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Another 80-dimensional extremal lattice

par Mark WATKINS

Abstract. We show that the unimodular lattice associated to
the rank 20 quaternionic matrix group SL2(F41)⊗ S̃3 ⊂ GL80(Z)
is a fourth example of an 80-dimensional extremal lattice. Our
method is to use the positivity of the Θ-series in conjunction with
an enumeration of all the norm 10 vectors. The use of Asch-
bacher’s theorem on subgroups of finite classical groups (reliant
on the classification of finite simple groups) provides one proof
that this lattice is distinct from the previous three, while com-
puting the inner product distribution of the minimal vectors is an
alternative method. We give details of both. The latter method
also enables us to find the full automorphism group for each of
the four lattices, and as already noted by Nebe, this fourth lattice
has an additional 2-extension in its automorphism group.

Résumé. Nous montrons que le réseau unimodulaire associé au
groupe de matrices quaternioniques SL2(F41)⊗ S̃3 ⊂ GL80(Z) de
rang 20 donne un quatrième exemple d’un réseau extrémal en
dimension 80. Notre méthode utilise la positivié de la série Θ
ainsi que l’énumération des vecteurs de norme 10. L’utilisation
du théorème d’Aschbacher sur les sous-groupes de groupes fi-
nis classiques (qui suit de la classification des groupes finis sim-
ples) permet de démontrer que ce réseau est différent des trois
précédents. Une autre méthode est de calculer la distribution du
produit scalaire des vecteurs minimaux. Nous donnons les deux
preuves en détails. Cette dernière méthode nous permet également
de déterminer complètement le groupe des automorphismes de
ces quatre réseaux. Comme cela a déjà été noté par Nebe, ce
quatrième réseau possède une 2-extension supplémentaire de son
groupe d’automorphismes.

1. Introduction

Extremal unimodular lattices are of interest because they often have
high packing densities and large kissing numbers. They can only exist in
dimensions divisible by 8, the first example being E8. Examples are known
in each dimension up through 80, where three such lattices were known. In
this dimension, being extremal means the smallest nonzero norm is 8.
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The topic of constructing extremal lattices has seen a recent surge in
interest, in part due to Nebe’s demonstration [28] of such a lattice in di-
mension 72, answering a question that had been open for some time (and
indeed, various experts seemed to favour the opinion that such a lattice
could not exist [8, p. 129, Remark]). Bachoc and Nebe [3] had previously
constructed two extremal lattices in dimension 80, proving these were ex-
tremal using coding theory; and more recently Stehlé and the author [38]
used a more computationally intensive method to show that the lattice as-
sociated to the (binary) extended quadratic residue code of length 80 is a
third example in this dimension. We use techniques similar to those exposed
in [38] to prove the extremality of a fourth lattice in this dimension. This
lattice corresponds to the rank 20 quaternionic matrix group SL2(F41)⊗S̃3

as constructed by Nebe in [25, §3], and in [25, Lemma 4.3(i)] it is noted
that there is an additional 2-extension in the automorphism group.

1.1. Overview. Similar to the proof in [38], we show extremality by enu-
merating all the vectors of norm 10 and using the positivity of the Θ-series.
We indicate various improvements over the methods used in [38], in par-
ticular those which allowed us to work with an automorphism group which
does not have such a nice representation as with SL2(F79). We give two
proofs that our lattice is not isometric to any of the previous lattices. The
first uses Aschbacher’s theorem on subgroups of finite classical groups [2],
while the second involves computing the inner product distribution of the
minimal vectors. We provide statistics about the inner product distribu-
tion of the minimal vectors for all known 80-dimensional extremal lattices.
Finally, we comment on some examples we found in dimension 64, and our
failure to find any new examples in dimension 48.

2. Our lattice

Our lattice L is given by Nebe [25, Remark 5.2] via a construction over
the quaternion algebra Q√41,∞,∞. There are two non-conjugate maximal
orders, and the one of interest for us contains the maximal order of Q∞,3,

Unwinding this notation, we find that it corresponds to writing one of
the (complex-conjugate) 20-dimensional representations of SL2(F41) over
a quaternion algebra, with the two possibilities being either the Hurwitz
quaternions Q∞,2, or our case of Q∞,3. In either case we augment the
automorphism group by the units of the quaternion ring, so S̃3 for us.

2.1. A computation to realise L. Nebe gives one method for construct-
ing L, namely by constructing a representation of a metacyclic group, and
then solving norm equations in abelian fields (see [25, §3]). We chose to
construct the lattice via a different, perhaps more circuitous route, via
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the representation theory and G-module functionality in Magma [6]. In-
stead of starting from SL2(F41) as in [25], we worked directly with the
group G = SL2(F41) ⊗ S̃3, and considered the rational 80-dimensional
representations of it.1 In particular, we wrote SL2(F41) and S̃3 as per-
mutation groups, and took their direct product. We then computed the
rational characters of degree 80, and limited ourselves to those with a ker-
nel given by identifying the central −1 elements in the two groups. This
left two characters, and as is noted in [25, §5], the representation we seek
is reducible over the reals, so we reject the remaining irreducible character.
We computed a QG-module that affords this character using the GModule
command2 of Magma [6], and found that there is indeed a 2-dimensional
space of symmetric forms fixed by this matrix group. Writing f, g for a
basis of these, the determinant of fx+ gy is of the form q(x, y)40 for some
homogeneous quadratic polynomial q (depending on f, g), and so we solved
the conic q(x, y) = 1. With minimal effort we found a solution (x, y) which
made fx+ gy integral, and this gives a Gram matrix of our lattice L.

An alternative method to construct L would be: take the sum of the two
20-dimensional characters of SL2(F41), and write the resulting represen-
tation in degree 20 over Q3,∞ (one can take the “tensor product” of this
with the degree 1 quaternionic representation of the faithful irreducible
degree 2 character of S̃3, but this is just the action of the units). How-
ever, it seems that the best way to do this is to first write the G-module
in dimension 80 over Z, and then find i, j in the endomorphism ring with
i2 = −1, j2 = −3, ij = −ji to realise the module over Q3,∞. In either case,
we get not only the relevant Gram matrix but also the action of G on it.

3. Proving L is extremal

We use the general method outlined in [38], which was adapted from an
idea in [1], and indeed is essentially already in [23]. We first note that an
even lattice has a Θ-series Θ(L) =

∑
~v q

~v·~v/2 that is a modular form, and
for a unimodular lattice L of dimension 80 this has weight 40 and level 1.
The space of such modular forms has dimension 4, and a basis is given by

f0 = 1 + 1250172000q4 + 7541401190400q5 +O(q6),

f1 = q + 19291168q4 + 37956369150q5 +O(q6),

f2 = q2 + 156024q4 + 57085952q5 +O(q6),

f3 = q3 + 168q4 − 12636q5 +O(q6).

1The additional 2-extension was not considered for two reasons: firstly, while the construction
of G is relatively straightforward, it was not clear to me how the additional extension could be

appended; and secondly, it was only belatedly that I found out about this 2-extension anyway.
2This took about 15 minutes, but this could vary as the underlying methods are in flux.
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The Θ-series of L is then given by Θ(L) = f0 + a1f1 + a2f2 + a3f3 for
some integers ai ≥ 0. A lattice is said to be extremal when all the ai
are zero. Indeed, in this case the minimal norm is as large as possible, and
the Θ-series is given simply by the first element in the above basis. We
show that Θ(L) = f0 by first showing that a1 = a2 = 0 via a brute-force
search (relying on parallel enumeration code of Pujol [32]), which implies

Θ(L) = f0+a3f3 = 1+a3q
3+(· · · )q4+(7541401190400−12636a3)q5+O(q6).

We then proceed to search for 7541401190400 vectors of norm 10, and
upon finding this amount, will have shown extremality because positivity
then implies that a3 = 0. The capacity to find this many vectors depends
on a number of factors. We find one representative in each orbit under the
known automorphisms, but this still leaves about 18.6 million orbits to be
found in our case. By a coupon-collecting analysis, this implies that a bit
over 300 million “random” vectors of norm 10 will need to be found, and
below we give two methods that are able to achieve this. The reason why
we find vectors of norm 10 rather than search for norm 6 vectors directly is
that the latter would need to be exhaustive, and there is no apparent way
to exploit the automorphisms in such a search.

3.1. No vectors of norm 2 or 4. Unlike the case of [38, §5.1], we are
not able to relate our lattice to a coding theory construction so as to elim-
inate the possibility of vectors of norm 2 or 4. However, after finding a
sufficiently good basis for the lattice using block Korkine-Zolotareff (BKZ)
reduction [35] (with a dimension parameter of about 30 — this is usually
all that is useful, and takes less than 10 minutes), it only takes only a cou-
ple of cpu-months to do an exhaustive search, and parallel code for this is
now available from Pujol [32] (described in [10], and see also [9]). Using 12
cpus and Pujol’s code, it took about 4 days to show that our lattice has no
vectors of norm 2 or 4. We had to make a slight modification to the code
to allow an integral Gram matrix (rather than a basis) as the input.3

3.2. Vectors of norm 10 with nontrivial stabiliser. First we find all
the vectors of norm 10 that have a nontrivial stabiliser. To do this, we
compute the conjugacy classes of G, and then for each nontrivial conjugacy
class, take a representative g of it and search for vectors in the sublattice
fixed by g. We find that there are 140 nontrivial conjugacy classes, and the
largest sublattice fixed by any of these is of dimension 40. We are able to
find all vectors of norm up to 10 in such sublattices in about 15 minutes.
For the orbits of vectors of norm 10, we find:
• 34342 orbits with stabiliser of size 2,
• 260 orbits with stabiliser of size 3,

3This induces minor changes in the error analysis [33] of the floating point computations.
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• 56 orbits with stabiliser of size 6,
• 10 orbits with stabiliser of size 10.

See Section 3.4 for how to recognise orbits. Assuming the lattice is extremal,
this leaves 18230412 free orbits to be found.

3.3. Finding vectors via pruning. As described in [38], the idea of
pruning (perhaps first noted in [36, p. 195]) is to follow the standard enu-
meration technique of Kannan [18] or Fincke-Pohst [12], but to limit the
search region to areas which are considered more likely to possess short
vectors. Explicitly, using the standard notation for lattices (as found in
e.g. [38, §6]), rather than solve the series of inequalities

80∑
i=j

y2
i ‖~b?i ‖2 ≤ 10 for all 1 ≤ j ≤ 80,

we introduce a pruning array Pj = 1− (j−1)
80 and solve

80∑
i=j

y2
i ‖~b?i ‖2 ≤ 10 · Pj for all 1 ≤ j ≤ 80.

To describe this loosely, this ensures that any initial segment of the coor-
dinates does not take up more than its “fair share” of the available norm.

The first step in any lattice-searching method is to obtain a good ba-
sis. Here LLL [21] by itself is not completely satisfactory, but after ap-
plying BKZ [35] with a dimension parameter of 30, we have a reasonable
basis. We would run the pruned-enumeration code for 100 seconds on a
given basis, before making a perturbation of it as in [38]. With the above
choice of Pj we obtained about 400 norm 10 vectors per cpu-second using
the Magma implementation of Stehlé.

Recent work appearing in [14, Appendix D] has improved the tree tra-
versal process; while we do not have exact timings, a guess is that it would
be 30-40% faster at the cost of increasing the memory usage slightly.

3.3.1. An alternative method to find vectors of norm 10. As noted in [1],
an alternative method to try to find vectors of norm 10 is to take random
pairs of (known) norm 8 vectors, hoping that their inner product is of size 3.

We do not have a complete analysis of this method, but can note that
the primary step will be the computation of an inner product. Done in the
most obvious manner, this would take about 802 multiply-and-adds; but
by (say) first diagonalising the Gram matrix over the reals, we are able
to reduce the calculation to 80 such operations. The distribution given
in Section 4 indicates that a random inner product between two vectors
of norm 8 will have about a 1-in-380 chance of having size 3. We can
thus achieve about 10000 norm 10 vectors per cpu-second, which is notably
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faster than the pruning techniques. However, see Section 7.2 below for
some difficulties with this method.

3.4. Recognising orbits. One difficulty in mimicking the strategy of [38]
for our lattice L is that it is not so clear how to find orbit representa-
tives as easily as with SL2(F79) (for which there is a doubly transitive
action of signed permutations on the coordinates). We overcome many of
the difficulties by noting that an orbit can be recognised via a baby-steps
giant-steps technique involving subgroups (or even subsets). Indeed, sup-
pose we have two vectors ~v and ~w in the same orbit, so that ~vg = ~w for
some element g ∈ G. We assume that we have G written as BA, where
in practise this decomposition will be exact with A a subgroup and B just
representatives of the cosets of A. Then we have ~vba = ~w for some el-
ements a ∈ A, b ∈ B, and so by comparing ~vB with ~wA we will detect
whether ~v and ~w are in the same orbit.

In our case, we take A to be a subgroup of size 820 in G, and further mod
out by −1 ∈ A. This means that the set B is of size 504. For every vector ~v
we find, we compute ~vb for each b ∈ B and use a hash table to detect if it
is the same as any ~wa that was seen previously. If so, then we have already
counted this orbit. If not, we compute ~vA and store these vectors (we can
also compute the stabiliser of ~v at this step from ~vA and ~vB).

3.4.1. A minor generalisation. This method could be generalised to handle
the case of sets A,B such that BA−1 as a set covers G, and so even in a case
where there are no subgroups of useful size, one can still choose A and B of
size about

√
#G log #G if desired. We can note that the expected time to

find V vectors under an automorphism groupG is thus roughly proportional
to V log V/

√
#G.

3.4.2. Computational data. We chose a subgroup A of size 820 in G and
so #B = 504, with −1 ∈ A reducing computations by a factor of 2. For
each vector ~v ∈ L that we find, the computation of the set ~vB will take
about 504 · 802 ∼ 3.22 · 106 multiply-and-add operations. We can stop
computing ~vB immediately when we run across a saved ~wA vector, and
this saves a factor of about two on average when an orbit is already known.

When we find a new orbit we compute ~vA, which again requires around
3 million multiply-and-add operations. We save each vector in ~vA as a
64-bit hash – in the worst case we could erroneously regard two distinct
orbits as equivalent (in which case we should just find this orbit later), but
this hash will never incorrectly claim that a previously seen orbit is new.

Even with this hashing, we still need a storage space of 18265080 · 410 · 8
bytes, or about 64 gigabytes. We chose A of the given size to push the
memory limits as much as we could, so that the time to compute the ~vB
would be as small as possible. It turns out that we can process nearly
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200 vectors per cpu-second, and so distinguishing the orbits of 305 million
vectors takes about 3 cpu-weeks.

We can check our proof in less time than it took in the first place, as we
only need run through 18.6 million vectors rather than 305 million. We pro-
vide code4 that can check that our list does indeed provide 7541401190400
distinct vectors of norm 10, but this still requires around 3 cpu-days (we
ran it on 10 cpus in 7 hours) and 64GB of memory.

4. Inner product distributions

We are able to analyse the inner product distribution of the minimal
vectors by weighting with respect to Gegenbauer polynomials (see [39],
or [4, §4-5]). Given an extremal 80-dimensional lattice, for any fixed ~w
with norm 8 and any d = 1, 2, 3 (and also d = 5, though it gives no new
information in dimension 80), we have that∑

‖~v‖=8

G2d

(
~v · ~w

8

)
= 0

where the G2d are related to the Gegenbauer polynomials. This is a special
case of the more general fact that for any fixed nonzero ~w and positive
integer d, the sum ∑

~v 6=0

G2d

(
~v · ~w√
‖~v‖ ‖~w‖

)
q~v·~v/2

is a modular form, and extremality forces some of the coefficients to vanish.5

Explicitly, in the case of dimension 80 we have 1
(1−2xt+t2)39

=
∑

kGk(x)tk,
so that

G2(x) = 760x2 − 19, G4(x) = 117040x4 − 15960x2 + 190,

and G6(x) = 8614144x6 − 2691920x4 + 175560x2 − 1330.
Furthermore, the signs of the ~v · ~w are equi-distributed, and except for the
cases when ~v = ±~w, we have |~v · ~w| ≤ 4. We have 5 unknowns, namely the
number bi of vectors ~v with ~v · ~w = i for i = 0 . . . 4, and 4 linear equations,
given by the three above for d = 1, 2, 3 plus the accounting

b0 + 2(b1 + b2 + b3 + b4) = 1250172000− 2,

where this comes from noting that an extremal lattice in dimension 80
has 1250172000 vectors of norm 8. We solve these and get

b0 = 2(35y + 275885775), b1 = 301716800− 56y,

b2 = 28y + 45799776, b3 = 1683648− 8y, b4 = y,

4This is available from http://magma.maths.usyd.edu.au/~watkins/sl241dim80.tar.bz2
5There is a slight reworking of this for extremal lattices in dimensions 24k and 24k+16, where

in the first case we get vanishing for d = 1, 2, 3, 4, 5, 7, and in the latter case only for d = 1, 3.

http://magma.maths.usyd.edu.au/~watkins/sl241dim80.tar.bz2
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for some integer y with 0 ≤ y ≤ 210456. We do not know if the parameter y
can be related to a type of “Nachbareffekt” as in [4, §5, Example 1]. Unlike
for the case of dimension 32, with extremal lattices of dimension 80 the
Siegel modular form given by

Θ2(L) =
∑
~v∈L

∑
~w∈L

q
~v·~v/2
1,1 · q~v·~w1,2 · q

~w·~w/2
2,2

is not uniquely determined (see [30]), with the indeterminate factor being
a multiple of χ4

10.
Below we shall use the computation of the inner product distributions as

one of the methods to show that our lattice L is not isometric to any of the
previously known extremal lattices in dimension 80. None of the material
in this section is strictly necessary for that, but we provide it for context.

5. Computational results

5.1. Minimal vectors. The vectors of norm 8 in the lattice L split as
follows under the known automorphism group G = SL2(F41)⊗ S̃3:

• 2788 orbits with trivial stabiliser,
• 464 orbits with stabiliser of size 2,
• 8 orbits with stabiliser of size 3,
• 14 orbits with stabiliser of size 6.

As there are 3274 orbits and 1250172000/2 minimal vectors up to sign,
we need to compute about 2 trillion inner products to find the complete
distribution. Each inner product can be computed in 80 multiply-and-adds
upon switching the minimal vectors to a basis (over R) in which the Gram
matrix is diagonal. Our code ran in about 4 cpu-days.

Using the notation of the previous section, for each vector ~v we write y
for the number of vectors that have inner product 4 with it. This value is
preserved by automorphisms, and so is constant for all vectors in the same
orbit. We find that the smallest y-value is 8092 (obtained for 2 free orbits),
while the largest is 9220 (obtained for 4 orbits, all of stabiliser of size 6). The
average is slightly above 8574. Each y-value appears in our data an even
number of times; this is to be expected due to the 2-extension of G that is
noted in [25, Lemma 4.3(i)]. Via a slight modification of the methods given
in Section 5.3 below, we are able to determine the complete automorphism
group G+ ∼=

(
SL2(F41) ◦ S̃3

)
.2 with [G+ : G] = 2. The 80-dimensional

representation of G+ corresponding to L is absolutely irreducible. We can
also note that the matrix group G+ ⊂ SL80(Z) is uniform, that is, it fixes
a unique symmetric form (up to scalars), unlike G for which the space of
symmetric fixed forms has dimension 2 (see [25, §5]).
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5.2. Comparison to other lattices. We can make the same compu-
tation with the other known 80-dimensional extremal lattices. For the
Bachoc-Nebe lattice with automorphism group 2.M22.2⊗ 2.A7, there are 10
orbits, and we compute the following data:
• an orbit with stabiliser of size 6 and y = 8728,
• an orbit with stabiliser of size 16 and y = 9400,
• an orbit with stabiliser of size 48 and y = 9688,
• an orbit with stabiliser of size 96 and y = 8728 (as above),
• an orbit with stabiliser of size 112 and y = 13336,
• an orbit with stabiliser of size 192 and y = 14872,
• an orbit with stabiliser of size 384 and y = 12184,
• an orbit with stabiliser of size 432 and y = 8248,
• an orbit with stabiliser of size 8064 and y = 24088,
• and an orbit with stabiliser of size 24192 and y = 15256.

As can be seen, the average of the y-value is a bit over 9247.
For the second Bachoc-Nebe lattice [3, Lemma 4.11], the known auto-

morphism group of size 2123452 yields 333 orbits. The smallest y-value
is 8268 (from a free orbit), and the largest is 24088 (the same as in the
above data), coming from three orbits whose stabilisers are of sizes 288,
384, and 576. The second largest y-value is 17944, from an orbit with sta-
biliser of size 96. We find that the average y-value is a little above 8855.
All of the y-values are divisible by 4.

Finally, for the lattice proven extremal in [38] with known automorphism
group SL2(F79), there are 2555 minimal orbits, with a minimal y-value
of 8048, a maximum of 9406, and an average of nearly 8537.

This gives one proof that the four lattices are all distinct up to isometry.
The complete data for the inner products are included in the download
from the address given in Footnote 4.

5.3. Maximality of automorphism groups. We can also use the above
y-value distributions to show in each case that the known automorphism
group is the full automorphism group. The idea is simple.6 We assume
that σ is an unknown automorphism and that we know the images of the
vectors ~vi ∈ S under σ. Then we use the fact that σ preserves inner
products. We will either show that the set of images is inconsistent, or
that σ fixes all the vectors in S. In the latter case, when S is so large that
it generates the lattice, we conclude that σ fixes every vector, and so must
be the identity.

The only difficulty is in getting a large enough set S of vectors for which
we know the image. Here is a probabilistic argument on what we might
expect. First we take an orbit whose y-value is unique, and choose a vector ~v

6It is also well-known — see [31] for improvements that can be applied in more difficult cases.
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in it. We know that σ must map this orbit to itself, and so ~vσ = ~w for
some ~w in the orbit. There is also some known g such that ~vg = ~w. Thus
by considering gσ−1, we can assume that ~v is fixed by a new automorphism.

This gives us one fixed vector ~v. We then use the rarity of vectors
with inner product 4 to break up the current orbit classes. For instance,
in the case of our lattice L, we can take y = 8048 and expect each of
the 2528 free orbits to have maybe 3 or 4 vectors whose inner product
with ~v is 4. In particular, this should be true for orbits whose y-value is
unique (including y = 8048). Then we iterate through each of these possible
image vectors, seeing if it can preserve inner products. We have no control
over inner products except the first, but each additional member of S should
only give approximately a 1/4 chance of having a matching inner product.
Thus once S has more than just a few elements, there is little chance that
we will accidentally get the inner products to match.

5.3.1. Results for the four lattices. The automorphism group for the first
Bachoc-Nebe automorphism group was proven maximal in [3, Theorem 3.2].

Their second lattice has 81 free orbits under the known automorphism
group, and 22 of them have unique y-values (y = 8268, 8292, . . . , 8852).
This is the toughest case for our procedure, as a given free orbit would typ-
ically have about 30 vectors of inner product 4 with our initial fixed vector.
However, we can exploit the classes with unique y-value and non-trivial
stabiliser in this case. In particular, if the stabiliser is of size about 30,
there is a decent chance of obtaining a unique vector of inner product 4.
For instance, given a vector ~v with y = 8268, there is a unique vector with
each y ∈ {9808, 9976, 16152} whose inner product with ~v is 4. The sta-
bilisers here are respectively of sizes 36, 24, and 32. This then gives us 4
fixed vectors, and the process is fairly mechanical after that. For instance,
the vectors with y = 8272 (stabiliser of size 6) which have inner product 4
with ~v then split, giving us 7 new fixed vectors, then y = 8292 gives 56
more, and so on. We conclude that the group listed by Bachoc and Nebe
is indeed the full automorphism group.

The extremal lattice associated to the length 80 extended quadratic
residue code has 2528 free orbits of which 51 have a unique y-value. Fixing
a vector with y = 8048, there is a unique vector with inner product 4 in each
of the y = 8120, 8126, 8130 classes (and indeed with some other classes).
These four vectors then yield three more with y = 8154, and in this manner
we quickly generate the whole lattice. Thus we conclude that SL2(F79) is
the full automorphism group.

As noted above, for the new extremal lattice L we first need to find
the 2-extension G+. This is expedited by taking a y-value with exactly 2
orbits under G, and (as above) composing with a known automorphism to
get that a specific vector ~v in one of them maps to a specific vector ~w in the
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other. Then we proceed as above, enlarging the set S until we have definite
images for a set S that generates L; this then gives us an automorphism of
the lattice that was not previously known. Upon finding this 2-extension,
we then prove it is the full automorphism group in the same manner as
above. For instance, a fixed vector in the y = 8092 class yields a unique
vector with inner product 4 in both the y = 8098 and y = 8138 classes,
which then split the four such vectors with y = 8180, etc.

6. A different proof that L is not isometric to the known lattices

Imitating and expanding on the appendix of [38], we can give a second
proof of the non-isometry of L with the previously known lattices via the
Classification of Finite Simple Groups. The problem is that we need to
rule out the possibility of a finite matrix group in GL80(Z) that contains
both a copy of G and a copy of one of the other groups.7 Here and in
the below, when we write G as a matrix group we mean the representation
corresponding to the lattice L.

For the first lattice of Bachoc and Nebe they show [3, Theorem 3.2]
that the associated group 2.M22.2 ⊗α 2.A7 (where α =

√
−7) is maximal

finite, and so it suffices to note that #G does not divide the order of that
group. Similarly, the appendix of [38] shows that SL2(F79) is maximal as
a finite subgroup of GL80(Z) except possibly for a small-index extension,
and again we easily conclude that there is no common finite supergroup
of G and SL2(F79) in GL80(Z).

We are left to show H = (25 : S6)⊗β (SL2(F5)×C3).2 (where β =
√
−15)

and G have no common finite supergroup M in GL80(Z). The only facts
that we use about H are that 34|#H, and that there is no chain of sub-
groups H ′′ / H ′ / H with [H : H ′] ≤ 2 and [H ′ : H ′′] ≤ 4 such that the
centre of H ′′ contains C3 × C3. As with G, we associate H to a specific
80-dimensional representation, determined up to conjugacy in GL80(Z).8

As with the appendix of [38], the fact there is a prime of “large” size
(here 41, with the comparison being to the degrees of the matrix groups)
dividing the order of G helps ease the proof, as does the fact that SL2(F41)
is itself a classical group.

6.1. Overview of argument. By Minkowski’s Lemma [24], we can inject
ιp : GL80(Z) ↪→ GL80(Fp) for odd primes p (with a variation at 2). This
helps us two ways, the first being that we can take a gcd of #GL80(Fp)
over all odd p, and get a divisibility condition on the order of any finite

7We worked with G rather than the 2-extension G+ due to our belated knowledge of the

latter. There is little difference in the argument, as we consider normal subgroups in any event.
8We could instead work in SL80(Z), which has various plusses and minuses for our argument.
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subgroup of GL80(Z), namely that the order must divide

2198358524714118136175194233292312372412 ·43 ·47 ·53 ·59 ·61 ·67 ·71 ·73 ·79.

6.1.1. Choosing a prime. Secondly, we can use this injection for a specific
prime and then apply Aschbacher’s theorem on subgroups of finite classical
groups [2]. We use p = 101, though other choices are feasible. We have a
variety of conditions, some more for convenience than necessity.
• p is inert in Q(

√
41) so that ιp(G) is irreducible,

• 3‖#GL2(Fp) and 32‖#GL2(Fp2),
• 41 - #GLn(Fp) for n < 40 with n|40.

Finally, choosing p > 80 is convenient so as to make the use of Minkowski’s
bound completely trivial in some cases.

6.1.2. Bounding M . Suppose M ⊆ GL80(Fp) with ιp(G), ιp(H) b M .
Here and in the following the b symbol will mean that the right side con-
tains an isomorphic copy of the left side. The ⊆ symbol will usually be an
inclusion into a matrix group, where the natural representation is assumed
for the group on the left. The only requirement typically is that the −1 el-
ements must behave naturally; for instance in SL2(F41) bM ⊆ GL80(Fp)
the −1 element in SL2(F41) should map to −1 in GL80(Fp).

The continual idea of the proof shall be that: either p divides M (in fact,
usually to a large power) contradicting the Minkowski bound so that M
cannot have a pre-image (under ιp) in GL80(Z); or M is small, indeed too
small to contain ιp(H), for which we have 34|#H.

6.2. A reformulation of Aschbacher’s theorem. We now use Asch-
bacher’s theorem [2] (see also [20]). This is typically phrased in such a way
to emphasise the characterisation of maximal subgroups, while our direc-
tion is somewhat different. In particular, it can be hard for a non-expert to
know exactly what “class 9” means in some cases, as it is a catch-all class
to some extent, and thus all the others must be well-understood. Therefore
we first reformulate the principal result of [2] in a form more suitable for
our use, following the outline of [19, §3].

While the result can be phrased in terms of semilinear representations,
we chose to use (general) linear representations for simplicity. This amounts
to taking a normal subgroup at various junctures.

Proposition 6.1. Suppose that M ⊆ GLd(Fpr) with the natural action.
Assume that d is not a perfect power. Then one of the following is true:

• M is reducible. This case never occurs for us. We can mention
that M is contained in a maximal parabolic subgroup (class 1). We
can also include writing M over a smaller field here (class 5).
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• M is irreducible but imprimitive, that is, there is some N /M that is
reducible with M/N permuting the constituents fixed by N (class 2).
Here the index t = [M : N ] must divide d and M is contained
in GLd/t(Fpr) o St. The extension G+/G is an example of this.
• M is irreducible and primitive, but there is some noncentral N /M

(we include the possibility N = M here) that is irreducible but not
absolutely irreducible (class 3). In this case we can consider the set C
of matrices in GLd(Fpr) that commute with N , and then C can be
given a field structure Fpru , where the hypothesis on N implies u > 1.
Furthermore, we can choose a basis for Fd

pr so that N is writeable as
block matrices in dimension d/u, where each block of size u gives an
element of Fpru . We get that M ⊆ ΓLd/u(Fpru), and when M = N
there is no semi-linear action induced here – but in general one can
come from M/N . Finally, by possibly taking an intermediate N we
can ensure that u is prime.
• M is absolutely irreducible and primitive, and all noncentral nor-

mal subgroups are either reducible or absolutely irreducible, but
there is some noncentral N / M with N reducible. Here we can
decompose Fd

pr = ⊕jVj so that N acts irreducibly on the Vj in
block-diagonal form, and the action of each element of N is given
by diag(A, . . . , A) for some A ∈ GLa(Fpr) with a|d. As above,
the set of matrices that commute with all the A so obtained can
be given a field structure F, and the assumptions on M and N im-
ply F ∼= Fpr . With this case we get a tensor product decomposition
and find M ⊆ GLa(Fpr) ◦GLd/a(Fpr) (class 4).
• M is primitive and all its (noncentral) normal subgroups act abso-

lutely irreducibly. ThenM modulo its centre is almost simple (class 9,
including class 8).

Remark 6.2.1. We comment on some differences when compared to Asch-
bacher’s classes. The classes 6 and 7 are not possible due to our assumption
that d is not a perfect power (we also avoid triality when d = 8).

It is possible to permute the steps in some cases, for instance, to handle
a reducible N /M (class 4) prior to enlarging the field (in class 3) [where
the latter would be so as to force some other normal subgroup to have a
reducible action].

We subsume the class 8 classical group inclusions into class 9. For in-
stance, if we have that M modulo its centre is PSpd, then M contains Spd.

Remark 6.2.2. There are various algorithms to implement the above the-
orem that have been implemented in Magma by E. O’Brien, and we found
these to be useful during part of this work.
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6.2.3. Facts about G. The natural 80-dimensional representation of G is
irreducible over Fp, and splits into two absolutely irreducible components
over Fp2 . There is only one proper normal subgroup G2 / G whose index
divides 80, with G2

∼= SL2(F41)⊗C6
∼= SL2(F41)×C3. The 80-dimensional

representation of G2 splits into two 40-dimensional constituents over Fp,
and into four absolutely irreducible 20-dimensional components over Fp2 .
The centre of G2 is cyclic of order 6.

6.3. Applying Aschbacher’s theorem to our case. We next analyse
the case of class 9 (including class 8) a bit further.

Lemma 6.2. Take p = 101 and let M ⊆ GLd(Fpr) where rd ∈ {40, 80}.
Suppose all the noncentral normal subgroups of M are absolutely irreducible.
Assume M contains a copy of SL2(F41) (so that 20|d). Write Y for M
modulo its centre, and assume Y is almost simple. Writing Y ′ / Y for
the associated simple group, then either Y ′ ∼= PSL2(F41) (here we must
have that d ∈ {20, 40}), or Y ′ is isomorphic to Cd(Fps) for some classical
Chevalley group C ∈ {PSL,PSU,PSp,PΩ±} with s|r. In the first case we
have M b Aut

(
PSL2(F41)

)
.GL1(Fpr), while in the second we have p|#M .

Proof. It is immediate that PSL2(F41) b Y , and as Y ′ ∩PSL2(F41) must
be normal in PSL2(F41), it follows that PSL2(F41) b Y ′ also. We letM ′ be
a minimal cover of Y ′ contained in M , noting SL2(F41) bM ′ ⊆ SLd(Fpr)
with M ′ / M . Our assumption on normal subgroups implies that M ′ is
absolutely irreducible as a matrix group in GLd(Fpr).

We have Y ′ ⊆ PSLd(Fpr), and by Schur’s theorem [37, §2, III] we know
this projective representation ρ̄ of Y ′ lifts to an ordinary representation ρ of
the universal cover of Y ′. Since M ′ is contained in the universal cover, we
can restrict ρ to it. By hypothesis, this representation on M ′ is absolutely
irreducible. We now leverage the fact that the quasi-simple group M ′ has an
absolutely irreducible d-dimensional representation. There are two cases.

Case 1. Suppose Y ′ is not a Chevalley group (of any flavour) in character-
istic p. Here we use the list of Hiss and Malle [17], which gives the possible
representation degrees for all the associated quasi-simple groups. Combined
with the requirement #PSL2(F41)|#Y ′, the possibilities for Y ′ are:

• PSL2(F41) in dimension 20;
• Alt41, PSp8(F3), and PSL2(F41) in dimension 40;
• and Alt81 in dimension 80.

The inclusion PSL2(F41) ⊆ PSp8(F3) is not possible, for the smallest
degree of a projective nontrivial representation (in characteristic not 41)
of PSL2(F41) is 20 (as with ordinary representations of SL2(F41) of course).

A theorem of Galois [13] implies that the smallest degree of a permuta-
tion representation of PSL2(F41) is 42, and so we can eliminate the case
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of Alt41. With Alt81 we consider possible central elements and get the
inclusion chain SL2(F41) b

(
α ·Alt81

)
×Ab ⊆ GL80(Fp). Here α is ei-

ther 1 or 2 and Ab is an abelian group. The intersection of SL2(F41)
with α ·Alt81 must be normal in the former, and so SL2(F41) b α ·Alt81.
Now we can note that the smallest degree of a permutation representation
of SL2(F41) is 336, so that α 6= 1. On the other hand, for α = 2 we find
that the inclusion α ·Alt81 ⊆ GL80(Fp) is not possible since 2 ·Alt81 has
no faithful 80-dimensional representations.

Case 2. Next we consider the case where Y ′ is a (possibly twisted)
Chevalley group in characteristic p. Here we use the lists of Lübeck [22],
which give degrees of projective representations in defining characteristic
for such simple groups. As the natural representation of M ′ is absolutely
irreducible, the same is true for the induced projective representation of Y ′.

For ranks exceeding 11, we use [22, Table 2] to find that the only possi-
ble projective representations are from other Chevalley groups in the same
degree, such as the degree 80 projective representation PSU80 ⊂ PSL80.
For classical groups of smaller rank, we can again use the fact that any non-
trivial projective representation of PSL2(F41) in characteristic p must be
of degree at least 20, and this leaves only the root systems {B,C,D}{10,11},
E{6,7,8}, F4, and G2. The appendices of [22] show the only feasible repre-
sentations are degree 20 inclusions as above. Thus we get that Y ′ must be
as stated in the lemma. �

6.4. A lemma of convenience. We shall find the following lemma to
be useful. We prove it in a bit more generality than is necessary. The
argument is also a mini-version of that for GL80(Fp).

Lemma 6.3. Let p = 101 and suppose that SL2(F41) b X ⊆ GL40(Fp).
Then either X b Aut

(
PSL2(F41)

)
.GL1(Fp2).2 so that 33 - #X, or p|#X.

Proof. We apply the above Proposition 6.1 to X ⊆ GL40(Fp). Since p is
inert in Q(

√
41) the action of SL2(F41) is irreducible, and thus X is also

irreducible, eliminating class 1. Since we need 41 to divide #X and 41 does
not divide #GLn(Fp) for n ≤ 20, we can exclude classes 2 and 4.

When X and all its noncentral normal subgroups are absolutely irre-
ducible, we use Lemma 6.2 and get: either X modulo its centre is contained
in the automorphism group of PSL2(F41); or X contains some classical
group of degree 40 in characteristic p. The lemma is seen to hold here.

Finally, suppose we have a class 3 reduction, which says X ⊆ ΓLa(Fpu)
with au = 40. We can intersect X with GLa(Fpu), and this will have an
index that divides u, so in particular no more than 40. The intersection
thus must contain SL2(F41) as this group has no subgroups of index less
than 42. So we have SL2(F41) b GLa(Fpu), and from the minimal degree
of representation for SL2(F41) conclude that a = 20 is the only possibility.
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Taking the intersection X ′ = X ∩GL20(Fp2) (of index at most 2 in X),
we can apply Proposition 6.1 to X ′ ⊆ GL20(Fp2). The first four classes are
excluded as above, so the only case possible is class 9. We use Lemma 6.2
and get the same dichotomy for X as previously. �

6.5. Aschbacher analysis for M ⊆ GL80(Fp). We now consider the
various cases for M ⊆ GL80(Fp) in Proposition 6.1, some of which lead to
a further use of this proposition. Since ιp(G) bM ⊆ GL80(Fp) and ιp(G) is
irreducible, we cannot have a class 1 decomposition. The above Lemma 6.2
handles class 9, as it shows that M contains a characteristic p classical
group, so that p divides its order, contradicting the Minkowski bound.

6.5.1. Class 2 for M ⊆ GL80(Fp). In this case, we have some normal
subgroup N / M with N reducible. The index [M : N ] must divide the
degree of the matrix group, and since ιp(G) is irreducible, the reducible
group N ∩ ιp(G) is a proper (normal) subgroup of ιp(G). A brief com-
putation shows that the only (proper) normal subgroup of G whose index
divides 80 is G2 = SL2(F41) ⊗ C6

∼= SL2(F41) × C3 (of index 2). We can
note that centre of G2 is cyclic of order 6.

Additionally in this case, there is a basis for the 80-dimensional vector
space over Fp such that the every element of the action of M can be written

as
(
A 0
0 B

)
or
(

0 −A
B 0

)
for some 40-dimensional matrices A and B. The

matrices of the first form correspond to the reducible action of N . We
write N1, N2 for the action of N on the two subsets of 40 elements, noting
that N1, N2 bM b (N1 ×N2).2. The action of the subgroup G2 on either
subset of 40 elements is isomorphic to G2, so that G2 b Ni ⊆ GL40(Fp).
This allows us to use Lemma 6.3 on the Ni.

When p|#Ni for either factor, we get p|#M to contradict the Minkowski
bound. We thus must have M b

[
Aut

(
PSL2(F41)

)
.GL1(Fp2).2

]2
.2. We

have 34|#H implying 34|#M , and so we need G2
2 = (SL2(F41)×C3)2 bM .

This gives us two further facts: firstly that M and H share the common
3-Sylow subgroup C4

3 ; and secondly there is some chain of normal sub-
groups N ′ / N / M where [M : N ] = 2 and [N : N ′] ≤ 4 with the inclu-
sion chain G2

2 b N ′ b
[
Aut

(
PSL2(F41)

)
.GL1(Fp2)

]2. From this we see
that C3 × C3 is contained in the centre of N ′. Via intersecting this sub-
group chain with H, we find a similar chain H ′′ /H ′ /H with [H ′ : H] ≤ 2
and [H ′′ : H ′] ≤ 4, where the centre of H ′′ must also contain C3×C3. How-
ever a brief computation shows there is no such subgroup chain for H.9

9There are normal subgroups of index 2 and 4 of H with C3 in the centre; these correspond
to the SL2(F5)×C3 part of H, but the (25 : S6) part does not yield any such central elements.

The class 2 considerations are the only time we need to use facts about H other than its order.
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6.5.2. Class 4 for M ⊆ GL80(Fp). This class consists of tensor prod-
uct decompositions. The requirement 41|#M implies the only possibility
for a|80 is a ∈ {2, 40}. So we have M ⊆ GL40(Fp) ◦GL2(Fp), and each of
these factors is normal in the central product. In particular, the intersec-
tion of either factor with SL2(F41) must be normal too; the only nontrivial
normal subgroup of SL2(F41) is the centre {±1}, and so SL2(F41) must be
contained in one of the factors. Since there is no 2-dimensional representa-
tion of SL2(F41) in characteristic p, we must have SL2(F41) b GL40(Fp)
in the above factorisation.

We now intersect M with GL40(Fp), and obtain a subgroup S ⊆ M
with SL2(F41) b S ⊆ GL40(Fp) whose index satisfies [M : S]|#GL2(Fp).
We can thus apply Lemma 6.3 to S, and get either 33 - #S whence 34 - #M
since 32 - #GL2(Fp), or p|#S so as to contradict the Minkowski bound.

6.5.3. Class 3 for M ⊆ GL80(Fp). This class corresponds to writing an
irreducible representation of some N / M over a larger field to make it
reducible. In this case we have the inclusion M ⊆ ΓLa(Fpu) = GLa(Fpu).u
where au = 80. The extension here is from a normaliser, being induced by
the Frobenius map x → xp (see [11] for instance). As in the proof of
Lemma 6.3, the fact that SL2(F41) has a minimal representation degree
of 20 implies that a is either 20 or 40. We can take u to be prime, and so
need only consider u = 2. We take the intersection M ′ = M ∩GL40(Fp2)
with [M : M ′] ≤ 2 and apply Proposition 6.1 to M ′. As M ′ is normal in M
and SL2(F41) has no normal subgroups of index 2, we get SL2(F41) bM ′.

6.6. Aschbacher analysis for M ′ ⊆ GL40(Fp2). Again we cannot have
class 1, and for class 5 we note M ′ ⊆ GL40(Fp) and apply Lemma 6.3.
In the case of class 9, we apply Lemma 6.2 and get that either p|#M ′
or M ′ b Aut

(
PSL2(F41)

)
.GL1(Fp2), the latter case implying 33 - #M .

The analysis for the other cases will follow the same pattern as above.

6.6.1. Class 2 for M ′ ⊆ GL40(Fp2). As we are in class 2, there is some
normal subgroup N /M ′ with N reducible. As above, we have [M ′ : N ] = 2
and SL2(F41) b N . We write N in block form as previously, denoting the
actions by N1 and N2, and get the inclusions N1, N2 b M ′ b (N1 ×N2).2
and SL2(F41) b Ni ⊆ GL20(Fp2) ⊆ GL40(Fp). We then conclude as with
the earlier argument for class 2.

6.6.2. Class 4 for M ′ ⊆ GL40(Fp2). Since we have 41|#M ′, the only pos-
sibility for a|40 is a ∈ {2, 20}, and so M ′ ⊆ GL20(Fp2) ◦GL2(Fp2). We
can move central elements to either part of this product, and so can con-
sider the second factor to be GL2(Fp2)/GL1(Fp2) if we like. In particular,
when we intersect M ′ with GL20(Fp2) we get S with [M ′ : S]|(p6 − p2)
and SL2(F41) b S ⊆ GL20(Fp2) ⊂ GL40(Fp), where the first inclusion
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follows (by normality) as above. We apply Lemma 6.3 to S, and get: ei-
ther 33 - #S so that 34 - #M ; or p|#S contradicting the Minkowski bound.

6.6.3. Class 3 for M ′ ⊆ GL40(Fp2). Arguing as above, the 20-dimensional
representation of SL2(F41) implies that the only possibility for class 3 is
for M ′ ⊆ GL20(Fp2).2. We take the intersection M ′′ = M ′ ∩GL20(Fp2) of
index at most 2, and note SL2(F41) bM ′′. We proceed to apply Proposi-
tion 6.1 to M ′′.

6.7. Aschbacher analysis for M ′′ ⊆ GL20(Fp4). As previously, neither
class 1 nor class 3 is possible. Furthermore, a class 2 or class 4 splitting
would yield a representation of SL2(F41) in some dimension properly divid-
ing 20, and so these also are not possible. We handle class 9 via Lemma 6.2,
getting either p|#M ′′ or 33 - #M ′′. When M is writeable over Fp2 (class 5),
we have M ⊆ GL20(Fp2) ⊂ GL40(Fp) and apply Lemma 6.3.

6.8. Conclusion. The above shows that any subgroup M ⊆ GL80(F101)
that contains a copy of ι101(G) cannot also contain a copy of ι101(H) un-
less 101|#M . We conclude that there is no common supergroup of G and H
in GL80(Z), so our lattice is distinct from the second Bachoc-Nebe lattice.

7. Extremal lattices in dimension 64

We were able to construct a new extremal lattice of dimension 64 as
follows. Writing K = Q(

√
−11) and letting w = −1+

√
−11

2 , we used the

unimodular matrix M2 =
(

2 w
w̄ 2

)
and took the tensor product (over K)

of it with each of Hentschel’s six ϑ-lattices [16] of rank 8 over Q(
√
−11).

Upon expanding to a basis over Q, four of these six yielded extremal
lattices of dimension 32. We then took a few “random” neighbours of
these 16-dimensional lattices over K, and again tensored these with M2.
One of these, namely a (5 + 4w)-neighbour of M2 ⊗ H3 where H3 is the
third of Hentschel’s ϑ-lattices, upon expanding the basis to Q yielded a
64-dimensional lattice with minimum 6. It took only about 40 cpu-minutes
for an exhaustive search (after a suitable BKZ reduction) to show that the
lattice had no vectors of minimum 4. The Hermitian automorphism group
of the 32-dimensional K-lattice is isomorphic to the dihedral group D6 on
six symbols (which is already that for M2).

Remark 7.0.1. In some metric, this is the “best possible” case for doing
such tensor products, as extremal lattices are thought to be more common
in dimensions (24k + 16) than in dimension 24k. The fact that the lattice
has minimal automorphisms is perhaps uninteresting from the standpoint
of group theory, but does show that the behaviour is “generic” in a suitable
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sense. Also, the rank 16 lattice over K we first constructed is computation-
ally tricky to handle. For instance, it takes a couple of hours to compute
the automorphism group. As already noted in [31], computing isometries
in dimension 32 is somewhat difficult, due to the large number of extremal
lattices (and a lack of easily computed invariants for isometry).

7.1. Comparison to known extremal lattices in dimension 64. The
first known extremal lattice in dimension 64 was constructed by Quebbe-
mann [34]. As noted in [7, §8], the construction can be modified in various
ways, and it not exactly clear how many non-isometric lattices can be pro-
duced. We have chosen to ignore these lattices for our discussion here.

A second extremal lattice T64 in dimension 64 was constructed from cod-
ing theory by Ozeki [29] (see also [15]). Finally, using an anti-identification
of two maximal orders of associated quaternionic endomorphism rings,
Nebe [25, Remark 5.2] constructed a (unimodular) lattice N64 with auto-
morphism group containing

(
SL2(F17) ◦ SL2(F5)

)
.22, where the factors in

the central product correspond respectively to quaternionic representations
of degree 8 and 2. This was later proven to be extremal in [27].

In order to show the lattice constructed here differs from N64 and T64,
we can proceed by computing inner product distributions. As in Section 4,
we can compute that for a given vector ~v of norm 6, there is some integer t
with 0 ≤ t ≤ 17826 such that the distribution of inner products is:
• 2(26t+ 680792) vectors ~w with ~v · ~w = 0,
• −33t+ 588288 vectors ~w with ~v · ~w = 1,
• 6t+ 36519 vectors ~w with ~v · ~w = 2,
• t vectors ~w with ~v · ~w = 3,
• 1 vector ~w with ~v · ~w = 6.

7.1.1. Nebe’s lattice. With Nebe’s lattice N64, there are 8 orbits of the
2611200 minimal vectors (under the automorphism group of order 1175040),
divided as:
• an orbit with stabiliser of size 2 and t = 254,
• an orbit with stabiliser of size 2 and t = 284,
• an orbit with stabiliser of size 2 and t = 318,
• an orbit with stabiliser of size 4 and t = 336,
• an orbit with stabiliser of size 4 and t = 344,
• an orbit with stabiliser of size 12 and t = 272,
• an orbit with stabiliser of size 12 and t = 452,
• and an orbit with stabiliser of size 18 and t = 218.

As can be seen, the average t-value is 301 7
10 .

7.1.2. Ozeki’s lattice. In order to find the minimal vectors for Ozeki’s lat-
tice T64, we used the method for the generic lattice given in Section 7.2
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below, as it was not completely obvious whether there would be non-
trivial automorphisms.10 However, it turns out that the automorphism
group for T64 is isomorphic to the 2-extension of SL2(F31) that is given
by 2 · Aut

(
PSL2(F31)

)
; this can be computed in a few minutes with

the Magma command AutomorphismGroup (due to W. R. Unger) once the
minimal vectors are known.

There are 41 free orbits, six with a stabiliser of size 3, three with a
stabiliser of size 5, four with a stabiliser of size 15, and two with a stabiliser
of size 465. There are 36 distinct t-values, ranging from 158 to 308 with
an average around 222.6 and a most common value of 206. See Table 1 for
more complete data, which gives orbit counts weighted by automorphisms.

Table 1. t-distribution for Ozeki’s lattice T64

158 1
3 198 1 214 1 228 3 244 1+1

5 258 1
174 1

5 200 2+1
3 216 1 230 1

3 246 2 272 1
184 1 206 5 218 3 234 1 248 2

15+ 2
465 278 1

15

188 1
3 208 3 220 2 236 1 252 1 280 1

190 1 210 1 222 1 240 1 254 1 294 1
5

194 1 212 1 224 2+1
3 242 1

3 256 1 308 1
15

7.1.3. The new lattice. The new lattice H64 has 217600 orbits (each with
trivial stabiliser), and to show its distinctness we can simply note that
it has (say) a minimal vector with t = 124. Indeed, we found all the
minimal vectors via the search strategy given in Sections 3.3 and 3.3.1,
and computed the complete inner product distribution. All the t-values
are even, the minimum is 124, the maximum is 304, the average is just
over 214, and the most common value (8530 orbits) is 210. See Table 2 for
the complete distribution.

7.2. Another extremal lattice in dimension 64. We were also able to
find a generic (with only the trivial automorphisms) extremal lattice G64

in dimension 64 via more neighbouring. We started with the new extremal
lattice of above, and then took random neighbours (over Q). After some
effort, this succeeded. One difficulty is that many of the obtained lattices
had a vector of norm 4, but this was only detected near the end of the
search, after taking over an hour in some instances. However, it still took
less than 10 cpu-hours to find one which turned out to be extremal.

10For instance, the F3 reduction of the original Z6 code has C4 as its automorphism group.
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Table 2. t-distribution for Hermitian H64

124 2 162 274 192 4991 222 7691 252 1469 282 46
126 1 164 375 194 5315 224 7348 254 1276 284 30
136 3 166 461 196 5871 226 6937 256 1095 286 28
138 2 168 626 198 6460 228 6559 258 884 288 17
140 2 170 787 200 6980 230 6074 260 730 290 19
142 4 172 969 202 7452 232 5675 262 590 292 7
144 21 174 1234 204 7694 234 5125 264 505 294 12
146 13 176 1445 206 8087 236 4737 266 376 296 8
148 26 178 1760 208 8332 238 4235 268 271 298 7
150 42 180 2121 210 8530 240 3583 270 217 300 3
152 48 182 2486 212 8476 242 3214 272 165 302 1
154 85 184 2920 214 8513 244 2765 274 123
156 110 186 3363 216 8494 246 2398 276 110
158 171 188 3898 218 8245 248 2106 278 90
160 210 190 4289 220 7964 250 1857 280 65

We then turned to the listing of minimal vectors. As there are no known
nontrivial automorphisms, we need to find 1305600 vectors of norm 6. The
method of Section 3.3.1 above showed a few problems for this lattice. The
idea is to start with a collection of norm 6 vectors, and then expand this
collection via looking for pairs in it that have an inner product of size 3.
From the above analysis, there is presumably around a 1/6000 chance of
this happening for a random pair. At the outset, we thus need a sufficiently
large “seeding” set. For instance, 1000 vectors is probably not enough, as
they would only produce about

(
1000

2

)
/6000 ≈ 80 new vectors of norm 6,

and we would quickly reach a state where no new norm 6 vectors could
be obtained from the current set. We used a pruning-based method as in
Section 3.3 in order to start with enough vectors so as to circumvent this.

However, we can still run into problems later on. In our actual run,
we hit a wall at 686824 vectors, and so returned to the device of making
various perturbations of the basis, followed by reduction and pruning-based
enumeration. Note that such a difficulty is much less likely to occur in a
case where automorphisms are extant, as applying them to known vectors
is an alternative method to generate additional vectors of norm 6.

Finally, it not altogether clear that the method of Section 3.3.1 is really
faster for our 64-dimensional lattices, as we could often find more norm 6
vectors per second using the pruning method when a sufficiently sharp
choice for the pruning function was used (the exact yield also depends
upon the goodness of the BKZ-basis).
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After obtaining all the minimal vectors, we then computed the inner
product distribution, which is given in Table 3. As can be seen, the average
t-value is slightly less than 212. When comparing to the previous table,
recall that the numbers in Table 2 should be multiplied by 6 to account for
the known automorphisms.

Table 3. t-distribution for generic G64

124 1 158 757 190 28683 222 47073 254 4668 286 47
128 1 160 986 192 32565 224 44255 256 3866 288 24
130 1 162 1436 194 35707 226 40988 258 2997 290 14
132 3 164 1833 196 39516 228 37526 260 2306 292 13
134 6 166 2617 198 42830 230 33999 262 1796 294 9
136 4 168 3273 200 46093 232 30787 264 1415 296 6
138 14 170 4313 202 49257 234 27068 266 1118 298 2
140 21 172 5569 204 51197 236 24176 268 769 300 2
142 33 174 6981 206 53101 238 20569 270 594 302 2
144 46 176 8730 208 54441 240 17922 272 466 304 3
146 82 178 10804 210 55288 242 15290 274 311 306 1
148 112 180 13023 212 55679 244 13229 276 243 308 1
150 175 182 15729 214 54915 246 10955 278 174
152 263 184 18774 216 53687 248 8858 280 121
154 382 186 21722 218 52355 250 7340 282 89
156 474 188 25170 220 49973 252 5825 284 61

For each of these lattices we are able to show that the known auto-
morphism group is complete using the method of Section 5.3.

7.3. Tensor products from quaternionic 32-dimensional lattices.
The list given by Nebe [26, Theorem 18.1] contains two 32-dimensional lat-
tices that have a quaternionic structure into which we can embed Q(

√
−11).

The first one is L32 = [21+8
− .O−8 (2)]8, and upon tensoring with M2, the re-

sulting Q-lattice splits into two copies of the Q-expansion of L32. The
other compatible quaternionic lattice is [SL2(17).2]8, which when tensored
with M2 gives Nebe’s lattice N64.

8. Sundry

8.1. No new extremal lattices of dimension 48. We were unable to
find any new extremal lattices of dimension 48 via such methods. One
attempt was made via p3-neighbour computations starting with a rank 12
Hermitian matrix over Q(

√
−2). It is difficult to tell how many lattices we

stepped through, as we did not check isometry but at best merely counted
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the number of norm 4 vectors upon tensoring with the unimodular ma-

trix M ′2 =
(

2 1 +
√
−2

1−
√
−2 2

)
and expanding to a Q-basis, though it

seems that we looked at hundreds or even thousands of such examples. The
“typical” resulting 48-dimensional lattice had approximately 3000 pairs of
vectors of norm 4.

The only 48-dimensional extremal lattice that was found was a lattice
whose Hermitian automorphism group was SL2(F13), presumably inherited
from a quaternionic structure over Q(

√
13) ramified at the two infinite

places; given that M ′2 has GL2(F3) as its automorphism group, it seems
likely that our lattice is isometric to the one already found by Nebe [25].
The arrangement is similar over Q(

√
−11).

Additionally, in each case, any other quaternionic structure on the Leech
lattice Λ24 which descends to the imaginary quadratic field will yield two
copies of Λ24 upon tensoring with M ′2 and expanding to a Q-basis. It is
notable that while our “random neighbouring” on Hermitian lattices would
produce lattices with typically around 3000 pairs of vectors of norm 4,
the quaternionic structures induced the extremes: namely, 196560 pairs
of norm 4 vectors when it splits as Λ24 ⊕ Λ24; or zero when the lattice is
extremal. The second largest number of pairs of norm 4 vectors we found
was 30672 (and indeed comes from a neighbour of the quaternionic basis
that induces Λ24 ⊕ Λ24).

8.2. Further directions. It seems possible to compute the inner product
distribution of the minimal vectors for Nebe’s extremal lattice [28] of di-
mension 72, though we have not done so. There are about 5 times as many
minimal vectors as with an extremal lattice of dimension 80, but the known
automorphism group has more than 10 times as many elements as G does.
Via this, we could presumably show that

(
PSL2(F7)×SL2(F25)

)
: 2 is the

full automorphism group.
We also have yet to consider whether extremal lattices in dimension 56

can readily be found via neighbouring. We could either start with an ar-
bitrary even unimodular lattice in this dimension,11 or we could take a
(possibly decomposable) rank 28 ϑ-lattice over some imaginary quadratic
field, and do neighbouring in this field.

Finally, there are two lattices in dimension 80 given at the end of [5]
which remain candidates for extremality, namely B

(4)
80,1 and B

(5)
80,1. As the

automorphism group (of either lattice) presumably only has 6560 elements,
the methods used here do not seem to be readily applicable.

11There is no particular reason to start with an extremal lattice, though four are known in

this dimension, namely B
(4)
56,1 in [5], T56 from [29], and L56,2(M) and L56,2(M̃) in [25, Table I],

though I do not know if anyone has verified these are all distinct.
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[10] J. Detrey, G. Hanrot, X. Pujol, D. Stehlé, Accelerating Lattice Reduction with FPGAs.
In Progress in Cryptology - LATINCRYPT 2010, Proceedings of the First International

Conference on Cryptology and Information Security in Latin America (Puebla 2010). Edited
by M. Abdalla and P. S. L. M. Barretto, Lecture Notes in Computer Science 6212, Springer

(2010), 124–143. Available from http://dx.doi.org/10.1007/978-3-642-14712-8 8

[11] R. Dye, Spreads and classes of maximal subgroups of GLn(q), SLn(q), PGLn(q) and
PSLn(q). Annali di Matematica Pura ed Applicata 158, no. 1 (1991), 33–50.

Online from http://dx.doi.org/10.1007/BF01759298

[12] U. Fincke, M. Pohst, A procedure for determining algebraic integers of given norm. In
Computer Algebra (London 1983), Proceedings of the European computer algebra conference

http://dx.doi.org/10.1007/BF01388470
http://dx.doi.org/10.1515/crll.1998.004
http://www.expmath.org/restricted/4/4.3/batut.ps
http://magma.maths.usyd.edu.au
http://matwbn.icm.edu.pl/ksiazki/aa/aa92/aa9224.pdf
http://dx.doi.org/10.1007/978-3-642-15291-7_21
http://dx.doi.org/10.1007/978-3-642-14712-8_8
http://dx.doi.org/10.1007/BF01759298


Another 80-dimensional extremal lattice 25

(EUROCAL). Edited by J. A. van Hulzen, Lecture Notes in Computer Science 162, Springer-
Verlag, Berlin (1983), 194–202. Online at http://dx.doi.org/10.1007/3-540-12868-9 103

[13] É. Galois, Lettre de Galois á M. Auguste Chevalier. (French) [Letter of Galois to Auguste

Chevalier]. In OEuvres mathématiques d’Évariste Galois, J. math. pures et appliquées XI

(1846), 408–415. See http://visualiseur.bnf.fr/ark:/12148/cb343487840/date1846

[14] N. Gama, P. Q. Nguyen, O. Regev, Lattice Enumeration Using Extreme Pruning. In Ad-

vances in Cryptology - EUROCRYPT 2010, Proceedings of the 29th Annual International

Conference on the Theory and Applications of Cryptographic Techniques (French Riviera
2010). Edited by H. Gilbert, Lecture Notes in Computer Science 6110, Springer (2010),

257–278. Online at http://dx.doi.org/10.1007/978-3-642-13190-5 13

[15] M. Harada, M. Kitazume, M. Ozeki, Ternary Code Construction of Unimodular Lattices

and Self-Dual Codes over Z6. J. Alg. Combin. 16, no. 2 (2002), 209–223. Online from

http://dx.doi.org/10.1023/A:1021185314365

[16] M. Hentschel, On Hermitian theta series and modular forms. Dissertation, RWTH Aachen

University 2009. Online at

http://darwin.bth.rwth-aachen.de/opus3/volltexte/2009/2903/pdf/Hentschel Michael.pdf

[17] G. Hiss and G. Malle, Low-dimensional representations of quasi-simple groups. LMS J.

Comput. Math. 4 (2001), 22–63. Corrigenda: LMS J. Comput. Math. 5 (2002), 95–126.

See http://www.lms.ac.uk/jcm/4/lms2000-014/sub/lms2000-014.pdf

and http://www.lms.ac.uk/jcm/5/lms2002-025/sub/lms2002-025.pdf

[18] R. Kannan, Improved algorithms for integer programming and related lattice problems. In

Proceedings of the fifteenth annual ACM symposium on the Theory of computing (Boston
MA, STOC 1983), 99–108, ACM order #508830.

Available from http://doi.acm.org/10.1145/800061.808749

[19] O. H. King, The subgroup structure of the finite classical groups in terms of geometric con-

figurations. In Surveys in combinatorics 2005, Proceedings of the Twentieth British Combi-

natorics Conference (Durham 2005). Edited by B. S. Webb, LMS Lecture Note Series 327,
Cambridge University Press (2005), 29–56.

[20] P. B. Kleidman, M. W. Liebeck, The subgroup structure of the finite classical groups. London

Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge,
1990. x+303 pp.

[21] A. K. Lenstra, H. W. Lenstra Jr., L. Lovász, Factoring polynomial with rational coefficients.

Math. Ann. 261, no. 4 (1982), 515–534. See http://dx.doi.org/10.1007/2FBF01457454
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