2000

  1. Vincenzo Acciaro and Claus Fieker, Finding normal integral bases of cyclic number fields of prime degree, J. Symbolic Comput. 30 (2000), no. 2, 129–136.[MR/doi]
  2. Cunsheng Ding, David Kohel, and San Ling, Elementary 2-group character codes, IEEE Trans. Inform. Theory 46 (2000), no. 1, 280–284.[MR]
  3. Cunsheng Ding, David R. Kohel, and San Ling, Split group codes, IEEE Trans. Inform. Theory 46 (2000), no. 2, 485–495.[MR]
  4. Claus Fieker and Carsten Friedrichs, On reconstruction of algebraic numbers, Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 285–296.[MR]
  5. Volker Gebhardt, Constructing a short defining set of relations for a finite group, J. Algebra 233 (2000), no. 2, 526–542.[MR]
  6. Volker Gebhardt, Two short presentations for Lyons' sporadic simple group, Experiment. Math. 9 (2000), no. 3, 333–338.[MR]
  7. Katharina Geissler and Jürgen Klüners, Galois group computation for rational polynomials, J. Symbolic Comput. 30 (2000), no. 6, 653–674.[MR]
  8. Willem A. de Graaf, Lie Algebras: Theory and Algorithms, North-Holland Mathematical Library, vol. 56, North-Holland Publishing Co., Amsterdam, 2000, pp. xii+393.[MR]
  9. Ian Hughes and Gregor Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. Algebra 28 (2000), no. 4, 2059–2088.[MR]
  10. David R. Kohel and Igor E. Shparlinski, On exponential sums and group generators for elliptic curves over finite fields, Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 395–404.[MR]
  11. David R. Kohel and William A. Stein, Component groups of quotients of J0(N), Algorithmic Number Theory (Leiden, 2000), Lecture Notes in Comput. Sci., vol. 1838, Springer, Berlin, 2000, pp. 405–412.[MR]
  12. Saburo Matsumoto and Richard Rannard, The regular projective solution space of the figure-eight knot complement, Experiment. Math. 9 (2000), no. 2, 221–234.[MR]
  13. Scott H. Murray, Conjugacy classes in maximal parabolic subgroups of general linear groups, J. Algebra 233 (2000), no. 1, 135–155.[MR]
  14. Miles Reid, Graded rings and birational geometry, Proc. of Algebraic Geometry Symposium (Kinosaki, Oct 2000), K. Ohno (Ed.), 2000, pp. 1–72.
  15. L. J. Rylands and D. E. Taylor, Constructions for octonion and exceptional Jordan algebras, Des. Codes Cryptogr. 21 (2000), no. 1-3, 191–203.[MR/doi]

2001

  1. John J. Cannon, Bruce C. Cox, and Derek F. Holt, Computing the subgroups of a permutation group, J. Symbolic Comput. 31 (2001), no. 1-2, 149–161.[MR]
  2. D. Combe, W. D. Palmer, and W. R. Unger, Bhaskar Rao designs and the alternating group A4, Australas. J. Combin. 24 (2001), 275–283.[MR]
  3. D. Combe and D. E. Taylor, Two results concerning distance-regular directed graphs, Australas. J. Combin. 23 (2001), 27–36.[MR]
  4. Claus Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), no. 235, 1293–1303 (electronic).[MR/doi]
  5. Emanuel Herrmann and Attila Pethő, S-integral points on elliptic curves. Notes on a paper of B. M. M. de Weger, J. Théor. Nombres Bordeaux 13 (2001), no. 2, 443–451.[MR]
  6. R. B. Howlett, L. J. Rylands, and D. E. Taylor, Matrix generators for exceptional groups of Lie type, J. Symbolic Comput. 31 (2001), no. 4, 429–445.[MR/doi]
  7. Ian Hughes and Gregor Kemper, Symmetric powers of modular representations for groups with a Sylow subgroup of prime order, J. Algebra 241 (2001), no. 2, 759–788.[MR]
  8. Michael C. Slattery, Computing double cosets in soluble groups, J. Symbolic Comput. 31 (2001), no. 1-2, 179–192.[MR]

2002

  1. David Abelson, Seok-Hee Hong, and Donald E. Taylor, A group-theoretic method for drawing graphs symmetrically, Graph drawing, Lecture Notes in Comput. Sci., vol. 2528, Springer, Berlin, 2002, pp. 86–97.[MR/doi]
  2. Selma Altınok, Gavin Brown, and Miles Reid, Fano 3-folds, K3 surfaces and graded rings, Topology and Geometry: Commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 25–53.[MR]
  3. Nils Bruin and Noam D. Elkies, Trinomials ax7 + bx + c and ax8 + bx + c with Galois groups of order 168 and 8·168, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 172–188.[MR]
  4. Massimo Caboara and Teo Mora, The Chen-Reed-Helleseth-Truong decoding algorithm and the Gianni-Kalkbrenner Gröbner shape theorem, Appl. Algebra Engrg. Comm. Comput. 13 (2002), no. 3, 209–232.[MR]
  5. Bettina Eick, C. R. Leedham-Green, and E. A. O'Brien, Constructing automorphism groups of p-groups, Comm. Algebra 30 (2002), no. 5, 2271–2295.[MR]
  6. Claus Fieker and David R. Kohel (eds.), Algorithmic Number Theory, in Proceedings of the 5th International Symposium (ANTS-V) held at the University of Sydney, Sydney, July 7–12, 2002, Lecture Notes in Computer Science, vol. 2369, Springer-Verlag, Berlin, 2002, pp. x+517.[MR]
  7. Pierrick Gaudry, A comparison and a combination of SST and AGM algorithms for counting points of elliptic curves in characteristic 2, Y. Zhang (Ed.). Advances in cryptology—ASIACRYPT 2002, Lecture Notes in Comput. Sci., vol. 2501, Springer, Berlin, 2002, pp. 311–327.[MR]
  8. Volker Gebhardt, Efficient collection in infinite polycyclic groups, J. Symbolic Comput. 34 (2002), no. 3, 213–228.[MR]
  9. Mark van Hoeij and Michael Monagan, A modular GCD algorithm over number fields presented with multiple extensions, in Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2002, pp. 109–116 (electronic).[MR]
  10. C. R. Leedham-Green and Scott H. Murray, Variants of product replacement, Computational and Statistical Group Theory (Las Vegas, NV/Hoboken, NJ, 2001), Contemp. Math., vol. 298, Amer. Math. Soc., Providence, RI, 2002, pp. 97–104.[MR]
  11. Josef Schicho, Simplification of surface parametrizations, in Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2002, pp. 229–237 (electronic).[MR]
  12. Allan Steel, A new scheme for computing with algebraically closed fields, Algorithmic Number Theory (Sydney, 2002), Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 491–505.[MR]

2003

  1. Gavin Brown, Datagraphs in algebraic geometry and K3 surfaces, Symbolic and Numerical Scientific Computation (Hagenberg, 2001), Lecture Notes in Comput. Sci., vol. 2630, Springer, Berlin, 2003, pp. 210–224.[MR]
  2. N. Bruin and E. V. Flynn, n-covers of hyperelliptic curves, Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 397–405.[MR]
  3. J. J. Cannon and W. Unger, Magma, J. Grabmeier and E. Kaltofen and V. Weispfenning, eds. Computer Algebra Handbook: Foundations, Applications, Systems, Springer, Berlin, 2003, pp. 295–307.
  4. John J. Cannon and Derek F. Holt, Automorphism group computation and isomorphism testing in finite groups, J. Symbolic Comput. 35 (2003), no. 3, 241–267.[MR]
  5. Arjeh Cohen, Scott H. Murray, Martin Pollet, and Volker Sorge, Certifying solutions to permutation group problems, Automated Deduction - CADE-19, Lecture Notes in Computer Science, vol. 2741, Springer, Berlin/Heidelberg, 2003, pp. 258–273.
  6. Neil Dummigan, William Stein, and Mark Watkins, Constructing elements in Shafarevich-Tate groups of modular motives, Number Theory and Algebraic Geometry, London Math. Soc. Lecture Note Ser., vol. 303, Cambridge Univ. Press, Cambridge, 2003, pp. 91–118.[MR]
  7. Claus Fieker and Jürgen Klüners, Minimal discriminants for fields with small Frobenius groups as Galois groups, J. Number Theory 99 (2003), no. 2, 318–337.[MR]
  8. Petra E. Holmes, Stephen A. Linton, and Scott H. Murray, Product replacement in the Monster, Experiment. Math. 12 (2003), no. 1, 123–126.[MR]
  9. David R. Kohel and Helena A. Verrill, Fundamental domains for Shimura curves, J. Théor. Nombres Bordeaux 15 (2003), no. 1, 205–222.[MR]
  10. Colva M. Roney-Dougal and William R. Unger, The affine primitive permutation groups of degree less than 1000, J. Symbolic Comput. 35 (2003), no. 4, 421–439.[MR]
  11. Josef Schicho, Simplification of surface parametrizations—a lattice polygon approach, J. Symbolic Comput. 36 (2003), no. 3-4, 535–554.[MR]

2004

  1. Gavin Brown, Alessio Corti, and Francesco Zucconi, Birational geometry of 3-fold Mori fibre spaces, The Fano Conference, Univ. Torino, Turin, 2004, pp. 235–275.[MR]
  2. Nils Bruin, Visualising Sha[2] in abelian surfaces, Math. Comp. 73 (2004), no. 247, 1459–1476 (electronic).[MR]
  3. John J. Cannon, Bettina Eick, and Charles R. Leedham-Green, Special polycyclic generating sequences for finite soluble groups, J. Symbolic Comput. 38 (2004), no. 5, 1445–1460.[MR]
  4. John Cannon and Derek F. Holt, Computing maximal subgroups of finite groups, J. Symbolic Comput. 37 (2004), no. 5, 589–609.[MR]
  5. Arjeh M. Cohen, Scott H. Murray, and D. E. Taylor, Computing in groups of Lie type, Math. Comp. 73 (2004), no. 247, 1477–1498 (electronic).[MR]
  6. Noam D. Elkies and Mark Watkins, Elliptic curves of large rank and small conductor, Algorithmic Number Theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 42–56.[MR]
  7. Claus Fieker, Minimizing representations over number fields, J. Symbolic Comput. 38 (2004), no. 1, 833–842.[MR]
  8. E. V. Flynn, The Hasse principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), no. 4, 437–466.[MR]
  9. S. Galbraith, H. Hopkins, and I. Shparlinski, Secure bilinear Diffie-Hellman bits, H. Wang, J. Pieprzyk and V. Varadharajan (eds.),9th Australasian Conference, ACISP 2004, Sydney, Australia, July 13-15, 2004., Lecture Notes in Computer Science, vol. 3108, Springer, Berlin, 2004, pp. 370–378.
  10. Pierrick Gaudry and Éric Schost, Construction of secure random curves of genus 2 over prime fields, Advances in cryptology—EUROCRYPT 2004, Lecture Notes in Comput. Sci., vol. 3027, Springer, Berlin, 2004, pp. 239–256.[MR]
  11. M. Grassl and G. White, New good linear codes by special puncturings, International Symposium on Information Theory, 2004. ISIT 2004 (2004), 454.[doi]
  12. Adalbert Kerber and Axel Kohnert, Modular irreducible representations of the symmetric group as linear codes, European J. Combin. 25 (2004), no. 8, 1285–1299.[MR]
  13. Colva M. Roney-Dougal, Conjugacy of subgroups of the general linear group, Experiment. Math. 13 (2004), no. 2, 151–163.[MR]
  14. Mark Watkins, Class numbers of imaginary quadratic fields, Math. Comp. 73 (2004), no. 246, 907–938 (electronic).[MR]
  15. Mark Watkins, Real zeros of real odd Dirichlet L-functions, Math. Comp. 73 (2004), no. 245, 415–423 (electronic).[MR]