. 40 (2008), 137–144.[MR]
- T. Aaron Gulliver, Masaaki Harada, and Jon-Lark Kim, Construction of new extremal self-dual codes, Discrete Math. 263 (2003), no. 1-3, 81–91.[MR]
- T. Aaron Gulliver, Masaaki Harada, and Jon-Lark Kim, Construction of some extremal self-dual codes, Discrete Math. 264 (2003), 55–73.
- T. Aaron Gulliver, Masaaki Harada, and Hiroki Miyabayashi, Double circulant and quasi-twisted self-dual codes over F5 and F7, Adv. Math. Commun. 1 (2007), no. 2, 223–238.[MR]
- T. Aaron Gulliver, Masaaki Harada, and Hiroki Miyabayashi, Optimal double circulant self-dual codes over F4. II, Australas. J. Combin. 39 (2007), 163–174.[MR]
- T. Aaron Gulliver, Masaaki Harada, Takuji Nishimura, and Patric R. J. Östergård, Near-extremal formally self-dual even codes of lengths 24 and 32, Des. Codes Cryptogr. 37 (2005), no. 3, 465–471.[MR]
- T. Aaron Gulliver and Jon-Lark Kim, Circulant based extremal additive self-dual codes over GF(4), IEEE Trans. Inform. Theory 50 (2004), no. 2, 359–366.[MR]
- T. Aaron Gulliver, Jon-Lark Kim, and Yoonjin Lee, New MDS or near-MDS self-dual codes, IEEE Trans. Inform. Theory 54 (2008), no. 9, 4354–4360.[MR/doi]
- T. Aaron Gulliver, Patric R. J. Östergård, and Nikolai I. Senkevitch, Optimal quaternary linear rate-1/2 codes of length ≤ 18, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1540–1543.[MR/link]
- C. Guneri and F. Ozbudak, Weil-Serre type bounds for cyclic codes, IEEE Transactions on Information Theory 54 (2008), no. 12, 5381-5395.[doi]
- Cem Güneri and Ferruh Özbudak, Cyclic codes and reducible additive equations, IEEE Trans. Inform. Theory 53 (2007), no. 2, 848–853.[MR]
- Cem Güneri, Henning Stichtenoth, and Ihsan Taşkın, Further improvements on the designed minimum distance of algebraic geometry codes, J. Pure Appl. Algebra 213 (2009), no. 1, 87–97.[MR]
- Annika Günther, A mass formula for self-dual permutation codes, Finite Fields Appl. 15 (2009), no. 4, 517–533.[MR/doi]
- Willem H. Haemers, Christopher Parker, Vera Pless, and Vladimir Tonchev, A design and a code invariant under the simple group Co3, J. Combin. Theory Ser. A 62 (1993), no. 2, 225–233.[MR]
- Sunghyu Han and Jon-Lark Kim, On self-dual codes over F5, Des. Codes Cryptogr. 48 (2008), no. 1, 43–58.[MR]
- Johan P. Hansen, Toric surfaces and codes, techniques and examples, Preprint Series No.1., University of Aarhus, Department of Mathematics, Aarhus, Denmark (2004), 12 pages.
- Masaaki Harada, Construction of an extremal self-dual code of length 62, IEEE Trans. Inform. Theory 45 (1999), no. 4, 1232–1233.[MR]
- Masaaki Harada, New extremal self-dual codes of lengths 36 and 38, IEEE Trans. Inform. Theory 45 (1999), no. 7, 2541–2543.[MR]
- Masaaki Harada, Self-orthogonal 3-(56,12,65) designs and extremal doubly-even self-dual codes of length 56, Des. Codes Cryptogr. 38 (2006), no. 1, 5–16.[MR]
- Masaaki Harada, An extremal doubly even self-dual code of length 112, Electron. J. Combin. 15 (2008), no. 1, Note 33, 5.[MR]
- Masaaki Harada, On the existence of frames of the Niemeier lattices and self-dual codes over Fp, J. Algebra 321 (2009), no. 8, 2345–2352.[MR/doi]
- Masaaki Harada, Extremal type II Z4-codes of lengths 56 and 64, J. Combin. Theory Ser. A 117 (2010), no. 8, 1285–1288.[MR/doi]
- Masaaki Harada, W. Holzmann, H. Kharaghani, and M. Khorvash, Extremal ternary self-dual codes constructed from negacirculant matrices, Graphs Combin. 23 (2007), no. 4, 401–417.[MR]
- Masaaki Harada and Hadi Kharaghani, Orthogonal designs and MDS self-dual codes, Australas. J. Combin. 35 (2006), 57–67.[MR]
- Masaaki Harada, Masaaki Kitazume, Akihiro Munemasa, and Boris Venkov, On some self-dual codes and unimodular lattices in dimension 48, European J. Combin. 26 (2005), no. 5, 543–557.[MR]
- Masaaki Harada, Masaaki Kitazume, and Michio Ozeki, Ternary code construction of unimodular lattices and self-dual codes over Z6, J. Algebraic Combin. 16 (2002), no. 2, 209–223.[MR]
- Masaaki Harada and Tsuyoshi Miezaki, An upper bound on the minimum weight of type ii-codes, J Combin. Theory Ser. A 118 (2010), no. 1, 190–196.[doi]
- Masaaki Harada and Akihiro Munemasa, A complete classification of ternary self-dual codes of length 24, J. Combin. Theory Ser. A 116 (2009), no. 5, 1063–1072.[MR/arXiv]
- Masaaki Harada, Akihiro Munemasa, and Boris Venkov, Classification of ternary extremal self-dual codes of length 28, Math. Comp. 78 (2009), no. 267, 1787–1796.[MR]
- Masaaki Harada and Takuji Nishimura, An extremal singly even self-dual code of length 88, Adv. Math. Commun. 1 (2007), no. 2, 261–267.[MR]
- Masaaki Harada, Takuji Nishimura, and Radinka Yorgova, New extremal self-dual codes of length 66, Math. Balkanica (N.S.) 21 (2007), no. 1-2, 113–121.[MR]
- Masaaki Harada, Michio Ozeki, and Kenichiro Tanabe, On the covering radius of ternary extremal self-dual codes, Des. Codes Cryptogr. 33 (2004), no. 2, 149–158.[MR]
- Masaaki Harada and Vladimir D. Tonchev, Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms, Discrete Math. 264 (2003), no. 1-3, 81–90.[MR]
- Fernando Hernando and Diego Ruano, Sixteen new linear codes with Plotkin sum, preprint (2008), 2 pages.[arXiv]
- C. Hollanti, J. Lahtonen, and Hsiao-feng Lu, Maximal orders in the design of dense space-time lattice codes, IEEE Transactions on Information Theory 54 (2008), no. 10, 4493-4510.[doi]
- C. Hollanti, J. Lahtonen, K. Ranto, and R. Vehkalahti, On the densest MIMO lattices from cyclic division algebras, IEEE Trans. Comp. 55 (2009), no. 8, 3751–3780.[arXiv]
- Camilla J. Hollanti, Order-theoretic methods for space-time coding: Symmetric and asymmetric designs, PhD Thesis, Turku Centre for Computer Science, 2008.
- Camilla Hollanti, Jyrki Lahtonen, Kalle Ranto, and Roope Vehkalahti, Optimal matrix lattices for MIMO codes from division algebras, in IEEE International Symposium on Information Theory. ISIT 2006, July 2006, pp. 783-787.[doi]
- Camilla Hollanti and Hsiao-Feng Lu, Construction methods for asymmetric multiblock space-time codes, IEEE Trans. Inform. Theory 55 (2009), no. 3, 1086–1103.
- Camilla Hollanti and Kalle Ranto, Maximal orders in space-time coding: Construction and decoding, 2008.
- K. J. Horadam and P. Udaya, A new class of ternary cocyclic Hadamard codes, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 1, 65–73.[MR]
- Min-Hsiu Hsieh, Igor Devetak, and Todd Brun, General entanglement-assisted quantum error-correcting codes, Physical Review A (Atomic, Molecular, and Optical Physics) 76 (2007), no. 6, 062313.[doi]
- W. Cary Huffman and Vera Pless, Fundamentals of Error-correcting Codes, Cambridge University Press, Cambridge, 2003, pp. xviii+646.[MR]
- Paul Hurley and Ted Hurley, Codes from zero-divisors and units in group rings, International Journal of Information and Coding Theory 1 (2009), no. 1, 57–87.[arXiv]
- Ted Hurley, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math. 50 (2009), no. 3, 431–463.[MR/arXiv]
- Nathan Owen Ilten and Hendrik Süß, AG codes from polyhedral divisors, preprint (2008), 30 pages.[arXiv]
- Martin Janošov, Martin Husák, Peter Farkaš, and Ana Garcia Armada, New [47,15,16] linear binary block code, IEEE Trans. Inform. Theory 54 (2008), no. 1, 423–424.[MR]
- Sarah J. Johnson and Steven R. Weller, High-rate LDPC codes from unital designs, IEEE Global Telecommunications Conference 4 (2003), no. 5, 2036– 2040.
- David Joyner, Toric codes over finite fields, Appl. Algebra Engrg. Comm. Comput. 15 (2004), no. 1, 63–79.[MR]
- David Joyner and Amy Ksir, Automorphism groups of some AG codes, IEEE Trans. Inform. Theory 52 (2006), no. 7, 3325–3329.[MR]
- David Joyner and Salahoddin Shokranian, Remarks on codes from modular curves: magma application, preprint (2004), 29 pages.[arXiv]
- John K. Karlof and Yaw O. Chang, Optimal permutation codes for the Gaussian channel, IEEE Trans. Inform. Theory 43 (1997), no. 1, 356–358.[MR]
- Christine A. Kelley, Deepak Sridhara, and Joachim Rosenthal, Tree-based construction of LDPC codes having good pseudocodeword weights, IEEE Trans. Inform. Theory 53 (2007), no. 4, 1460–1478.[MR]
- J. D. Key, Bases for codes of designs from finite geometries, in Proceedings of the Twenty-fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994), vol. 102, 1994, pp. 33–44.[MR]
- J. D. Key, Codes and finite geometries, in Proceedings of the Twenty-ninth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1998), vol. 131, 1998, pp. 85–99.[MR]
- J. D. Key, Some error-correcting codes and their applications, Applied Mathematical Modeling: A Multidisciplinary Approach, Edited by D. R. Shier and K. T. Wallenius, CRC Press, Boca Raton, Fl., 1999.
- J. D. Key, Some applications of Magma in designs and codes: Oval designs, Hermitian unitals and generalized Reed-Muller codes, J. Symbolic Comput. 31 (2001), no. 1-2, 37–53.[MR]
- J. D. Key, Recent developments in permutation decoding, Not. S. Afr. Math. Soc. 37 (2006), no. 1, 2–13.[MR]
- J. D. Key, T. P. McDonough, and V. C. Mavron, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl. 12 (2006), no. 2, 232–247.[MR]
- J. D. Key, T. P. McDonough, and V. C. Mavron, Partial permutation decoding for codes from affine geometry designs, J. Geom. 88 (2008), no. 1-2, 101–109.[MR]
- J. D. Key and J. Moori, Some irreducible codes invariant under the Janko group, J1 or J2, preprint (2008), 20 pages.
- J. D. Key, J. Moori, and B. G. Rodrigues, On some designs and codes from primitive representations of some finite simple groups, J. Combin. Math. Combin. Comput. 45 (2003), 3–19.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Binary codes from graphs on triples, Discrete Math. 282 (2004), no. 1-3, 171–182.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin. 25 (2004), no. 1, 113–123.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Some binary codes from symplectic geometry of odd characteristic, Util. Math. 67 (2005), 121–128.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Partial permutation decoding of some binary codes from graphs on triples, Ars Combin. 91 (2009), 363–371.[MR]
- J. D. Key, J. Moori, and B. G. Rodrigues, Ternary codes from graphs on triples, Discrete Math. 309 (2009), no. 14, 4663–4681.[MR/doi]
- J. D. Key, J. Moori, and B. G. Rodrigues, Codes associated with triangular graphs, and permutation decoding, International Journal of Information and Coding Theory 1 (2010), no. 3, 334–349 pages.
- J. D. Key, B. Novick, and F. E. Sullivan, Binary codes of structures dual to unitals, in Proceedings of the Twenty-eighth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1997), vol. 123, 1997, pp. 119–124.[MR]
- J. D. Key and M. J. de Resmini, Small sets of even type and codewords, J. Geom. 61 (1998), no. 1-2, 83–104.[MR]
- J. D. Key and M. J. de Resmini, Ternary dual codes of the planes of order nine, J. Statist. Plann. Inference 95 (2001), no. 1-2, 229–236.[MR]
- J. D. Key and P. Seneviratne, Binary codes from rectangular lattice graphs and permutation decoding, European J. Combin. 28 (2007), no. 1, 121–126.[MR]
- J. D. Key and P. Seneviratne, Permutation decoding for binary codes from lattice graphs, Discrete Math. 308 (2008), no. 13, 2862–2867.[MR]
- M. Kiermaier and A. Wassermann, On the minimum Lee distance of quadratic residue codes over Z4, IEEE International Symposium on Information Theory, 2008. ISIT 2008. (2008), 2617-2619.[doi]
- Dae San Kim, Codes associated with O+(2n,2r) and power moments of Kloosterman sums, preprint (2008), 9 pages.[arXiv]
- Dae San Kim, Codes associated with orthogonal groups and power moments of Kloosterman sums, preprint (2008).[arXiv]
- Dae San Kim, Codes associated with special linear groups and power moments of multi-dimensional Kloosterman sums, preprint (2008), 7 pages.[arXiv]
- Hyun Kwang Kim, Dae Kyu Kim, and Jon-Lark Kim, Type I codes over GF(4), Ars Combin., to appear.
- Jon-Lark Kim, New extremal self-dual codes of lengths 36, 38, and 58, IEEE Trans. Inform. Theory 47 (2001), no. 1, 386–393.[MR]
- Jon-Lark Kim, New good Hermitian self-dual codes over GF(4), in IEEE International Symposium on Information Theory (ISIT), Washington, 2001, pp. 177.
- Jon-Lark Kim, New self-dual codes over GF(4) with the highest known minimum weights, IEEE Trans. Inform. Theory 47 (2001), no. 4, 1575–1580.[MR/link]
- Jon-Lark Kim and Yoonjin Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004), no. 1, 79–95.[MR]
- Jon-Lark Kim and Yoonjin Lee, Construction of MDS self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247–258.[MR]
- Jon-Lark Kim, Keith E. Mellinger, and Vera Pless, Projections of binary linear codes onto larger fields, SIAM J. Discrete Math. 16 (2003), no. 4, 591–603 (electronic).[MR]
- Jon-Lark Kim, Uri N. Peled, Irina Perepelitsa, and Vera Pless, Explicit construction of families of LDPC codes with girth at least six, Proceedings of the Annual Allerton Conference on Communication, Control and Computing, vol. 40, Part 2, 2002, pp. 1024–1031.
- Jon-Lark Kim, Uri N. Peled, Irina Perepelitsa, Vera Pless, and Shmuel Friedland, Explicit construction of families of LDPC codes with no 4-cycles, IEEE Trans. Inform. Theory 50 (2004), no. 10, 2378–2388.[MR]
- Jon-Lark Kim and Vera Pless, Designs in additive codes over GF(4), Des. Codes Cryptogr. 30 (2003), no. 2, 187–199.[MR]
- Jon-Lark Kim and Patrick Solé, Skew Hadamard designs and their codes, Des. Codes Cryptogr. 49 (2008), no. 1-3, 135–145.[MR]
- Sunghwan Kim, Jong-Seon No, Habong Chung, and Dong-Joon Shin, Cycle analysis and construction of protographs for QC (LDPC) codes with girth larger than 12, IEEE International Symposium on Information Theory, 2007. ISIT 2007 (2007), 2256-2260.[doi]
- A. Klappenecker and M. Rötteler, Remarks on Clifford codes, Quantum Information and Computation 4 (2004), no. 2, 152-160.
- A. Klappenecker and P. K. Sarvepalli, Clifford code constructions of operator quantum error-correcting codes, IEEE Transactions on Information Theory 54 (2008), no. 12, 5760-5765.[arXiv]
- Andreas Klappenecker and Martin Rötteler, Unitary error bases: Constructions, equivalence, and applications, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (Toulouse, 2003), Lecture Notes in Comput. Sci., vol. 2643, Springer, Berlin, 2003, pp. 139–149.[MR]
- Andreas Klappenecker and Martin Rötteler, On the structure of nonstabilizer Clifford codes, Quantum Inf. Comput. 4 (2004), no. 2, 152–160.[MR]
- Hans-Joachim Kroll and Rita Vincenti, PD-sets for binary RM-codes and the codes related to the Klein quadric and to the Schubert variety of PG(5,2), Discrete Math. 308 (2008), no. 2-3, 408–414.[MR]
- Paul F. Kubwalo and John A. Ryan, Low density parity check irreducible Goppa codes, AFRICON 2007 (2007), 8 pages.[doi]
- Doug Kuhlman, The minimum distance of the [83,42] ternary quadratic residue code, IEEE Trans. Inform. Theory 45 (1999), no. 1, 282.[MR]
- Thorsten Lagemann, Codes und automorphismen optimaler artin-schreier-turme, PhD Thesis, Ruprecht-Karls-Universität Heidelberg, 2006.
- Jyrki Lahtonen and Camilla Hollanti, A new tool: constructing STBCs from maximal orders in central simple algebras, in IEEE Information Theory Workshop, Punta del Este, Uruguay, March 13–17, 2006, 2006.
- Heisook Lee and Yoonjin Lee, Construction of self-dual codes over finite rings Zpm, J. Combin. Theory Ser. A 115 (2008), no. 3, 407–422.[MR]
- Douglas A. Leonard, A weighted module view of integral closures of affine domains of type I, Adv. Math. Commun. 3 (2009), no. 1, 1-11.
- Ka Hin Leung and Qing Xiang, On the dimensions of the binary codes of a class of unitals, Discrete Math. 309 (2009), no. 3, 570–575.[MR/doi]
- Chong Jie Lim, Consta-abelian polyadic codes, IEEE Trans. Inform. Theory 51 (2005), no. 6, 2198–2206.[MR]
- San Ling and Patrick Solé, Duadic codes over F2+uF2, Appl. Algebra Engrg. Comm. Comput. 12 (2001), no. 5, 365–379.[MR]
- San Ling and Patrick Solé, Nonlinear p-ary sequences, Appl. Algebra Engrg. Comm. Comput. 14 (2003), no. 2, 117–125.[MR]
- San Ling and Chaoping Xing, Polyadic codes revisited, IEEE Trans. Inform. Theory 50 (2004), no. 1, 200–207.[MR]
- San Ling, Chaoping Xing, and Ferruh Özbudak, An explicit class of codes with good parameters and their duals, Discrete Appl. Math. 154 (2006), no. 2, 346–356.[MR]
- John Little and Hal Schenck, Toric surface codes and Minkowski sums, SIAM J. Discrete Math. 20 (2006), no. 4, 999–1014 (electronic).[MR]
- John Little and Ryan Schwarz, On m-dimensional toric codes, preprint (2005), 17 pages.[arXiv]
- John Little and Ryan Schwarz, On toric codes and multivariate Vandermonde matrices, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 349–367.[MR]
- J. Löfvenberg, Binary fingerprinting codes, Des. Codes Cryptogr. 36 (2005), no. 1, 69–81.[MR]
- Benjamin Lundell and Jason McCullough, A generalized floor bound for the minimum distance of geometric Goppa codes, J. Pure Appl. Algebra 207 (2006), no. 1, 155–164.[MR]
- Kirsten Mackenzie, Codes of designs, PhD Thesis, University of Birmingham, 1989.
- Johannes Maks and Juriaan Simonis, Optimal subcodes of second order Reed-Muller codes and maximal linear spaces of bivectors of maximal rank, Des. Codes Cryptogr. 21 (2000), no. 1-3, 165–180.[MR]
- G. Malema, Constructing quasi-cyclic LDPC codes using a search algorithm, 2007 IEEE International Symposium on Signal Processing and Information Technology (2007), 956-960.[doi]
- C. L. Mallows, V. Pless, and N. J. A. Sloane, Self-dual codes over GF(3), SIAM J. Appl. Math. 31 (1976), no. 4, 649–666.[MR]
- Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, NMDS codes of maximal length over Fq, 8 ≤ q ≤ 11, IEEE Trans. Inform. Theory 48 (2002), no. 4, 963–966.[MR]
- Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, Classification of the (n,3)-arcs in PG(2,7), J. Geom. 80 (2004), no. 1-2, 179–184.[MR]
- Stefano Marcugini, Alfredo Milani, and Fernanda Pambianco, Classification of linear codes exploiting an invariant, Contrib. Discrete Math. 1 (2006), no. 1, 1–7 (electronic).[MR]
- Gretchen L. Matthews, Some computational tools for estimating the parameters of algebraic geometry codes, Coding Theory and Quantum Computing, Contemp. Math., vol. 381, Amer. Math. Soc., Providence, RI, 2005, pp. 19–26.[MR]
- Gretchen L. Matthews and Todd W. Michel, One-point codes using places of higher degree, IEEE Trans. Inform. Theory 51 (2005), no. 4, 1590–1593.[MR]
- Gary McGuire and José Felipe Voloch, Weights in codes and genus 2 curves, Proc. Amer. Math. Soc. 133 (2005), no. 8, 2429–2437 (electronic).[MR]
- Gary McGuire and Harold N. Ward, A determination of the weight enumerator of the code of the projective plane of order 5, Note Mat. 18 (1998), no. 1, 71–99 (1999).[MR]
- Gary McGuire and Harold N. Ward, The weight enumerator of the code of the projective plane of order 5, Geom. Dedicata 73 (1998), no. 1, 63–77.[MR]
- C. A. Melchor and P. Gaborit, On the classification of extremal [36,18,8] binary self-dual codes, IEEE Trans. Inform. Theory 54 (2008), no. 10, 4743-4750.[doi]
- Keith E. Mellinger, LDPC codes from triangle-free line sets, Des. Codes Cryptogr. 32 (2004), no. 1-3, 341–350.[MR]
- Keith E. Mellinger, Classes of codes from quadratic surfaces of PG(3,q), Contrib. Discrete Math. 2 (2007), no. 1, 35–42 (electronic).[MR]
- Jamshid Moori and B. G. Rodrigues, A self-orthogonal doubly even code invariant under McL : 2, J. Combin. Theory Ser. A 110 (2005), no. 1, 53–69.[MR]
- Jamshid Moori and B. G. Rodrigues, Some designs and codes invariant under the simple group Co2, J. Algebra 316 (2007), no. 2, 649–661.[MR]
- Teo Mora and Massimiliano Sala, On the Gröbner bases of some symmetric systems and their application to coding theory, J. Symbolic Comput. 35 (2003), no. 2, 177–194.[MR]
- Akihiro Munemasa and Vladimir D. Tonchev, A new quasi-symmetric 2-(56,16,6) design obtained from codes, Discrete Math. 284 (2004), no. 1-3, 231–234.[MR]
- Mona B. Musa, On some double circulant binary extended quadratic residue codes, IEEE Trans. Inform. Theory 54 (2008), no. 2, 898–905.[MR]
- G. Nebe, Kneser-Hecke-operators in coding theory, Abh. Math. Sem. Univ. Hamburg 76 (2006), 79–90.[MR]
- Gabriele Nebe, Eric M. Rains, and Neil J. A. Sloane, Self-dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17, Springer-Verlag, Berlin, 2006, pp. xxviii+430.[MR]
- Carmen-Simona Nedeloaia, On weight distribution of cyclic self-dual codes, in IEEE International Symposium on Information Theory (ISIT), Lausanne, Switzerland,, 2002.
- Carmen-Simona Nedeloaia, Weight distributions of cyclic self-dual codes, IEEE Trans. Inform. Theory 49 (2003), no. 6, 1582–1591.[MR]
- Annika Niehage, Quantum Goppa codes over hypereliptic curves, Master's Thesis, Universität Mannheim, 2004.
- Annika Niehage, Nonbinary quantum Goppa codes exceeding the quantum Gilbert-Varshamov bound, Quantum Inf. Process. 6 (2007), no. 3, 143–158.[MR]
- Emmanuela Orsini and Massimiliano Sala, General error locator polynomials for binary cyclic codes with t ≤ 2 and n < 63, IEEE Trans. Inform. Theory 53 (2007), no. 3, 1095–1107.[MR]
- Patric R. J. Östergård, Classifying subspaces of Hamming spaces, Des. Codes Cryptogr. 27 (2002), no. 3, 297–305.[MR]
- Michio Ozeki, Jacobi polynomials for singly even self-dual codes and the covering radius problems, IEEE Trans. Inform. Theory 48 (2002), no. 2, 547–557.[MR]
- Christopher Parker and Vladimir D. Tonchev, Linear codes and doubly transitive symmetric designs, Linear Algebra Appl. 226/228 (1995), 237–246.[MR]
- J. Pernas, J. Pujol, and M. Villanueva, Kernel dimension for some families of quaternary Reed-Muller codes, Information Security, Lecture Notes in Comput. Sci., vol. 5393, Springer, Berlin, 2008, pp. 128–141.
- Kevin T. Phelps, An enumeration of 1-perfect binary codes, Australas. J. Combin. 21 (2000), 287–298.[MR]
- Michel Planat, Entangling gates in even Euclidean lattices such as Leech lattice, preprint (2010), 11 pages.[arXiv]
- Michel Planat and Philippe Jorrand, Group theory for quantum gates and quantum coherence, J. Phys. A 41 (2008), no. 18, 182001, 8.[MR/arXiv]
- Michel Planat and Maurice R. Kibler, Unitary reflection groups for quantum fault tolerance, J. Comput. Theor. Nanosci. 7 (2010), no. 9, 1759–1770.[arXiv]
- B. G. Rodrigues, Self-orthogonal designs and codes from the symplectic groups S4(3) and S4(4), Discrete Math. 308 (2008), no. 10, 1941–1950.[MR]
- M. Rötteler, M. Grassl, and Thomas Beth, On quantum MDS codes, in IEEE International Symposium on Information Theory – Proceedings, 2004, pp. 355.
- Diego Ruano, On the parameters of r-dimensional toric codes, Finite Fields Appl. 13 (2007), no. 4, 962–976.[MR]
- John A. Ryan and Kondwani Magamba, Equivalent irreducible Goppa codes and the precise number of quintic Goppa codes of length 32, AFRICON 2007 (2007), 1-4.[doi]
- Massimiliano Sala, Groebner bases and distance of cyclic codes, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 2, 137–162.[MR]
- Massimiliano Sala, Upper bounds on the dual distance of BCH(255,k), Des. Codes Cryptogr. 30 (2003), no. 2, 159–168.[MR]
- Massimiliano Sala, Gröbner basis techniques to compute weight distributions of shortened cyclic codes, J. Algebra Appl. 6 (2007), no. 3, 403–414.[MR]
- Ralph-Hardo Schulz, Check character systems and anti-symmetric mappings, Computational Discrete Mathematics, Lecture Notes in Comput. Sci., vol. 2122, Springer, Berlin, 2001, pp. 136–147.[MR]
- Anuradha Sharma, Gurmeet K. Bakshi, and Madhu Raka, Polyadic codes of prime power length, Finite Fields Appl. 13 (2007), no. 4, 1071–1085.[MR]
- Derek H. Smith, Niema Aboluion, Roberto Montemanni, and Stephanie Perkins, Linear and nonlinear constructions of DNA codes with Hamming distance d and constant GC-content, Discrete Math., to appear (2010).[doi]
- Patrick Solé and Virgilio Sison, Bounds on the minimum homogeneous distance of the p-ary image of linear block codes over the Galois ring GR(pr,m), IEEE Trans. Inform. Theory 53 (2007), no. 6, 2270–2273.[MR]
- Arvind Sridharan, Design and analysis of LDPC convolutional codes, PhD Thesis, University of Notre Dame, 2005.
- R. Michael Tanner, Deepak Sridhara, Arvind Sridharan, Thomas E. Fuja, and Daniel J. Costello, Jr., LDPC block and convolutional codes based on circulant matrices, IEEE Trans. Inform. Theory 50 (2004), no. 12, 2966–2984.[MR]
- C. Tjhai and M. Tomlinson, Results on binary cyclic codes, Electronics Letters 43 (2007), no. 4, 234–235.
- C. Tjhai, M. Tomlinson, M. Grassl, R. Horan, M. Ahmed, and M. Ambroze, New linear codes derived from binary cyclic codes of length 151, IEE Proceedings: Communications 153 (2006), no. 5, 581–585.
- Roope Vehkalahti, Class field theoretic methods in the design of lattice signal constellations, PhD Thesis, University of Turku, 2008.
- José Felipe Voloch, Computing the minimal distance of cyclic codes, Comput. Appl. Math. 24 (2005), no. 3, 393–398.[MR]
- Judy L. Walker, Constructing critical indecomposable codes, IEEE Trans. Inform. Theory 47 (2001), no. 5, 1780–1795.[MR]
- Harold N. Ward, An Introduction to Algebraic Coding Theory, Coding Theory and Quantum Computing, Contemp. Math., vol. 381, Amer. Math. Soc., Providence, RI, 2005, pp. 27–52.[MR]
- Steven R. Weller and Sarah J. Johnson, Iterative decoding of codes from oval designs, Defence Applications of Signal Processing, 2001 Workshop (2001), 1-19.
- Steven R. Weller and Sarah J. Johnson, Regular low-density parity-check codes from oval designs, European Transactions on Telecommunications 14 (2003), no. 5, 399-409.
- Greg White and Markus Grassl, A new minimum weight algorithm for additive codes, Proceedings 2006 IEEE International Symposium on Information Theory (ISIT 2006), Seattle, USA, July 2006, IEEE, 2006, pp. 1119-1123.
- Gregory White, Enumeration-based Algorithms in Coding Theory, PhD Thesis, University of Sydney, 2007.
- Pawel Wocjan, Brill-Noether algorithm construction of geometric Goppa codes and absolute factorization of polynomials, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 1999.
- Stephen S. -T. Yau and Huaiqing Zuo, Notes on classification of toric surface codes of dimension 5, Appl. Algebra Engrg. Comm. Comput. 20 (2009), no. 2, 175–185.[MR/doi]
- R. Yorgova, Constructing self-dual codes using an automorphism group, IEEE Information Theory Workshop, 2006. ITW '06 Chengdu (2006), 11-15.[doi]
- Radinka Aleksandrova Yorgova, On binary self-dual codes with automorphisms, IEEE Trans. Inform. Theory 54 (2008), no. 7, 3345–3351.[MR/doi]
- Radinka Yorgova and Alfred Wassermann, Binary self-dual codes with automorphisms of order 23, Des. Codes Cryptogr. 48 (2008), no. 2, 155–164.[MR]
- Marcos Zarzar, Error-correcting codes on low rank surfaces, Finite Fields Appl. 13 (2007), no. 4, 727–737.[MR]