Sparse representation for cyclotomic fields

Claus Fieker!

School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
claus@math.usyd.edu.au http://magma.maths.usyd.edu.au/users/claus/

Abstract. Currently, all major implementations of cyclotomic fields as
well as number fields, are based on a dense model where elements are
represented either as dense polynomials in the generator of the field or as
coefficient vectors with respect to a fixed basis. While this representation
allows for the asymptotically fastest arithmetic for general elements, it
is unsuitable for fields of degree > 10* that arise in certain applications
such as character theory for finite groups. We propose instead a sparse
representation for cyclotomic fields that is particularly tailored towards
representation theory. We implemented our ideas in Magma and used it
for fields of degree > 10° over Q.

1 Introduction

Currently, most implementations of number fields are based on explicitly known
primitive elements and use a dense representation for the elements: A number
field K/Q is given by specifying a (monic) irreducible polynomial over the inte-
gers, f € Z[z] and K is constructed as the quotient ring

K :=Q[z]/f.

Based on this setting, elements are easily represented as polynomials of degree
less than deg f = [K : @]. Since univariate polynomials mostly have a dense
representation on a computer, ie. are represented as a vector of length equal to
the degree +1 of the polynomial, number field elements inherit this property.
The primary motivation for this project was an application in the computation
of characters of finite groups [9] where one needed to work in the nth cyclotomic
field for
n=2%.3.52.1201 = 5,764,800 = 7® — 1

of degree 1,536,000 over @. In particular, we need to evaluate the sum of eigen-
values of matrices over a finite field lifted into a cyclotomic field. Suppose the
eigenvalues lie in a finite field GF(p*), then the lift of a multiplicative generator
of GF(p*)* is Cpr—1- Thus the above example originated from a matrix over
GF(7) with eigenvalues in GF(78).

A second motivation arose in computational class field theory ([4]). Where
one starts with a finite Abelian group and computes a number field where the
automorphism group is isomorphic to the given group. The field decomposes

naturally into a compositum of cyclic fields of prime power degree parallel to
the decomposition of the group.
Lastly, a large number of applications start with constructions like:

Let K be a field containing a root of f and g and a nth root of unity.

One would like to preserve this information if possible, especially since usually
the size of a defining polynomial for the resulting field as a simple extension of @
is prohibitively large and also, since usually users expect the output to be given
with respect to their input.

In this article, we will focus mainly on the cyclotomic fields. While most of
the techniques apply equally to more general fields, we will discuss mainly the
techniques necessary in the context of character theory.

2 Sparse Representation

Our sparse representation is based on Magma’s sparse representation for mul-
tivariate polynomials: Let R := Qlz1,...,2,] be a polynomial ring of rank r
over Q and I < R be a zero dimensional maximal ideal. Then K := R/I is a
finite extension of @ thus a number field. Elements of K can be represented as
reduced polynomials in z1, ..., x,, where the notion of reduced depends on the
term order of R.

In what follows, the ideal I will always be generated by cyclotomic polyno-
mials with pairwise co-prime conductors. The term order is the lexicographical
order so that the generating polynomials already form a Groebner-basis for I.

Let us fix the setting: We want to perform computations in K := Q((,)
where (,, is a primitive n-th root of unity. Later we will specify (,, := exp(27i/n)
so that (, is uniquely determined as a complex number. In order to have a
meaningful sparse representation, we assume that n is not a prime power:

s
oIl
i=1

with » > 1 and the p; pairwise different. For the implementation we assume
that ¢(p;") = (pi — Dpj 1 <230 (1<i<r).
Writing f,, for the n-th cyclotomic polynomial, we set

I = <fp;11 (1‘1), ey fp?'r‘ (l‘r»
and immediately see
Q) = QG- Gy) = RJLL (1)

Elements of K are represented as sparse polynomials, that is as a (sorted)
list of pairs (ce, €) with e = (e, ..., e,) the exponent vector and ¢, € Q the coef-
ficient, thus (cc, e) represents ¢, [| C;L Exponents e; > deg f,»: can be reduced

using the cyclotomic polynomials (or explicit formluae). Since the polynomials
are univariate in different variables, the reduction of e; does not change any of
the other exponents, the term is replaced by a sum of terms where then ith
exponents are bounded by ¢(p;*). In general however, since reduction is a fairly
expensive operation, we allow the exponents to grow to approximately 2¢(p;"*)
before we reduce - unless a unique representation is required for some operation.

3 Arithmetic

Basic Arithmetic. The basic arithmetic operations like addition and multipli-
cation, are done using representatives in R, thus they reduce to addition and
multiplication of multivariate polynomials, possibly followed by a reduction. It is
important to note that none of these operations require a unique representation,
any representative of f+1I in R can be used. In what follows however, we require
the terms in f to be sorted. The complexity of the operations is straightforward
to estimate: Let o and 3 € K be represented by f + I and g + I respectively,
denoted by a & f + I and § = g+ I. We write #f for the number of terms in
f. By abuse of notation, we also write #a to denote the number of terms in the
current representative for e when it is clear what the representative looks like.

Theorem 1. Fora and 5 € K, a2 f+ 1, 8= g+ I we have

1. a+p = vE > h+1 and h = f+g can be computed in O((#f+#g)) operations.
2.af =~y 2 h+1 and h = fg can be computed in O((#f#4g)log(#f#g))
operations.

Proof. Using naive algorithms for the operation on the multivariate polynomials,
the only part of the statement that need any explanation is the log factor in
the complexity estimate for the multiplication. It comes from the sorting that
is required to find identical exponent vectors. If we would use a hash-based
implementation for multivariate polynomials, the log factor would essentially
disappear.

It is important to realize that the complexity of operations depends mainly on
the algebraic numbers involved and is essentially independent of the degree of
the field K or even of the polynomials fn: used to represent K. In fact, the
defining polynomials are only used to reduce a representation, thus as long as
no “overflow” occurs during a multiplication, the defining polynomials are never
used. Thus for small numbers, the sparse representation is much better than the
classical dense one.

On the other hand, since the hidden constants are not negligible, as the
numbers involved get denser the sparse representation performs worse and worse,
thus for dense numbers the classical representation is better. Additionally, even
if we assume that #f,#g < deg K and therefore get for the complexity of the
multiplication:

O(#f#glog(#[#9)) = O((deg K)*log deg K),

which is far worse than the O(deg K logdeg K) that the asymptotically fast
methods in [10] that are available for the classical representation would incur.

Minimal polynomials. For arbitrary dense elements, the computation of min-
imal polynomials is a hopeless task, as their degree will be the degree of the
field. However, for elements that lie in small degree subfields, it is reasonable to
compute minimal polynomials using linear algebra. In a later paragraph we will
indicate a different approach as well.

Let B := {[[_; 27'|0 < e; < deg fpni} be the canonical basis for K/Q. By
mapping

UV:K>a= Zﬂbe (ap)pen € QB
beB

we obtain a Q-vectorspace isomorphism that we will use to compute minimal
polynomials. We write (A|B) for the concatenation of two matrices A and B
with the same number of rows.

Algorithm 1 (Minimal Polynomial) Let 0 # « € K be arbitrary and ¥ :
K — QF as above.

1. Set M :=¥(1), =1 andi:=0.

2. While i < d do

3. Repeati:=i+1, :=pa and M := (M|¥(B)) until i divides d.

4. Try to find a non-trivial element e = (eq, . .., e;) in the nullspace of M, ie.
Me = 0. If there is such an element, set f := 1/e; Z;:o e;x? and return
f, if not, go back to step 2

Proof. Since minimal polynomials of elements always define subfields, the degree
of f must be a divisor of d. By construction, the above algorithm finds the
relation between powers of « of minimal degree, it is clear that e; is non-zero in
the last step. The fact that ¥ is an isomorphism of Q-vectorspaces and the basis
property of B guarantee that f is indeed the minimal polynomial of a.

To estimate the the complexity of the above algorithm, we note that deg f many
multiplications are used, O(deg f) many rank computations and 1 nullspace. If
we use sparse matrices to represent M and assume that none of the multipli-
cations requires a reduction, then the complexity is independent of the degree
of K, it depends on the number of non-zero coefficients of o (and it’s powers)
and the degree of f. By Theorem 1 we see that, under the assumption that «
is (very) sparse (to be more precise we assume that no reductions are necessary
after the multiplications, or equivalently, that for all products of elements oc-
curring, the products of the basis elements with non-zero coefficients are in B),
the dimension of the algebra problem is bounded by (deg f)#a. The total com-
plexity for the deg f multiplications becomes O((#a)%°8/ log(#a)). It must be
stressed that this a very crude estimate only. In practise overflow is very likely
to occur making it very hard to give a better, realistic estimate.

Automorphisms. Since Gal(K/Q) = (Z /nZZ)* = [\ (Z /p}' Z)* , automor-

phisms can be parametrized by integer vectors a = (a1,...,a,) € Z" such that
a; is co-prime to p;. An application of a to a basis element B > b = H;l x can

thus be computed as a(b) = b* = []_, z{*“* - followed by a reduction modulo

I. The cost of an application of any automorphism a to an arbitrary a € K is
therefore O(#a) plus the cost r for a reduction. An elementary argument shows
that r = O(#amax]_; ¢(p;'")).

Inversion. Inversion is a more complicated operation. We will give two algo-
rithms that can be used to compute inverses: the first is based on the minimal
polynomial, while the second uses the automorphism group.

The first method is straightforward: given 0 # o € K, using Algorithm 1,
compute a polynomial f = Zé:o a;x" of minimal degree such that f(a) = 0.
Now, 3 := —1/ag Zi:l a;a’~1 is the inverse. By reusing the matrix M built in
Algorithm 1, we can compute § without any additional operations in K, thus
obtaining the inverse with the same complexity as the minimal polynomial.

The second method is based on identities 1/a = [[cg .01 @//N(a) and
N(a) = [l eq @ and the fact that products (and sums) over all group elements
of an Abelian group can be evaluated efficiently.

Algorithm 2 (Inversion) Let 0 # o € K be arbitrary and G = Gal(K/Q) =
H§:1<gi> decomposed into a direct product with #{g;) = ¢;.

1. Seti:=1, f:=a and v :=1.

2. While i <1 do _

3. Compute 3 :=[[C" %, v :=~8 and a = fBa.
4. Return v/p

Proof. After each iteration, we have v = H#geai a9 and (3 := HQEGi a9 where
G; :={g1,-..,9i). Thus at the end of the algorithm, 8 € @ so that the division
is easily done.

The complexity of this operation is easily estimated: we need Zé:l ¢; — 1 auto-
morphism applications and 22:1 ¢; multiplications in K.

For further optimization, note that we can essentially omit the Step 3 for all
1 where § = 39 and thus reduce the complexity for elements in certain subfields.

We also note that similar techniques can be used to compute the norm and
trace of elements and easy modifications allow one to compute a set of all alge-
braic conjugates of an element, ie. a full Galois-orbit. This full orbit can then be
used to compute the degree of an element and it’s minimal polynomial.

4 Embeddings

From the point of view of character theory, an important property of the sparse
representation is that it is trivial to decide if an element already lies in a smaller
cyclotomic field and, if so, to compute the new representation. If we set (, :=
exp(2mi/n) then for all ml = n we have ¢!, = (,,, in particular, C;ZHI = (-

Therefore for a monomial o = [];_; i € Q(Cn) the smallest m|n such that
o € Q((y) is obtained as m = [[|_, pl for l; = n; — vp,(e;) and the new
Up, (ei)

representation is a = [[}_,; Cf,l for f; :=e;/p;
p;

In order to decide if & € Q((,,) for some given m|n we only need to check if all
the exponents are divisible by the correct prime powers. Similarly, to represent
« in a larger field, the exponents have to be scaled by some powers of p;.

A related task that is needed frequently is to find a fixed primitive root of
unity in a given field. However, while for p and ¢ coprime, (,(, is a primitive pg-th
root of unity, in general, (,(; # (pq- We make use of the following algorithm:

Algorithm 3 Let K := Q((,) be given in sparse representation and let m|n be
arbitrary.

1. Seta; =n/p}* fori<i<r

2. Compute (using the extended GCD) b; s.th. a;b; =1 mod p}*
3. Set Gy =11, gﬁ;i

4. Return glf/m

Proof. We must have (% = Cpri In view of the complex embeddings, expanding
Cn, we get '

T

.

i ibj i\aib;

=Tt =TT,
j=1 "’

j=1

Now a;b; is divisible by p;” for all j # i since a; already is, thus (2/*" = 1. For

j =i our construction gives (L% = (¢ar)asbi = ¢% b;

n;
i
p;

= (,n: as desired.
P;

This algorithm can obviously also be used to compute sparse representations
from dense ones, the reverse, sparse from dense being trivial.

5 Prime splitting

We consider only the unramified primes here, so let p be a prime, co-prime to n.
The prime will split in the maximal order ZZ i = ZZ[(,] into a product of prime

ideals: l

pZx =[] P
i=1
where f; := deg P; := deg(Z k/P; : GF(p)), the degree of the residue class field
of P;, is constant for all 4. Class field theory easily gives f = f; = ord(p(nZ)) in
the group (Z /nZZ)*, so we can assume the degree to be known. The standard
way of computing the splitting behaviour of an unramified prime is based on a
theorem of Kummer:

Theorem 2. Let g be the minimal polynomial for a primitive element o of K/Q.
If p is a prime co-prime to the discriminant of g, then pZx = Hi:l P; and
P, = (p,g;(v)) where g; is a lift from the factorisation g = Hizl gi mod pZ.

Of course, since in our case the degree (K : Q) is large and the defining polyno-

mial is not “known”, we cannot directly use this theorem, nevertheless, it is the
foundation of our method:

Algorithm 4 (Prime Splitting) Let K := Q({,) be given in sparse represen-
tation and let p a prime co-prime to n.

1. Compute f = ord(p) in (Z nZ)*

2. Let C := GF(p, f), z € C* be an element of order n and z, be a primitive
nth root of umtyfgwen by Algomthm 3.

3. Compute g := (x — 2P") € GF(p)[z] and a lift g € Z[x] of g.

4. Let I = {}, U (Y < (ZnZZ)* and S := (Z/nZZ)*] /U a set of coset
representatives.

5. Set I:={(p,g(z%))|s € S}.

Proof. The validity of the algorithm follows directly from Kummer’s theorem 2
and the fact that the Galois group of a number field operates transitively on the
prime ideals lying over a fixed prime number.

The complexity of the algorithm can roughly be estimated to depend on f
and #S =n/f.

While this very simple method is certainly extremely efficient for cyclotomic
fields and unramified primes, it does not easily generalize to arbitrary number
fields, not even to normal or Abelian ones.

6 Comparison

In the last few sections we demonstrated how the sparse representation can be
used to implement efficient algorithms for some tasks relating to representation
theory. In particular for the computation of characters of finite groups there are
other representations for cyclotomic numbers known in the literature. In [2] a
basis for the ring of integers is suggested such that certain subsets form bases for
cyclotomic subfields, and in [3] a different approach gives bases such that bases
for all Abelian subfields can easily be obtained.

In general, it is difficult to compare the different methods as their implemen-
tation follows completely different strategies. However, some observations can
be made.

Firstly, [2] focuses essentially on a representation that allows for easy recog-
nition of numbers that are in cyclotomic subfields. A close examination of our
Section 4 shows that our field basis has essentially the same properties as Bosma’s
basis, namely that subfields correspond to subsets. However, since our implemen-
tation is based on sparse multivariate polynomials, while Bosma’s is based on
dense elements, it is clear that for sparse elements our representation will be
much more efficient. Moreover, elements in cyclotomic subfields automatically
get almost optimal arithmetic, even without changing their representation to
reflect the smaller fields. Thus the problem of finding a good strategy to decide
when to find minimal fields of definition is far less important and can usually
be deferred right to the end. Also, since Bosma uses a “generic” basis, multipli-
cation of elements has to be done either by using the structure constants or by
changing the representation. Both possibilities require either slow algorithms or

the storage of a large amount of data, n? elements for structure constants or 2n
elements for a base change, both of which is infeasible for huge values of n.

For the second method [3], we can actually directly compare the algorithms
since they are implemented in the gap-system [5]. The gap implementation also
uses a sparse representation. Based on architectural differences, the implemen-
tation is limited to n < 228, while the Magma version can handle larger n if the
prime powers are bounded by 23°. In practice, none of those limitations mat-
ter, as general operations become very slow regardless. The algorithms used for
multiplication and addition are essentially the same as ours, the main difference
is that the polynomial reduction is replaced by an explicit formula re-writing
“wrong” powers of the primitive element in terms of the basis, thus the com-
plexity should be the same. For the computation of inverses, they use the same
idea as we do in Algorithm 2, but instead of using the structure of the auto-
morphism group, they use a list of all automorphisms, and thus obtain a far
worse runtime. Since Breuer’s motivation is purely group theoretical, they do
not give any algorithms for minimal polynomials, norm and trace computations
or prime splitting. On the other hand, their representation allows in principle to
find minimal fields of definition easily, while ours only finds minimal cyclotomic
fields. However, in practice, no one seems to use non-cyclotomic fields.

7 Generalisation

Several of the algorithms presented here for sparse cyclotomic fields apply easily
to arbitrary sparse represented number fields. The algorithms that do not carry
over easily are the ones that rely on the knowledge of the (Abelian) automor-
phism group (Algorithm 2) and the primitive element (Algorithm 4). While it
is clear that inverses can be computed using minimal polynomials, obviously, if
the automorphism group is known, a variation of Algorithm 2 does apply.

So it remains to give an alternative to Algorithm 4. In [8], it is shown that
the polynomial factorisation in Kummer’s theorem can be replaced by a primary
decomposition, however, in practice, this is not fast enough. Alternatively, also
in [8], an algorithm is given where a randomly chosen primitive element is used,
the difficulties being that the verification of primitivity is rather expensive and
the construction of the minimal polynomial is complicated. Here we suggest a
different method:

Algorithm 5 Let K := Q(ay,...,a,) be given and assume that the intermedi-
ate fields Q(«;) have disjoint normal closures. Let f; be the minimal polynomial
of a;. Furthermore, let p be a rational prime that is co-prime to the discriminants
of the f; for all1 <i<r.

. Set I:={}.

. Compute l; ; € GF(p)[z] such that f; = [[;2; li ;.

. Set Lz = {liJ' | 1 S_] S ’I"i}.

. Foralll=(l1,...,0;) € Ly x -+ x L, do

Compute d :=lem{degl; | 1 <i <r} and set k := GF(p,d).

Grds WL o~

6. Compute R; := {z € k|l;(x) =0} 1 < ¢ < r) and set R := {xi €
Ry x -+ x R}
7. While R#0 do ‘
8. Fix some x € R and setR::R\{(xf])lgiST |1<j<d}.
9. Set: K —k:a;+— x; and ¢ : k — GF(p)? and compute a basis b for
the nullspace of ¢ o) restricted to ZZ[B] as a map between modules.
10. Finally, set I :=T1U{(b)}.

Proof. The condition on p guarantees that ZZ[B] is p-maximal as an order in
K (implying that prime ideals in ZZ[B] “are” primes in the maximal order as
well) and that f; is square-free over GF(p). Since v is obviously a (surjective)
ring homomorphism from ZZ[B] onto k, its kernel is an ideal. Since k is a field,
the ideal has to be prime. Using the fact that ¢ is an isomorphism of GF(p)-
vectorspaces, it is now obvious that the kernel of ¢ o generates the prime ideal
that has 1 as a residue class field map.

The algorithm can be optimized in various ways, for example, since pZZ[B] is
obviously contained in the kernel of ¥, we can compute the kernel as a nullspace
over GF(p) and supplement it afterwards.

A major difference between Algorithms 4 and 5 is the way the prime ideals are
represented: in Algorithm 4 the ideals are given in a very compact form using
only 2 generators while Algorithm 5 computes only a Z-basis for the ideals.
While this does not appear to be a major problem it limits the applicability
quite severely: the second generator (or a close relative) is crucial for many
algorithms, for example it is used to compute valuations at this prime. One way
to overcome this is to randomly choose elements of the ideal and test if they are
suitable as 2nd generators. While this method is usually successful, is still has
two problems. First, as pointed out by Belabas [1], for small prime numbers that
are highly split, the probabilities for randomly choosing a suitable element are
quite small, and secondly, the test for suitability involves norm computations
which easily dominate the running time.

If a primitive element 8 for K/@Q as a polynomial in the «; is known and if
the prime p is co-prime to the discriminant of ZZ[f3], then Algorithm 5 can easily
be adapted to compute 2-element representations as well.

It should also be noted that the complexity of the computation of the com-
plete prime-splitting depends on the degree of K/®, so that even the more
optimized algorithms like Algorithm 5 cannot be applied to really large fields.

8 Examples

We want to illustrate the power of the sparse method and demonstrate that the
very rough complexity analysis of the previous sections does reflect the behaviour
of the algorithms properly.

We start with simple arithmetic. We will work in the fields Q(¢,) for n =
7' — 1, using random elements with a growing number n, of non-zero coefficients
in the range [0,np]. Table 1 compares times for elements with small coefficients

np = 10 in moderately large fields (n = 74 — 1, ¢(n) = 640) for basic operations
(4, x) in sparse and dense representation. It is easy to see that the time for the
dense representation is independent on the sparsity.

In the next table, Table 2, we compare the times for basic operations in a
family of fields, n, = 7' —1 for I = 2,...,8. Again, the times support our rough
complexity analysis, as they show that the times depends only on the number
of non-zero coefficients and is independent of the field degree, the dependence
on the degree in the table for small [is due to the fact that the elements are
relatively dense in those examples, ¢(72 — 1) = 16, ¢(73 — 1) = 108 thus the
multiplication is dominated by the reduction - which, for dense elements, is
mainly dependent on the representation of the field.

In the last table, Table 3, we give timings for the computation of minimal
polynomials of small degree and of inverses using Algorithm 2. We first choose
a “random” subgroup U of the automorphism group G = (ZZ/(7* — 1)Z)* of
K = Q(¢74_1) of small index | = 4,8, 16,20, then compute a basis for the field
fixed by U and finally choose small linear combinations of those basis elements.
We also give the average number of non-zero coeflicients with respect to B. It
should be noted that the times for minimal polynomials are obtained using an
optimized implementation in the c-language, while the inverses were computed
using a (crude) magma language implementation. So while the times should not
be compared directly, it can be noted that the times for minimal polynomial
depend strongly on the degree of the polynomial, while the inverse depends
on the structure of G. So for elements in small degree subfields, the minimal
polynomial method is better suited for inverses than Algorithm 2 which depends
on the sparsity and the structure of the automorphism group.

Finally, we present an example showing the overall impact of the sparse
representation in computational class field theory. Starting with the field k :=
Q(\/ﬁ), we compute R the 5-part of the ray class group modulo 52 - 11 - 31
which is isomorphic to C#. Since the defining modulus is invariant under the
Q-automorphisms of k, R, as an GF(5)-module has an induced action of v/10
—1/10. Under this action R has a unique invariant subspace isomorphic to Cs,
thus R has a Galois-stable quotient that is isomorphic to C3. Using Magma, we
can compute a sparse representation for the corresponding field K in 2.6 seconds,
ie. 3 polynomials of degree 5, that can be printed using 400 characters. In this
representation it takes Magma further 2 minutes to compute explicitly 3 gener-
ating k-automorphisms and an extension of the Q-automorphism of k to K. This
computations uses the sparse representation for both K and the Kummer ex-
tension K ((5)/k((s). Each of the automorphisms can be written down using less
than 1000 characters, that is, the total number of digits in the coefficients of the
images of the generators is reasonable small (for a field of degree 250 over Q). On
the other hand, it takes Magma 450 seconds to compute the minimal polynomial
of a sum of the three generators. The resulting polynomial, which can be used
to define K in the traditional way, needs a total of about 50,000 characters to
print, each of the generating automorphisms takes more than 200,000 characters
to write down, making them totally useless for any further applications.

Table 1. [= 4, degree (Q(¢7a_1) : Q) = 640, np = 10. The first two rows are timings
in sparse representation, the last two are for the dense model. Times are for 1000
operations each.

na=| 4 | 8 | 12 | 16 | 20 | 30 | 40 | 50 | 100 | 200 | 300
+ [0.000] 0.0100.010]0.010 [0.010 [0.010 [0.010 | 0.020 | 0.020 | 0.030 [0.040
x_{]0.020] 0.050 | 0.120 | 0.180 | 0.360 | 0.570 | 1.020 | 1.410 | 3.510 | 8.620 |16.930
+ 0.010]0.020 [0.010] 0.020 | 0.010 | 0.010 | 0.020 | 0.010 | 0.020 | 0.010 | 0.010
X 1/0.090|23.910|24.140|24.240|24.310|24.160| 24.340|24.330|24.310|24.320|24.270

Table 2.1 =2,...,8, n, = 4,8,12,20, 30,40, n, = 10. Times are for 1000 operations
each

Ina=[| 4 | 8 | 12] 20 | 30 | 40

o T 0.020{0.030{0.030|0.030{0.030{0.030
% 1(0.030{0.050{0.060{0.070|0.090{0.090
3 -+ {]0.030{0.020{0.030{0.040{0.040{0.060
% 1/0.040{0.070{0.120{0.210|0.330|0.440
4l T 0.020/0.030{0.030{0.040{0.050{0.060
% 1/0.040{0.080{0.150{0.370|0.720{1.130
5 -+ {]0.040{0.020{0.030{0.040{0.050{0.060
% 1(0.030{0.080{0.150{0.400|0.870{1.460
6 -+ {]0.020{0.030{0.040{0.050{0.050{0.060
% 1/0.040{0.080{0.150{0.410|0.940{1.710
7 + {|0.050{0.030{0.030|0.040|0.050{0.060
% 1(0.040{0.080{0.150{0.460|0.970{1.760
8 + {/0.030{0.030{0.030|0.050{0.050{0.060
% 1/0.040{0.080{0.160{0.410|0.970{1.870

Table 3. Minimal polynomials and inverses of elements of degree | = 4,8,16,20 in
Q(¢n) for n = 7* — 1 of elements with “small” coefficients. The times are for 100
random elements of the same subfield each.

=] 4 | 8 [16 | 20
#all 13 T 9] 20 [60

7 10240 [0.380 [2.120 [11.800
()~*{/10.660{10.460(12.190|22.340

References

9.

. Belabas, K.: Topics in computational algebraic number theory. J. Theor. Nombres

Bordeaux 16, 19-63 (2004).

Bosma, W.: Canonical bases for cyclotomic fields. Appl. Algebra Eng. Commun.
Comput. 1, No.2, 125-134 (1990).

Breuer, T.: Integral bases for subfields of cyclotomic fields. Appl. Algebra Eng.
Commun. Comput. 8, No.4, 279-289 (1997).

Fieker, C.: Computing class fields via the Artin map. Math. Comput. 70, 1293-1303
(2001).

GAP4: http://www-gap.mcs.st-and.ac.uk/

Bosma, W., Cannon, J. and Playoust, C.: The Magma Algebra System I: The User
Language. J. of Symb. Comput. 24, No 3, 235-265 (1997).

Magma: http://magma.maths.usyd.edu.au/

Pohl, S.: Primidealzerlegung in Komposita von Zahlkérpern. Diplom Thesis, TU-
Berlin, 2002.

Unger, W.: Computing the character table of a finite group. Submitted to J. of
Symb. Comput. (2005).

10. Gathen, J. von zur., Gerhard, J.: Modern computer algebra. Cambridge University

Press (1999).

