1986

  1. G. Butler, Divide-and-conquer in computational group theory, B. W. Char (ed),SYMSAC '86: Proceedings of the 1986 ACM Symposium on Symbolic and Algebraic Computation, Waterloo, July 21–23, 1986, ACM, New York, 1986, pp. 59–64.
  2. Gregory Butler, Data structures and algorithms for cyclically extended Schreier vectors, in Proceedings of the Fifteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, Man., 1985), vol. 52, 1986, pp. 63–78.[MR]
  3. Peter M. Neumann, Some algorithms for computing with finite permutation groups, in Proceedings of Groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 59–92.[MR]

1987

  1. G. Butler and M. J. Kendall, The suitability for master/slave concurrency of Concurrent Euclid, Ada and Modula, Software — Practice and Experience 17 (1987), no. 2, 117–134.

1988

  1. G. Butler and J. J. Cannon, Cayley version 4: the user language, P. Gianni (ed), Proceedings of the 1988 International Symposium on Symbolic and Algebraic Computation, Rome, July 4–8, 1988, LNCS, vol. 358, Springer, Berlin, 1988, pp. 456–466.
  2. Gregory Butler, A proof of Holt's algorithm, J. Symbolic Comput. 5 (1988), no. 3, 275–283.[MR]
  3. Gregory Butler, Permutation groups and p-groups, Computers in algebra (Chicago, IL, 1985), Lecture Notes in Pure and Appl. Math., vol. 111, Dekker, New York, 1988, pp. 1–16.[MR]
  4. S. P. Glasby, Constructing normalisers in finite soluble groups, J. Symbolic Comput. 5 (1988), no. 3, 285–294.[MR]
  5. S. P. Glasby, Intersecting subgroups of finite soluble groups, J. Symbolic Comput. 5 (1988), no. 3, 295–301.[MR]
  6. W. M. Kantor and D. E. Taylor, Polynomial-time versions of Sylow's theorem, J. Algorithms 9 (1988), no. 1, 1–17.[MR/doi]

1989

  1. Gregory Butler and John Cannon, Computing in permutation and matrix groups. III. Sylow subgroups, J. Symbolic Comput. 8 (1989), no. 3, 241–252.[MR]

1990

  1. W. Bosma and M. P. M. van der Hulst, Primality Proving with Cyclotomy, PhD Thesis, Universiteit van Amsterdam, 1990.
  2. Wieb Bosma, Approximation by mediants, Math. Comp. 54 (1990), no. 189, 421–434.[MR]
  3. Wieb Bosma, Canonical bases for cyclotomic fields, Appl. Algebra Engrg. Comm. Comput. 1 (1990), no. 2, 125–134.[MR]
  4. Wieb Bosma and Cor Kraaikamp, Metrical theory for optimal continued fractions, J. Number Theory 34 (1990), no. 3, 251–270.[MR]
  5. G. Butler and J. J. Cannon, The design of Cayley, a language for modern algebra, A. Miola (ed),Design and Implementation of Symbolic Computation Systems, LNCS, vol. 429, Springer, Berlin, 1990, pp. 10–19.
  6. G. Butler and S. S. Iyer, Deductive mathematical databases — a case study, Z. Michalewicz (ed), Statistical and Scientific Database Management, LNCS, vol. 420, Springer, Berlin, 1990, pp. 50–64.
  7. John J. Cannon (ed.), Computational group theory i, J. Symb. Comp, vol. 9, 1990.
  8. S. B. Conlon, Calculating characters of p-groups, J. Symbolic Comput. 9 (1990), no. 5-6, 535–550.[MR]
  9. S. B. Conlon, Computing modular and projective character degrees of soluble groups, J. Symbolic Comput. 9 (1990), no. 5-6, 551–570.[MR]
  10. S. P. Glasby and Michael C. Slattery, Computing intersections and normalizers in soluble groups, J. Symbolic Comput. 9 (1990), no. 5-6, 637–651.[MR]
  11. Gerhard J. A. Schneider, Computing with endomorphism rings of modular representations, J. Symbolic Comput. 9 (1990), no. 5-6, 607–636.[MR]
  12. Gerhard J. A. Schneider, Dixon's character table algorithm revisited, J. Symbolic Comput. 9 (1990), no. 5-6, 601–606.[MR]
  13. M. R. Vaughan-Lee, Collection from the left, J. Symbolic Comput. 9 (1990), no. 5-6, 725–733.[MR]

1991

  1. W. Bosma and M. Pohst, Computations with finitely generated modules over Dedekind domains, S. M. Watt (ed), ISSAC '91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, Bonn, July 15–17, 1991, ACM, New York, 1991, pp. 151–156.
  2. Wieb Bosma and Cor Kraaikamp, Optimal approximation by continued fractions, J. Austral. Math. Soc. Ser. A 50 (1991), no. 3, 481–504.[MR]
  3. Gregory Butler and John Cannon, Computing Sylow subgroups of permutation groups using homomorphic images of centralizers, J. Symbolic Comput. 12 (1991), no. 4-5, 443–457.[MR]
  4. P. J. Cameron and J. Cannon, Fast recognition of doubly transitive groups, J. Symbolic Comput. 12 (1991), no. 4-5, 459–474.[MR]
  5. J. J. Cannon (ed.), Computational group theory ii, J. Symb. Comp., vol. 12, 1991.
  6. S. S. Iyer G. Butler and S. H. Ley, A deductive database for the groups of order dividing 128, S. M. Watt (ed), ISSAC '91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, Bonn, July 15–17, 1991, ACM, New York, 1991, pp. 210–218.

1992

  1. F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1 (1992), no. 1, 23–44.[MR/doi]
  2. W. Bosma, Introductory lectures on Siegel modular forms (Book Review), 35 (1992), no. 3, 144–145.
  3. Wieb Bosma and John Cannon, Structural computation in finite permutation groups, CWI Quarterly 5 (1992), no. 2, 127–160.[MR]
  4. G. Butler, Experimental comparison of algorithms for Sylow subgroups, P. S. Wang (ed), ISSAC '92: Proceedings of the 1992 International Symposium on Symbolic and Algebraic Computation, Berkeley, July 27–29, 1992, ACM, New York, 1992, pp. 251–262.
  5. J. Cannon and G. Havas, Algorithms for groups, Australian Computer J. 24 (1992), no. 2, 51–60.
  6. J. S. Richardson, The Blockhandler and the Bitfield package, J. Symb. Comp. 14 (1992), no. 1, 93–101.
  7. Donald E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathematics, vol. 9, Heldermann Verlag, Berlin, 1992, pp. xii+229.[MR]

1993

  1. W. Bosma, M. P. Cattaneo and E. Strickland (eds), Topics in Computational Algebra (Book review), 60 (1993), no. 201, 443–445.
  2. Wieb Bosma, Explicit primality criteria for h·2k±1, Math. Comp. 61 (1993), no. 203, 97–109, S7–S9.[MR]
  3. Greg Butler and John J. Cannon, On Holt's algorithm, J. Symbolic Comput. 15 (1993), no. 2, 229–233.[MR]
  4. Peter Stevenhagen, The number of real quadratic fields having units of negative norm, Experiment. Math. 2 (1993), no. 2, 121–136.[MR]
  5. Michael Vaughan-Lee, An algorithm for computing graded algebras, J. Symbolic Comput. 16 (1993), no. 4, 345–354.[MR]

1994

  1. W. Bosma, G. Matthews, and J. Cannon, Programming with algebraic structures: Design of the Magma language, M. Giesbrecht (ed),Proceedings of the International Symposium on Symbolic and Algebraic Computation, Oxford, 1994, Association for Computing Machinery, ACM, New York, 1994, pp. 52–75.
  2. Wieb Bosma and Peter Stevenhagen, Density computations for real quadratic 2-class groups, Algorithmic number theory (Ithaca, NY, 1994), Lecture Notes in Comput. Sci., vol. 877, Springer, Berlin, 1994, pp. 17.[MR]
  3. G. Butler, S. S. Iyer, and E. A. O'Brien, A database of groups of prime-power order, Softw., Pract. Exper. 24 (1994), no. 10, 911-951.
  4. Derek F. Holt and Sarah Rees, Testing modules for irreducibility, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 1–16.[MR]
  5. Bart de Smit and Robert Perlis, Zeta functions do not determine class numbers, Bull. Amer. Math. Soc. (N.S.) 31 (1994), no. 2, 213–215.[MR]
  6. D. E. Taylor and Ming Yao Xu, Vertex-primitive half-transitive graphs, J. Austral. Math. Soc. Ser. A 57 (1994), no. 1, 113–124.[MR]