Analysis
- David H. Bailey, Jonathan M. Borwein, Vishaal Kapoor, and Eric W. Weisstein, Ten problems in experimental mathematics, Amer. Math. Monthly 113 (2006), no. 6, 481–509.[MR]
- Tatiana Bandman, Fritz Grunewald, Boris Kunyavskii, and Nathan Jones, Geometry and arithmetic of verbal dynamical systems on simple groups, Groups, Geometry, and Dynamics 4 (2010), no. 4, 607–655.[arXiv]
- Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, preprint (2005), 24 pages.[arXiv]
- Philip Boalch, Higher genus icosahedral Painlevé curves, Funk. Ekvac. (Kobe), 50 (2007), 19–32.[arXiv]
- Wieb Bosma, Karma Dajani, and Cor Kraaikamp, Entropy quotients and correct digits in number-theoretic expansions, Dynamics and Stochastics, IMS Lecture Notes Monogr. Ser., vol. 48, Inst. Math. Statist., Beachwood, OH, 2006, pp. 176–188.[MR]
- A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, É. Schost, and A. Sedoglavic, Fast computation of power series solutions of systems of differential equations, in SODA '07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007, pp. 1012–1021.[arXiv]
- Alin Bostan, Thomas Cluzeau, and Bruno Salvy, Fast algorithms for polynomial solutions of linear differential equations, ISSAC'05: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2005, pp. 45–52 (electronic).[MR]
- Alin Bostan, Manuel Kauers, and Mark van Hoeij, The complete generating function for Gessel walks is algebraic, Proc. Amer. Math. Soc. 138 (2010), no. 9, 3063–3078.
- Delphine Boucher, Philippe Gaillard, and Felix Ulmer, Fourth order linear differential equations with imprimitive group, in ISSAC '03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2003, pp. 45–49 (electronic).[MR]
- E. Bujalance, F. J. Cirre, M. D. E. Conder, and B. Szepietowski, Finite group actions on bordered surfaces of small genus, J. Pure Appl. Algebra 214 (2010), no. 12, 2165–2185.[MR/doi]
- E. Bujalance, Marston Conder, J. M. Gamboa, G. Gromadzki, and M. Izquierdo, Double coverings of Klein surfaces by a given Riemann surface, J. Pure Appl. Algebra 169 (2002), no. 2-3, 137–151.[MR]
- Emilio Bujalance, F. J. Cirre, and Marston Conder, On extendability of group actions on compact Riemann surfaces, Trans. Amer. Math. Soc. 355 (2003), no. 4, 1537–1557 (electronic).[MR]
- Emilio Bujalance and Marston Conder, On cyclic groups of automorphisms of Riemann surfaces, J. London Math. Soc. (2) 59 (1999), no. 2, 573–584.[MR]
- Jason Callahan, Jorgensen number and arithmeticity, Conform. Geom. Dyn 13 (2009), 160–186.[arXiv]
- Jason Todd Callahan, The arithmetic and geometry of two-generator Kleinian groups, PhD Thesis, University of Texas at Austin, 2009.[link]
- Michael Clausen, Fast Fourier transforms for metabelian groups, SIAM J. Comput. 18 (1989), no. 3, 584–593.[MR]
- Marston Conder, The genus of compact Riemann surfaces with maximal automorphism group, J. Algebra 108 (1987), no. 1, 204–247.[MR]
- Marston Conder, Maximal automorphism groups of symmetric Riemann surfaces with small genus, J. Algebra 114 (1988), no. 1, 16–28.[MR]
- Marston Conder, Hurwitz groups: a brief survey, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 359–370.[MR]
- Marston Conder, C. Maclachlan, G. J. Martin, and E. A. O'Brien, 2-generator arithmetic Kleinian groups. III, Math. Scand. 90 (2002), no. 2, 161–179.[MR]
- Marston Conder and Gaven J. Martin, Cusps, triangle groups and hyperbolic 3-folds, J. Austral. Math. Soc. Ser. A 55 (1993), no. 2, 149–182.[MR]
- Roberto Conti, Jason Kimberley, and Wojciech Szymanski, More localized automorphisms of the Cuntz algebras, preprint (2008), 17 pages.[arXiv]
- Roberto Conti and Wojciech Szymanski, Labeled trees and localized automorphisms of the Cuntz algebras, preprint (2008), 37 pages.[arXiv]
- Olivier Cormier, On Liouvillian solutions of linear differential equations of order 4 and 5, in ISSAC '01: Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2001, pp. 93–100 (electronic).[MR]
- Christopher M. Cosgrove, Chazy classes IX–XI of third-order differential equations, Stud. Appl. Math. 104 (2000), no. 3, 171–228.[MR]
- Ana Paula S. Dias, Benoit Dionne, and Ian Stewart, Heteroclinic cycles and wreath product symmetries, Dyn. Stab. Syst. 15 (2000), no. 4, 353–385.[MR]
- Ana Paula S. Dias, Benoit Dionne, and Ian Stewart, Heteroclinic cycles and wreath product symmetries, Symmetry and perturbation theory (Cala Gonone, 2001), World Sci. Publ., River Edge, NJ, 2001, pp. 53–57.[MR]
- Freddy Dumortier, Jaume Llibre, and Joan C. Artés, Qualitative Theory of Planar Differential Systems, Universitext, Springer-Verlag, Berlin, 2006, pp. xvi+298.[MR]
- Soren Eilers and Ian Kiming, On some new invariants for strong shift equivalence for shifts of finite type, preprint (2008), 8 pages.[arXiv]
- Pavel Etingof, André Henriques, Joel Kamnitzer, and Eric Rains, The cohomology ring of the real locus of the moduli space of stable curves of genus 0 with marked points, Annals of Mathematics 171 (2010), no. 2, 731–777.
- Xander Faber, Benjamin Hutz, Patrick Ingram, Rafe Jones, Michelle Manes, Thomas J. Tucker, and Michael E. Zieve, Uniform bounds on pre-images under quadratic dynamical systems, Math. Res. Lett. 16 (2009), no. 1, 87–101.[MR/arXiv]
- Winfried Fakler, Algorithmen zur symbolischen lösung homogener linearer differentialgleichungen, Master's Thesis, Universität Karlsruhe, 1994.
- Jeffrey B. Farr and Shuhong Gao, Gröbner bases and generalized Padé approximation, Math. Comp. 75 (2006), no. 253, 461–473 (electronic).[MR]
- Jean-Charles Faugère, François Moreau de Saint-Martin, and Fabrice Rouillier, Design of regular nonseparable bidimensional wavelets using Gröbner basis techniques, IEEE Trans. Signal Process. 46 (1998), no. 4, 845–856.[MR]
- Chris M. Field and Chris M. Ormerod, An ultradiscrete matrix version of the fourth Painlevé equation, Adv. Difference Equ. (2007), Art. ID 96752, 14.[MR/arXiv]
- Victor A. Galaktionov and Sergey R. Svirshchevskii, Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Chapman &Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman &Hall/CRC, Boca Raton, FL, 2007, pp. xxx+498.[MR]
- Armengol Gasull and Joan Torregrosa, A relation between small amplitude and big limit cycles, Rocky Mountain J. Math. 31 (2001), no. 4, 1277–1303.[MR/doi]
- Karin Gatermann, Computer algebra methods for equivariant dynamical systems, Lecture Notes in Mathematics, vol. 1728, Springer-Verlag, Berlin, 2000, pp. xvi+153.[MR]
- Vladimir P. Gerdt, Yuri A. Blinkov, and Vladimir V. Mozzhilkin, Gröbner bases and generation of difference schemes for partial differential equations, SIGMA Symmetry Integrability Geom. Methods Appl. 2 (2006), Paper 051, 26 pp. (electronic).[MR]
- Jaume Giné and Xavier Santallusia, Implementation of a new algorithm of computation of the Poincaré-Liapunov constants, J. Comput. Appl. Math. 166 (2004), no. 2, 465–476.[MR]
- Robert Guralnick and John Shareshian, Symmetric and alternating groups as monodromy groups of Riemann surfaces. I. Generic covers and covers with many branch points, Mem. Amer. Math. Soc. 189 (2007), no. 886, vi+128.[MR]
- Evelyn L. Hart and Edward C. Keppelmann, Nielsen periodic point theory for periodic maps on orientable surfaces, Topology Appl. 153 (2006), no. 9, 1399–1420.[MR]
- Sabrina A. Hessinger, Computing the Galois group of a linear differential equation of order four, Appl. Algebra Engrg. Comm. Comput. 11 (2001), no. 6, 489–536.[MR]
- Stephen P. Humphries, Free products in mapping class groups generated by Dehn twists, Glasgow Math. J. 31 (1989), no. 2, 213–218.[MR]
- Stephen P. Humphries, Action of braid groups on determinantal ideals, compact spaces and a stratification of Teichmüller space, Invent. Math. 144 (2001), no. 3, 451–505.[MR/link]
- Stephen Humphries and Anthony Manning, Curves of fixed points of trace maps, Ergodic Theory Dynam. Systems 27 (2007), no. 4, 1167–1198.[MR]
- Patrick Ingram, Cubic polynomials with periodic cycles of a specified multiplier, preprint (2009), 26 pages.[arXiv]
- Ole Lund Jensen, Symbolic dynamic systems and their invariants, Master's Thesis, University of Copenhagen, 2002.
- Sadok Kallel and Denis Sjerve, On the group of automorphisms of cyclic covers of the Riemann sphere, Math. Proc. Cambridge Philos. Soc. 138 (2005), no. 2, 267–287.[MR]
- M. Kasatani, T. Miwa, A. N. Sergeev, and A. P. Veselov, Coincident root loci and Jack and Macdonald polynomials for special values of the parameters, Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 207–225.[MR]
- Kiran S. Kedlaya, Search techniques for root-unitary polynomials, Computational arithmetic geometry, Contemp. Math., vol. 463, Amer. Math. Soc., Providence, RI, 2008, pp. 71–81.[MR/arXiv]
- Jason S. Kimberley and Guyan Robertson, Groups acting on products of trees, tiling systems and analytic K-theory, New York J. Math. 8 (2002), 111–131 (electronic).[MR]
- I. S. Kotsireas and K. Karamanos, Exact computation of the bifurcation point B4 of the logistic map and the Bailey-Broadhurst conjectures, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 14 (2004), no. 7, 2417–2423.[MR]
- V. A. Krasikov and T. M. Sadykov, Linear differential operators for generic algebraic curves, preprint (2010).[arXiv]
- Jeffrey C. Lagarias and Eric Rains, Dynamics of a family of piecewise-linear area-preserving plane maps. II. Invariant circles, J. Difference Equ. Appl. 11 (2005), no. 13, 1137–1163.[MR/link]
- Sonja Lauer, Entwurf von Algorithmen zur Konstruktion von Differentialgleichungen mit vorgegebener endlicher Galoisgruppe, Master's Thesis, Universität Karlsruhe, 2005.
- Sonja Lauer, Entwurf von algorithmen zur konstruktion von differentialgleichungen mit vorgegebener endlicher galoisgruppe, PhD Thesis, Institut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, 2006.
- C. Maclachlan and G. J. Martin, The non-compact arithmetic generalised triangle groups, Topology 40 (2001), no. 5, 927–944.[MR]
- Stefan Măruşter, Viorel Negru, Dana Petcu, and Călin Sandru, Intelligent front-end for solving differential and non-linear equations systems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 258 (1999), no. Teor. Predst. Din. Sist. Komb. i Algoritm. Metody. 4, 318–334, 361.[MR]
- Coy L. May, The real genus of 2-groups, J. Algebra Appl. 6 (2007), no. 1, 103–118.[MR]
- J. C van der Meer, Generic one-parameter versal unfoldings of symmetric hamiltonian systems in 1 : 1 resonance, Int. J. Pure Appl. Math 53 (2009), no. 4, 547–561.
- Alina Ostafe and Igor E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, preprint (2010).[arXiv]
- David Pask, Iain Raeburn, and Natasha A. Weaver, A family of 2-graphs arising from two-dimensional subshifts, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1613–1639.[MR/doi]
- Ariane Péladan-Germa, Testing equality in differential ring extensions defined by PDE's and limit conditions, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 4, 257–288.[MR]
- David Penneys, A cyclic approach to the annular Temperley-Lieb category, preprint (2009), 35 pages.[arXiv]
- Francesco Dalla Piazza, More on superstring chiral measures, Nuclear Physics B 844 (2011), no. 3, 471–499.
- Roman O. Popovych, Vyacheslav M. Boyko, Maryna O. Nesterenko, and Maxim W. Lutfullin, Realizations of real low-dimensional Lie algebras, J. Phys. A 36 (2003), 7337-7360.[arXiv]
- Guyan Robertson, Torsion in boundary coinvariants and K-theory for affine buildings, K-Theory 33 (2005), no. 4, 347–369.[MR]
- Guyan Robertson and Tim Steger, Asymptotic K-theory for groups acting on A2 buildings, Canad. J. Math. 53 (2001), no. 4, 809–833.[MR]
- S. M. Salamon, Complex structures on nilpotent Lie algebras, J. Pure Appl. Algebra 157 (2001), no. 2-3, 311–333.[MR]
- A. J. Scott and M. Grassl, Symmetric informationally complete positive-operator-valued measures: A new computer study, J. Math. Phys. 51 (2010), no. 4, 042203.[arXiv]
- Michael F. Singer, Testing reducibility of linear differential operators: A group-theoretic perspective, Appl. Algebra Engrg. Comm. Comput. 7 (1996), no. 2, 77–104.[MR]
- Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36.[MR]
- Michael F. Singer and Felix Ulmer, Liouvillian and algebraic solutions of second and third order linear differential equations, J. Symbolic Comput. 16 (1993), no. 1, 37–73.[MR]
- Michael F. Singer and Felix Ulmer, On a third order differential equation whose differential Galois group is the simple group of 168 elements, Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), Lecture Notes in Comput. Sci., vol. 673, Springer, Berlin, 1993, pp. 316–324.[MR]
- Michael F. Singer and Felix Ulmer, Necessary conditions for Liouvillian solutions of (third order) linear differential equations, Appl. Algebra Engrg. Comm. Comput. 6 (1995), no. 1, 1–22.[MR]
- Felix Ulmer, On algebraic solutions of linear differential equations with primitive unimodular Galois group, Applied Algebra, Algebraic Algorithms and Error-correcting Codes (New Orleans, LA, 1991), Lecture Notes in Comput. Sci., vol. 539, Springer, Berlin, 1991, pp. 446–455.[MR]
- Felix Ulmer, On Liouvillian solutions of linear differential equations, Appl. Algebra Engrg. Comm. Comput. 2 (1992), no. 3, 171–193.[MR]
- Felix Ulmer, Liouvillian solutions of third order differential equations, J. Symbolic Comput. 36 (2003), no. 6, 855–889.[MR]
- Shayne Waldron and Nick Hay, On computing all harmonic frames of n vectors in Cd, Appl. Comput. Harmon. Anal. 21 (2006), no. 2, 168–181.[MR]
- Reza Zomorrodian, On a theorem of supersoluble automorphism groups, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2711–2713 (electronic).[MR]