
1 HYPERGEOMETRIC MOTIVES

1.1 Introduction 3

1.2 Functionality 5

1.2.1 Creation Functions 5

HypergeometricData(A, B) 5

HypergeometricData(F, G) 5

HypergeometricData(G) 5

HypergeometricData(L) 5

HypergeometricData(F, G) 5

HypergeometricData(E) 5

Twist(H) 6

PrimitiveData(H) 6

PossibleHypergeometricData(d) 6

1.2.2 Access Functions 6

Weight(H) 6

Degree(H) 6

DefiningPolynomials(H) 6

Bezoutian(H) 6

CyclotomicData(H) 6

AlphaBetaData(H) 7

MValue(H) 7

GammaArray(H) 7

GammaList(H) 7

eq 7

ne 7

IsPrimitive(H) 7

1.2.3 Functionality with L-series and Euler
Factors 7

HypergeometricTrace(H, t, q) 7

HypergeometricTraceK(A, B, t, q) 8

HypergeometricTraceK(A, B, t, q) 8

EulerFactor(H, t, p) 8

LSeries(H, t) 9

ArtinRepresentation(H, t) 10

EllipticCurve(H) 11

EllipticCurve(H, t) 11

HyperellipticCurve(H) 11

HyperellipticCurve(H, t) 11

Identify(H, t) 11

1.2.4 Associated Schemes and Curves . . . 11

CanonicalScheme(H) 11

CanonicalScheme(H, t) 11

CanonicalCurve(H) 12

CanonicalCurve(H, t) 12

1.2.5 Utility Functions 12

HypergeometricMotiveSaveLimit(n) 12

HypergeometricMotiveClearTable() 12

pPart(H, p) 12

pParts(H) 12

1.3 Examples 12

1.3.1 Special Hypergeometric Motives . . . 23

1.4 Jacobi Motives 25

1.4.1 Background 25

1.4.2 Kummer and Tate Twists 26

1.5 Jacobi Motive Functionality . . 26

1.5.1 Creation Functions 26

JacobiMotive(A, B) 26

JacketMotive(A, B, t, rho, j) 26

KummerTwist(J, t, rho) 26

TateTwist(J, j) 27

1.5.2 Operations 27

* 27

/ 27

eq 27

ne 27

Scale(J, q) 27

1.5.3 Attributes 27

Field(J) 27

Weight(J) 27

EffectiveWeight(J) 27

HodgeStructure(J) 27

HodgeVector(J) 27

EffectiveHodgeStructure(J) 27

1.5.4 L-function 28

EulerFactor(J, p) 28

ComplexEvaluation(J, P) 28

Grossencharacter(J) 28

1.6 Jacobi Motive Examples 28

1.7 Bibliography 33

Chapter 1

HYPERGEOMETRIC MOTIVES

1.1 Introduction
Let ~α, ~β ∈ Cn be n-tuples (or multisets) of complex numbers. For arithmetic applica-

tions we will eventually take them to be rationals, and for purposes of monodromy will
largely need only to consider them modulo 1.

Consider the generalised hypergeometric differential equation

z(θ + α1) · · · (θ + αn)F (z) = (θ + β1 − 1) · · · (θ + βn − 1)F (z), θ = z
d

dz
,

whose only singularities are regular at 0, 1, and ∞. For simplicity of exposition, we assume
that the β’s are distinct modulo 1, when a basis of solutions around z = 0 is given by

z1−βi
nFn−1

(

α1 − βi + 1, . . . , αn − βi + 1

β1 − βi + 1, ..∨.., βn − βi + 1

∣

∣

∣

∣

z

)

for i = 1 . . . n, and the ith term βi − βi + 1 is suppressed. The generalised hypergeometric
function nFn−1 is given by

nFn−1

(

a1, . . . , an

b1, . . . , bn−1

∣

∣

∣

∣

z

)

=
∞
∑

k=0

(a1)k · · · (an)k

(b1)k · · · (bn−1)k

zk

k!
,

where the Pochhammer symbol is given by (x)k = (x)(x + 1) · · · (x + k − 1); the k! in the
denominator of the above display can thus be thought of as (1)k, which was the suppressed
term. Note that shifting all the α and β by some fixed amount keeps the nFn−1 expression
the same, while only modifying the z1−βi term. Also, switching α and β can be envisaged
in terms of the map z → 1/z that swaps 0 and ∞.

A theorem of Pochhammer says that the above differential equation has (n − 1) in-
dependent holomorphic solutions around z = 1. Let G denote the fundamental group of
the thrice punctured Riemann sphere, and V~α,~β the solution space around a base point.

We have a monodromy representation M : G → GLn(V~α,~β). Writing g0, g1, g∞ ∈ G for

loops about 0,1,∞, we find that M(g0) has eigenvalues e−2πiβj and M(g∞) has eigenval-

ues e2πiαj , implying that we are mainly concerned with ~α and ~β only modulo 1. Indeed,
one can note that if we take F = nFn−1(~a,~b|z) and ~x ∈ Zn, ~y ∈ Zn−1, then generically

nFn−1(~a + ~x,~b + ~y|z) is a linear combination of rational functions times derivatives of F
(this is a contiguity relation). Meanwhile, the above fact from Pochhammer implies that
M(g1) must have (n − 1) eigenvalues equal to 1 (all with independent eigenvectors), and
so this element is a pseudo-reflection.

It turns out that if H ⊆ GLn(C) is generated by A and B with AB−1 a pseudo-
reflection, the H-action on Cn is irreducible if and only if A and B have disjoint sets of
eigenvalues. This is equivalent to all the αi − βj being nonintegral. Moreover, in his 1961
Amsterdam thesis, Levelt showed that, given any eigenvalues, there are (up to conjugacy)
unique A and B realising these eigenvalues with AB−1 a pseudo-reflection. (Much of the
above comes from notes of Beukers.)

For arithmetic purposes, one usually also desires that the eigenvalues be roots of unity
and the sets of them be Galois-invariant. Thus we can specify hypergeometric data H
by (say) two products of cyclotomic polynomials, these products being coprime and of
equal degree. Given such an H, Rodriguez-Villegas conjectures the existence of a family
of pure motives (defined over Q), for which the trace of Frobenius at good primes is given
by a hypergeometric sum defined by Katz [Kat90] (see also [Kat96]). For each rational
t 6= 0, 1, there should be a motive Ht whose L-function satisfies a functional equation of a
prescribed type, with the Euler factors at good primes given in terms of Gauss sums (the
bad Euler factors are less understood, and depend on deformation theory).

One can also relate such motives to more traditional objects in many cases. For instance,
there is one hypergeometric datum in degree 1, which can be specified by α = [12] and
β = [0], these being rationals corresponding to the second and first cyclotomic polynomials
respectively. The L-function here corresponds to the quadratic field Q(

√

t(t − 1)). In
degree 2 there are 13 such data, of which 3 are of weight 0 (see below) and give Artin
representations of number fields, while the other 10 are of weight 1, and yield elliptic
curves (explicitly calculated by Cohen). An example in higher degree is α = [15 , 2

5 , 3
5 , 4

5]
and β = [0, 0, 0, 0], corresponding respectively to the 5th cyclotomic polynomial and the
4th power of the first cyclotomic polynomial, and this is associated to the Calabi-Yau
quintic 3-fold given by

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 = 5tx1x2x3x4x5.

The weight w of a hypergeometric motive can be defined in terms of how much the α and
β interlace (considered as roots of unity). In particular, if they are completely interlacing,
then the weight is 0, and the resulting motive corresponds to an Artin representation.
Write D(x) = #{α : α ≤ x} − #{β : β ≤ x}. Then w + 1 = maxx D(x) − minx D(x), so
that the above 3-fold has weight 3 (from the four β’s at 0). This weight controls how large
the coefficients of the Euler factors will be.

The trace at q of a hypergeometric motive (for the parameter t) is given in terms of
Gauss sums gq over Fq. Associated to hypergeometric data is a GammaArray, and one
defines Gq(r) =

∏

v gq(−rv)γv , and also the MValue by M =
∏

v vvγv . For primes p with
vp(Mt) = 0 the hypergeometric trace is then given by

Uq(t) =
1

1 − q

(q−2
∑

r=0

ωp(Mt)rQq(r)

)

,

where ωp is the Teichmüller character and Qq(r) = (−1)m0qD+m0−mrGq(r) where mr

is the multiplicity of r
q−1 in the β and D is a scaling parameter that involves the Hodge

structure (one expression is m0 = w+1−2D). One uses p-adic Γ-functions to expedite the
computation of the above Gauss sums (indeed, the above gives the hypergeometric trace
as a p-adic number, which one recognises as an integer via sufficiently high precision). The
Euler factor is given by the standard recipe Ep(T) = exp

(

−
∑

n Upn(t)Tn/n
)

, and this is
a polynomial that satisfies a local functional equation.

1.2 Functionality

1.2.1 Creation Functions

HypergeometricData(A, B)

HypergeometricData(F, G)

Print MonStgElt Default : “cyclotomic”

These are two of the principal ways of specifying hypergeometric data. The first
takes two sequences A and B (of the same length) of rationals, which must be disjoint
upon reduction modulo 1, and each of which must be Galois-invariant when taking
the corresponding roots of unity (for instance, if 1

6 is specified, 5
6 is also given). The

second takes two products F and G of cyclotomic polynomials, these products being
coprime and of the same degree. Previous Magma versions could switch A and B
in some cases; this is no longer the case.

The default can be specified with the Print vararg, the other option currently
being "alpha beta".

There is now also some functionality for non-disjoint A and B, which mainly
manifests itself at the L-series level.

HypergeometricData(G)

This is a third way to specify hypergeometric data, by giving a sequence of integers G
such that

∑

v vG[v] = 0. Here we have Pα(T)/Pβ(T) =
∏

v(T v − 1)G[v], and the
polynomials can be determined via Möbius inversion.

HypergeometricData(L)

This is a fourth way to specify hypergeometric data, by giving a list L of nonzero
integers (with repetition possible) corresponding to the sequence L of the previous
intrinsic, with negative integers for those where L[v] is negative. The sum of the
members of the list must be 0.

HypergeometricData(F, G)

This is a fifth way to specify hypergeometric data, by giving two arrays F and G of
integers, corresponding to the cyclotomic polynomials to be used.

HypergeometricData(E)

This is a utility intrinsic that take a sequence E of two sequences and then passes
these two sequences to the intrinsics above.

Twist(H)

This intrinsic takes hypergeometric data H, and adds 1/2 to every element in α
and β, returning new hypergeometric data. Magma no longer (ever) switches α
and β when twisting.

PrimitiveData(H)

Given hypergeometric data H, return its primitive associated data. This is most
easily described in terms of GammaList, dividing all the elements by the gcd.

PossibleHypergeometricData(d)

Weight RngIntElt Default : false

TwistMinimal BoolElt Default : false

CyclotomicData BoolElt Default : false

Primitive RngIntElt Default : 0

Given a degree d, generate all possible examples of hypergeometric data of that
degree, returned as a sequence of pairs of sequences, each sequence therein having
d rationals. If Weight is specified, restrict to data of this weight. If TwistMinimal
is specified, only give twist-minimal data. If CyclotomicData is specified, return
the sequences of cyclotomic data rather than rationals. If Primitive is true, only
return data that are primitive; if Primitive is a positive integer, return the data
that have this imprimitivity.

1.2.2 Access Functions

Weight(H)

The weight of the given hypergeometric data H.

Degree(H)

The degree of the given hypergeometric data H.

DefiningPolynomials(H)

The (products of cyclotomic) polynomials corresponding to α and β corresponding
to hypergeometric data H.

Bezoutian(H)

The resultant of the defining polynomials of the hypergeometric data.

CyclotomicData(H)

Returns two arrays of integers, specifying which cyclotomic polynomials occur for α
and β corresponding to hypergeometric data H. Thus, for example, Φ3Φ

2
4Φ6 would

be represented by [3,4,4,6]).

AlphaBetaData(H)

Returns two arrays of rationals, giving the α and β of the hypergeometric data H.

MValue(H)

This returns the scaling parameter M of the given hypergeometric data H. This
is defined by taking Mn =

∏

d|n ddµ(n/d) for the nth cyclotomic polynomial, and
combining these into the products for α and β, and then dividing these. Another
definition is M =

∏

v vvγv .

GammaArray(H)

This returns an array of integers corresponding to γv, where these are defined by
Pα(T)/Pβ(T) =

∏

v(T v − 1)γv . We also have
∑

v vγv = 0.

GammaList(H)

This returns a list of integers corresponding to γv, where sign(γv) · v appears in the
list |γv| times.

H1 eq H2

H1 ne H2

Two instances of hypergeometric data H1 and H2 are equal if they have the same
α and β.

IsPrimitive(H)

Returns true if the given hypergeometric data H is primitive, and the index of
imprimitivity. The latter is the gcd of the elements in the GammaList.

1.2.3 Functionality with L-series and Euler Factors

HypergeometricTrace(H, t, q)

Given a hypergeometric datum H, a rational t 6= 0, and a prime power q = pf for
which p is good or multiplicative, return the hypergeometric trace. The intrinsic
also works more generally when vp(Mt) = 0, even if p is wild.

HypergeometricTraceK(A, B, t, q)

HypergeometricTraceK(A, B, t, q)

Precision RngIntElt Default : 5

Given α’s and β’s associated to a not-necessarily Galois datum, and a rational t 6= 0,
and a prime power q = pf for which vp(t) = 0 and p divides no denominator of the
α’s and β’s, return the hypergeometric trace according to the p-adic Γ-function
definition, namely that

Hq(α, β|t) =
qD

1 − q

q−2
∑

r=0

ωp(t)
r qm0

qmr

Xq(r)

Xq(0)

(−p)Tf (r)

(−p)Tf (0)

where ωp is the Teichmüller as before, mr is the multiplicity of −r/(q − 1) in B
(modulo 1), while

Xq(r) =

f−1
∏

i=0

∏

j Γp({p
i(αj + r/(q − 1))})

∏

j Γp({pi(βj + r/(q − 1))})

and

Tf (r) =
∑

j

[

Sf (αj + r/(q − 1)) − Sf (βj + r/(q − 1))
]

where Sf (x) =

f−1
∑

i=0

{pix}.

In the version where t is a p-adic, it must be compatible with q. The precision
of t should exceed that with the Precision parameter, those this is not mandated,
and could cause an incompatibility problem later in the computation.

This intrinsic is (much) slower than the optimized version in the Galois case.

EulerFactor(H, t, p)

Degree RngIntElt Default : 0

Check BoolElt Default : false

Fake BoolElt Default : false

This intrinsic is the heart of the hypergeometric motive package. It takes hyper-
geometric data H, a rational t 6= 0, 1, and a prime p, and computes the pth Euler
factor of the hypergeometric motive at t. This uses p-adic Γ-functions, as indicated
by Cohen. The Degree vararg specifies how many terms in the Euler factor should
be computed – if this is 0, then the whole polynomial is computed. The Check

vararg allows one to turn off the use of the (local) functional equation that is used
to expedite the computation process.

The Fake vararg allows one to compute the hypergeometric trace(s) for t with
vp(Mt) = 0 (including wild primes). Whether or not this is the actual Euler fac-
tor depends on how inertia acts. The use of this vararg inhibits the use of the

local functional equation, but one can curtail via Degree, and apply it manually (if
known).

In general, the given prime must not be wild, that is, it must not divide the
denominator of any of the α or β.

At other bad primes, the Euler factor will depend upon the relevant monodromy.
The primes for which vp(t − 1) > 0 can perhaps be called multiplicative, in that
p should divide the conductor only once (this is related to the pseudoreflection).
Since vp(Mt) = 0 here, the Euler factor (of degree d − 1) can be recovered by the
p-adic Γ-function methods (even when p = 2). Also it is often possible to relate the
(presumed) hypergeometric motive to objects from a deformation. When vp(t − 1)
is even and the weight is also even, the prime p is actually good and has a degree d
Euler factor, even though the hypergeometric trace only gives one of degree (d− 1).
In such a case, the EulerFactor intrinsic with the Fake vararg will return the part
from the hypergeometric trace.

The p with vp(1/t) > 0 correspond to monodromy at ∞. The associated inertia is
given by the roots of unity with the β, with maximal Jordan blocks when eigenvalues
are repeated. The same is true for p with vp(t) > 0, where the monodromy is
around 0 (so that the α are used). In Example H1E8), an instance is given where
the inertia is trivialised due to having ζvp(t) = 1.

We can compute the Euler factors at such tame primes as follows. Suppose that
t = t0p

vm with v > 0, where m occurs as a denominator of the α (similarly with
v < 0 and β). Then one takes the smallest q = pf that is 1 mod m, and from the
hypergeometric trace formula extracts the terms

ωp(Mt0)
j(q−1)/mQq

(

j(q − 1)

m

)

for 0 ≤ j < m with gcd(j,m) = 1. Denoting these by η, we then have that
∏

η(1 − ηT f) is an fth power (due to repetitions in the above extraction), and the
fth root of this is the desired Euler factor of degree φ(m).

When m does not divide vp(t), the Euler factor from it is trivial. One then multi-
plies together all such Euler factors corresponding to the m from the α and β. Each
m is only considered once, even if it appears multiple times in the CyclotomicData,
as the Jordan blocks of the eigenvalues are maximal. Note that the local functional
equation is not used for tame primes, though the computation should not be too
onerous unless q = pf is large.

LSeries(H, t)

BadPrimes SeqEnum Default : []

HodgeStructure HodgeStruc Default : false

GAMMA SeqEnum Default : []

Identify BoolElt Default : true

Precision RngIntElt Default : 0

Weight01 BoolElt Default : false

QuadraticTwist Any Default : false

PoleOrder RngIntElt Default : 0

SaveEuler RngIntElt Default : false

Given hypergeometric data H and a rational t 6= 0, 1, try to construct the L-series of
the associated motive. This will usually need the Euler factors at wild primes to be
specified. Everything else, including tame/multiplicative Euler factors and γ-factors,
can be computed automatically by Magma (these can also be given respectively via
BadPrimes, and GAMMA and/or HodgeStructure).

The Identify vararg indicates whether an attempt should be made to iden-
tify motives of weight 0 as Artin representations, and similarly with (hyper)elliptic
curves for weight 1. The Weight01 vararg when truewill Translate the L-series
(essentially a Tate twist) so that the weight is 0 or 1. Setting Weight01 to an (odd)
integer r will Translate so that the (motivic) weight is r plus the number of zero
entries in the AlphaBetaData. A typical choice is r = −1.

The QuadraticTwist vararg can be used to take the tensor product with the
given quadratic Dirichlet character. This can be given as a nonzero rational or as
a character, or alternatively can be set to true, when Magma will use a default
twisting factor. However, this option can conflict with BadPrimes (Magma does not
know whether to apply such primes to the original L-function or the twist), and so
should be used sparingly.

The PoleOrder vararg allows the user to specify that the given power of the
(shifted) Riemann ζ-function is expected to divide the L-series of the hypergeometric
motive. The routines will then act accordingly, decomposing the L-series into a
factorisation and moving the poles into the ζ-function part.

Finally, the SaveEuler option takes a nonnegative integer (or a boolean), and
indicates how large of primes should have their EulerFactor saved when com-
puted. This is useful when (say) dealing with such L-function constructs as
Symmetrization, for which the underlying work with hypergeometric traces is being
done on one L-function, and then used multiple times. This option will be (silently)
ignored is Magma is able to Identify the L-function as coming from somewhere
else.

The intrinsic actually returns two L-series, the first corresponding to the disjoint
parts of A and B, and the second an Artin part (weight 0) corresponding to the
common part. For most purposes the second can be ignored (it will typically be the
trivial LSeries).

1.2.3.1 Identification of Hypergeometric Data as Other Objects

ArtinRepresentation(H, t)

Check BoolElt Default : true

Given hypergeometric data H of weight 0 and a rational t 6= 0, 1, try to deter-
mine the associated Artin representation. This is implemented for all such H of

degree 3 or less, and for some of degree 4 and higher. The condition needed is that
GammaList(H) have cardinality 3. When Check is true, good primes up to 100 have
their Euler factors checked for correctness.

EllipticCurve(H)

EllipticCurve(H, t)

Given hypergeometric data H of degree 2 and weight 1 (there are 10 such families)
and a rational t 6= 0, 1, return the associated elliptic curve, as catalogued by Cohen.
When t is not given, return the result over a function field.

For each of the 10 families, the same function can be called for the corresponding
imprimitive data of index r, and the result will generically be an elliptic curve over
an extension of degree r. However, when the xr − 1/Mt splits, the intrinsic will
return an array of elliptic curves corresponding to this splitting.

HyperellipticCurve(H)

HyperellipticCurve(H, t)

Given hypergeometric data H of degree 4 and weight 1 and a rational t 6= 0, 1, return
the associated hyperelliptic curve, if this data is known to correspond to such. When
t is not given, return the result over a function field. There are 18 cases where one
gets a genus 2 curve from the CanonicalCurve (making 36 cases when twisting is
considered), and a few others where CanonicalCurve gives a higher genus curve
and there is a genus 2 quotient. In general, one can try to call IsHyperelliptic
on the CanonicalCurve.

Identify(H, t)

Given hypergeometric data H and a rational t 6= 0, 1, return any known associated
object (else returns false). The return value can (currently) be: an Artin rep-
resentation (weight 0); an elliptic curve over Q (weight 1 in degree 2); an elliptic
curve over a number field (weight 1 in degree 2r with imprimitivity r), or possibly
multiple such curves; or a hyperelliptic curve over Q (weight 1 in degree 4).

1.2.4 Associated Schemes and Curves

CanonicalScheme(H)

CanonicalScheme(H, t)

Given hypergeometric data H, this constructs a canonical associated scheme. When
the parameter t is given, the specialization is returned, otherwise the result returned
will be a scheme over a function field.

The scheme is determined from the GammaList, with a variable (Xi or Yj) for
every element in the list. The scheme is the intersection of

∑

i Xi =
∑

j Yj = 1 with

∏

i

X
g+

i

i

∏

j

Y
g−

j

j =
1

Mt
,

where the g+
i are the positive elements in the GammaList and the g−j are the negative

ones (one usually moves the latter to the other side of the equation, to make the
exponents positive).

CanonicalCurve(H)

CanonicalCurve(H, t)

Given suitable hypergeometric data H, this tries to construct an associated plane
curve. When the parameter t is given, the specialization at t is returned, otherwise
the return value will be a plane curve over a function field. The curve is constructed
using the GammaList (which indicates the Jacobi sums that need to be taken). When
this list has four elements, it is always possible to get a curve. When the list has
six elements, it is sometimes possible, depending on whether the largest element (in
absolute value) is the negation of the sum of two of the other elements. If it is not
possible to construct such a curve, the intrinsic returns false.

1.2.5 Utility Functions

HypergeometricMotiveSaveLimit(n)

HypergeometricMotiveClearTable()

These are utility intrinsics that will cache the pre-computation of p-adic Γ-functions.
The first indicates to save all computed values when the prime power is less than n,
and the second clears the table. The qth table entry will have (q− 1) elements in it.

pPart(H, p)

pParts(H)

Given a hypergeometric datum, reduce the cyclotomic indices modulo either the
given prime or all wild primes.

1.3 Examples

Example H1E1

Our first example constructs some hypergeometric motives, and recognises them as being related
to elliptic curves or Artin representations.

> H := HypergeometricData([1/2],[0]); // weight 0

> t := 3/5;

> A := ArtinRepresentation(H,t);

> D := Discriminant(Integers(Field(A))); // -24

> assert IsSquare(D/(t*(t-1))); // Q(sqrt(t(t-1)))

> R := ArtinRepresentationQuadratic(-24);

> assert A eq R;

> //

> H := HypergeometricData([1/4,3/4],[0,0]);

> Weight(H);

1

> DefiningPolynomials(H);

y^2 + 1, y^2 - 2*y + 1

> t := 3/2;

> E := EllipticCurve(H,t); E;

Elliptic Curve defined by y^2 + x*y = x^3 + 1/96*x over Q

> P := PrimesInInterval(5,100);

> &and[EulerFactor(E,p) eq EulerFactor(H,t,p) : p in P];

true

> //

> f := CyclotomicPolynomial(6)*CyclotomicPolynomial(2);

> g := CyclotomicPolynomial(1)^3;

> H := HypergeometricData(f,g); H;

Hypergeometric data given by [2, 6] and [1, 1, 1]

> Weight(H);

2

> GammaList(H);

[* -1, -1, -1, -3, 6 *]

> GammaArray(H);

[-3, 0, -1, 0, 0, 1]

> [EulerFactor(H,4,p) : p in [5,7,11,13,17,19]];

[125*y^3 + 20*y^2 + 4*y + 1, 343*y^3 - 42*y^2 - 6*y + 1,

-1331*y^3 - 22*y^2 + 2*y + 1, -2197*y^3 - 156*y^2 + 12*y + 1,

4913*y^3 + 323*y^2 + 19*y + 1, 6859*y^3 - 57*y^2 - 3*y + 1]

> //

> _<u> := FunctionField(Rationals());

> H := HypergeometricData([-2,0,0,-1,0,1] : Print:="alpha_beta");

> H; // weight 1

Hypergeometric data given by [1/6,1/3,2/3,5/6] and [0,0,1/4,3/4]

> HyperellipticCurve(H); // defined over Q(u)

Hyperelliptic Curve defined by y^2 = 4*x^6 - 8*x^5 + 4*x^4 - 64/729/u

> t := 4;

> C := Specialization($1,t); // only works over Q(u)

> &and[EulerFactor(C,p) eq EulerFactor(H,t,p) : p in P];

true

> //

> H := HypergeometricData([0,-1,0,1,0,1,0,-1] : Print:="alpha_beta");

> H; // weight 1

Hypergeometric data given by [1/6,1/3,2/3,5/6] and [1/8,3/8,5/8,7/8]

> MValue(H);

729/4096

> t := 3; // could alternatively specialize later

> E := EllipticCurve(H,t); aInvariants(E);

[0, 0, -s, -s, 0] where s^2 is 4096/2187

> &and[EulerFactor(E,p) eq EulerFactor(H,t,p) : p in P];

true

Example H1E2

This is a simple example of twisting hypergeometric data, showing that a related Artin motive is
obtained for the given weight 0 data.

> f := CyclotomicPolynomial(6);

> g := CyclotomicPolynomial(1)*CyclotomicPolynomial(2);

> H := HypergeometricData(f,g); H; assert(Weight(H)) eq 0;

Hypergeometric data given by [6] and [1, 2]

> A := ArtinRepresentation(H,-4/5);

> K := OptimisedRepresentation(Field(A));

> DefiningPolynomial(K);

y^6 - 3*y^5 + 3*y^4 - y^3 + 3*y^2 - 3*y + 1

> T := Twist(H); T;

Hypergeometric data given by [3] and [1, 2]

> A := ArtinRepresentation(T,-4/5);

> L := OptimisedRepresentation(Field(A));

> IsSubfield(L,K), DefiningPolynomial(L);

true Mapping from: L to K, y^3 + 3*y - 1

The same can be said for twisting for (hyper)elliptic curves.

> H := HypergeometricData([2,2],[3]); // Phi_2^2 and Phi_3

> E := EllipticCurve(H,3);

> T := EllipticCurve(Twist(H),3);

> IsQuadraticTwist(E,T);

true -4/9

> //

> H := HypergeometricData([5],[8]); // Phi_5 and Phi_8

> C := HyperellipticCurve(H);

> t := 7;

> S := Specialization(C,t);

> T := HyperellipticCurve(Twist(H),t);

> Q := QuadraticTwist(T,5*t); // get right parameter

> assert IsIsomorphic(Q,S);

Example H1E3

This example exercises the primitivity functionality.

> H := HypergeometricData([3],[4]); // Phi_3 and Phi_4

> GammaList(H);

[* -1, 2, 3, -4 *]

> H2 := HypergeometricData([* -2, 4, 6, -8 *]);

> IsPrimitive(H2);

false 2

> PrimitiveData(H2) eq H;

true

> H3 := HypergeometricData([* -3, 6, 9, -12 *]);

> IsPrimitive(H3);

false 3

> PrimitiveData(H3) eq H;

true

> aInvariants(EllipticCurve(H));

[0, 0, -64/27/u, -64/27/u, 0] where u is FunctionField(Q).1

> aInvariants(EllipticCurve(H2));

[0, 0, -s, -s, 0] where s^2=(-64/27)^2/u

> aInvariants(EllipticCurve(H3));

[0, 0, -s, -s, 0] where s^3=(-64/27)^3/u

Example H1E4

Here is an example with the canonical schemes and curves associated to various hypergeometric
data.

> _<u> := FunctionField(Rationals());

> H := HypergeometricData([* -2, 3, 4, -5 *]); // degree 4

> C := CanonicalScheme(H);

> _<[X]> := Ambient(C); C;

Scheme over Univariate rational function field over Q defined by

X[1] + X[2] - 1, X[3] + X[4] - 1,

X[1]^2*X[2]^5 - 3125/1728/u*X[3]^3*X[4]^4

> Dimension(C), Genus(Curve(C)); // genus 2 curve

1 2

> assert IsHyperelliptic(Curve(C));

> CC := CanonicalCurve(H);

> _<x,y> := Ambient(CC); CC;

Curve over Univariate rational function field over Q defined by

x^7 - 2*x^6 + x^5 + 3125/1728/u*y^7 - 3125/576/u*y^6 +

3125/576/u*y^5 - 3125/1728/u*y^4

> b, C2 := IsHyperelliptic(CC); assert b;

> HyperellipticCurve(H); // in the degree 4 catalogue

Hyperelliptic Curve defined over Univariate function field

over Q by y^2 = 4*x^5 - 3125/432/u*x^3 + 9765625/2985984/u^2

> assert IsIsomorphic(HyperellipticCurve(H),C2);

> // and an example where the curve is reducible

> H := HypergeometricData([* 6,6,-8,-4 *]); // weight 1

> C := CanonicalCurve(H);

> A := AlgorithmicFunctionField(FunctionField(C));

> E<s> := ExactConstantField(A);

> CE := BaseChange(C,E);

> I := IrreducibleComponents(CE); assert #I eq 2;

> _<x,y> := Ambient(I[1]); I[1];

Scheme over E defined by [where s^2 = 1048576/531441/u]

x^6 - 2*x^5 + x^4 - s*y^6 + 3*s*y^5 - 3*s*y^4 + s*y^3

> b, C2 := IsHyperelliptic(Curve(I[1])); assert b;

Example H1E5

Here is an example in degree 4 and weight 3. It turns out that the motive from t = −1 has
complex multiplication, and the L-series appears to be the same as that of a Siegel modular form
given by [vGvS93, §8.7]. (This was found by Cohen and Rodriguez-Villegas). This L-series also
appears in Example ???? .

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> L := LSeries(H,-1 : BadPrimes:=[<2,9,1>]); // guessed

> CFENew(L);

-5.91645678915758854058796423962E-31

> LGetCoefficients(L,100);

[* 1, 0, 0, 0, -4, 0, 0, 0, -6, 0, 0, 0, -84, 0, 0, 0, 36, 0, 0, 0, 0,

0, 0, 0, 146, 0, 0, 0, 140, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, -140,

0, 0, 0, 24, 0, 0, 0, -238, 0, 0, 0, 924, 0, 0, 0, 0, 0, 0, 0, -820,

0, 0, 0, 336, 0, 0, 0, 0, 0, 0, 0, -396, 0, 0, 0, 0, 0, 0, 0, -693,

0, 0, 0, -144, 0, 0, 0, -300, 0, 0, 0, 0, 0, 0, 0, -252, 0, 0, 0 *]

> // compare to the Tensor product way of getting this example

> E := EllipticCurve("32a");

> NF := Newforms(ModularForms(DirichletGroup(32).1,3)); // wt 3 w/char

> L1 := LSeries(E); L2 := LSeries(ComplexEmbeddings(NF[1][1])[1][1]);

> TP := TensorProduct(L1, L2, [<2, 9>]); // conductor 2^9 (guessed)

> [Round(Real(x)) : x in LGetCoefficients(TP,100)];

[1, 0, 0, 0, -4, 0, 0, 0, -6, 0, 0, 0, -84, 0, 0, 0, 36, 0, 0, 0, 0,

0, 0, 0, 146, 0, 0, 0, 140, 0, 0, 0, 0, 0, 0, 0, 60, 0, 0, 0, -140,

0, 0, 0, 24, 0, 0, 0, -238, 0, 0, 0, 924, 0, 0, 0, 0, 0, 0, 0, -820,

0, 0, 0, 336, 0, 0, 0, 0, 0, 0, 0, -396, 0, 0, 0, 0, 0, 0, 0, -693,

0, 0, 0, -144, 0, 0, 0, -300, 0, 0, 0, 0, 0, 0, 0, -252, 0, 0, 0]

Example H1E6

We go through an example working with hypergeometric traces when the underlying datum is not
Galois. First we check that the relevant intrinsic HypergeometricTraceK gives the same answers
as HypergeometricTrace.

> PHD := PossibleHypergeometricData(4);

> t := 2; p := 13;

> Z := Integers();

> for h in PHD do H:=HypergeometricData(h); A:=H‘alpha; B:=H‘beta;

> assert HypergeometricTrace(H,t,p) eq Z!HypergeometricTraceK(A,B,t,p);

> end for;

Next we consider the ”Klein quartic” datum defined over Q(
√
−7). For split primes, its trace will

be a quadratic surd.

> A := [1/14,9/14,11/14];

> B := [1/4,3/4,1];

> p := 29; // a split prime in Q(sqrt(-7))

> e := HypergeometricTraceK(A,B,2,p : Precision:=10);

> PowerRelation(e,4);

x^2 - x + 2

In more generality, one can expect elements in cyclotomic fields.

> e := HypergeometricTraceK([1/8,7/8],[0,1/4],2,17 : Precision:=10);

> PowerRelation(e,4);

17*x^4 + 8*x^3 + 24*x^2 + 32*x + 16

> assert IsIsomorphic(NumberField($1),CyclotomicField(8));

> //

> e := HypergeometricTraceK([1/8,7/8],[0,1/4],2,97 : Precision:=10);

> PowerRelation(e,4);

97*x^4 + 56*x^3 - 232*x^2 + 224*x + 784

> assert IsIsomorphic(NumberField($1),CyclotomicField(8));

> // and a non-split prime, with q = 1 mod 8

> e := HypergeometricTraceK([1/8,7/8],[0,1/4],2,7^2 : Precision:=20);

> PowerRelation(e,2); // generates Q(sqrt(2))

7*x^2 - 4*x - 4

The K-trace property can also be used to compute at t-values which are not rational. For instance,
work of Guillera [Gui12, AG12] implies that t = 8/(15

√
5−33)2 should give a pole for (Φ3

2Φ3, Φ
5

1),
and we can verify numerically that the (normalized) traces have average 1 for small primes (and
also that the second moment is approximately 2, indicating a splitting).

> H := HypergeometricData([2,2,2,3],[1,1,1,1,1]); // weight 4

> A := H‘alpha; B := H‘beta;

> Z := Integers();

> f := func<p|(1/((15*Sqrt(pAdicField(p,20)!5)-33)/2)^3)>;

> P := [p : p in PrimesUpTo(200) | p^2 mod 5 eq 1];

> R := [<p,Z!HypergeometricTraceK(A,B,Z!f(p),p)> : p in P];

> &+[r[2]/r[1]^2*1.0 : r in R]/#P;

1.13162808398732021466387060353

> &+[r[2]^2/r[1]^4*1.0 : r in R]/#P; // second moment

2.32631764414942310383344594579

Comparatively, most t-values have mean zero and second moment of 1, though again by [Gui12]
we expect that t = (4/3)3 is exceptional.

> MomentData(LSeries(H,5),P,2); // t = 5

0.14376 [0.84480]

> MomentData(LSeries(H,11),P,2); // t = 11

0.17961 [0.68179]

> MomentData(LSeries(H,(4/3)^3),P,2); // t = (4/3)^3

0.81211 [1.2554] // P is not that robust

> MomentData(LSeries(H,(4/3)^3),PrimesUpTo(1000),2);

0.98494 [1.9196]

Finally, we demonstrate how to work with p-adic inputs for the t-parameter.

> A := [1/4]; B := [1/3];

> Qp := pAdicField(5,20);

> E := ext<Qp|Polynomial([-2,0,1])>; // x^2-2, unramified

> HypergeometricTraceK(A,B,4+E.1,5);

1190*E.1 + 1258 + O(5^5)

> HypergeometricTraceK(A,B,4-E.1,5);

-1190*E.1 + 1258 + O(5^5)

Example H1E7

Here is an example showing how to handle bad primes in some cases. The Euler factors at {3, 5, 17}
[where p|(t − 1)] were determined via a recipe from deformation theory by Rodriguez-Villegas,
while at p = 2, Roberts suggested a t-value that would trivialise the conductor (from a number
field analogy), and Tornaŕia then computed the full degree 4 factor (at p = 2) for t = 28.

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> Lf := LSeries(Newforms(ModularForms(8,4))[1][1]);

> T := PolynomialRing(Integers()).1; // dummy variable

> f3 := EulerFactor(Lf,3 : Integral)*(1-3*T); // make it a poly

> f5 := EulerFactor(Lf,5 : Integral)*(1-5*T); // via Integral

> f17 := EulerFactor(Lf,17 : Integral)*(1-17*T);

> f2 := 1+T+6*T^2+8*T^3+64*T^4; // determined by Tornaria

> BP := [<2,0,f2>,<3,1,f3>,<5,1,f5>,<17,1,f17>];

> L := LSeries(H,256 : BadPrimes:=BP);

> Conductor(L);

255

> assert Abs(CFENew(L)) lt 10^(-28);

One need not specify all the bad prime information as in the above example. Here is a variation
on it, with t = 1/28 (note that this actually gives the same L-series, as the data is a self-twist,
with the character induced by twisting being trivial for this choice of t). Note that only the
information at 2 is given to LSeries.

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> MValue(H);

256

> t := 1/2^8; // makes v_2(Mt)=0

> f2 := EulerFactor(H,t,2 : Fake);

> f2;

64*T^4 + 8*T^3 + 6*T^2 + T + 1

> L := LSeries(H,t : BadPrimes:=[<2,0,f2>]);

> Conductor(L);

255

> assert Abs(CFENew(L)) lt 10^(-28);

Example H1E8

Here is an example with the quintic 3-fold. The deformation theory at p = 11 here is related to
the Grössencharacter example over Q(ζ5) given in Example ???? . The action on inertia at
p = 11 involves ζ5 when 11|t, and here it is raised to the 5th power, thus trivialising it. As with
previous example, the deformation theory also involves a weight 4 modular form, here of level 25.

> f := CyclotomicPolynomial(5); g := CyclotomicPolynomial(1)^4;

> H := HypergeometricData(f,g : Print:="alpha_beta");

> H, Weight(H); // weight 3

Hypergeometric data given by [1/5,2/5,3/5,4/5] and [0,0,0,0]

3

> t := 11^5; // 11 is now good, as is raised to 5th power

> T := PolynomialRing(Rationals()).1;

> f2 := (1-T+8*T^2)*(1+2*T); // could have Magma compute these

> f3221 := (1-76362*T+3221^3*T^2)*(1-3221*T); // wt 4 lev 25

> // degree 4 factor at 11 comes from Grossencharacter

> // in fact, this is the t=0 deformation: sum_i x_i^5 = 0

> K<z5> := CyclotomicField(5);

> p5 := Factorization(5*Integers(K))[1][1]; // ramified

> G := HeckeCharacterGroup(p5^2);

> psi := Grossencharacter(G.0,[[3,0],[1,2]]);

> f11 := EulerFactor(LSeries(psi),11 : Integral); f11;

1771561*x^4 - 118459*x^3 + 3861*x^2 - 89*x + 1

> BP := [<2,1,f2>,<5,4,1>,<11,0,f11>,<3221,1,f3221>];

> L := LSeries(H,t : BadPrimes:=BP);

> Conductor(L); // 2*5^4*3221, 5^4 is somewhat guessed

4026250

> LSetPrecision(L,5);

> LCfRequired(L); // approx with old CheckFunctionalEquation

12775 //

> time CFENew(L); // actually needs much fewer now

1.5259E-5

Time: 4.290

Again one need not specify all the bad prime information, as Magma can automatically compute
it at multiplicative and tame primes (however, the local conductor at 5 must be specified).

> EulerFactor(H,t,11); // tame

1771561*T^4 - 118459*T^3 + 3861*T^2 - 89*T + 1

> EulerFactor(H,t,2); // multiplicative

16*T^3 + 6*T^2 + T + 1

> EulerFactor(H,t,3221); // multiplicative

-107637325775281*T^3 + 33663324863*T^2 - 79583*T + 1

One can also choose t so as to trivialise the wild prime 5.

> MValue(H); // 5^5;

3125

> t := 11^5/5^5;

> f5 := EulerFactor(H,t,5 : Fake); // v_5(Mt)=0

> f5;

15625*T^4 - 125*T^3 - 45*T^2 - T + 1

> L := LSeries(H,t : BadPrimes:=[<5,0,f5>]);

> Conductor(L); // 2*3*26321, Magma computes Euler factors

157926

> LSetPrecision(L,9); // about 4000 terms

> CFENew(L);

-2.32830644E-10

> t := -11^5/5^5; // another choice with v_5(Mt)=0

> f5 := EulerFactor(H,t,5 : Fake); // v_5(Mt)=0

> f5; // four possible Euler factors, one for each Mt mod 5

15625*T^4 + 1750*T^3 + 230*T^2 + 14*T + 1

> L := LSeries(H,t : BadPrimes:=[<5,0,f5>]);

> Conductor(L); // 2*31*331, Magma computes Euler factors

20522

> LSetPrecision(L,9); // about 1300 terms

> CFENew(L);

4.65661287E-10

Example H1E9

Here is an example with tame primes. This derives from comments of Rodriguez-Villegas. The
idea is to take hypergeometric data that has weight 0 or 1, and compare it to Artin representations
or hyperelliptic curves.

> T := PolynomialRing(Rationals()).1; // dummy variable

> H := HypergeometricData([3,4,6,12],[1,1,5,5]); // degree 10

> b, HC := IsHyperelliptic(CanonicalCurve(H)); // genus 5

> assert b; Genus(HC);

5

> EulerFactor(Specialization(HC,13^12),13); // 13 becomes good

371293*T^10 - 285610*T^9 + 125229*T^8 - 31096*T^7 + 4810*T^6

- 540*T^5 + 370*T^4 - 184*T^3 + 57*T^2 - 10*T + 1

> EulerFactor(H,13^12,13); // use hypergeometric methods

371293*T^10 - 285610*T^9 + 125229*T^8 - 31096*T^7 + 4810*T^6

- 540*T^5 + 370*T^4 - 184*T^3 + 57*T^2 - 10*T + 1

> assert &and[EulerFactor(Specialization(HC,p^12),p)

> eq EulerFactor(H,p^12,p) : p in [11,13,17,19]];

> assert &and[EulerFactor(Specialization(HC,t0*13^12),13)

> eq EulerFactor(H,t0*13^12,13) : t0 in [1..12]];

One can take a smaller power than the 12th, but then the curve will not become completely good
at the prime. However, the hypergeometric calculations will still be possible.

> EulerFactor(H,17^4,17);

17*T^2 + 2*T + 1

> EulerFactor(H,19^9,19); // takes the Phi_3 term

19*T^2 + 7*T + 1

> EulerFactor(H,19^6,19);

361*T^4 + 114*T^3 + 31*T^2 + 6*T + 1

> EulerFactor(H,1/11^5,11); // degree is phi(1)+phi(5)

-T^5 + 1

> EulerFactor(H,4/11^5,11); // degree is phi(1)+phi(5)

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

A similar exploration is possible with a weight 0 example. Here the Artin representation machinery
is better able to cope with partially good primes.

> H := HypergeometricData([2,3,6],[1,5]); // degree 5

> Q := Rationals();

> EulerFactor(ArtinRepresentation(H,7^6),7 : R:=Q);

-T^5 - T^4 - T^3 + T^2 + T + 1

> EulerFactor(ArtinRepresentation(H,7^3),7 : R:=Q);

T^2 + T + 1

> EulerFactor(ArtinRepresentation(H,7^2),7 : R:=Q);

-T + 1

> EulerFactor(ArtinRepresentation(H,2/11^5),11 : R:=Q);

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

> EulerFactor(H,7^6,7); // compute it directly from H

-T^5 - T^4 - T^3 + T^2 + T + 1

> EulerFactor(H,7^3,7);

T^2 + T + 1

> EulerFactor(H,7^2,7);

-T + 1

> EulerFactor(H,2/11^5,11);

-T^5 + 5*T^4 - 10*T^3 + 10*T^2 - 5*T + 1

Example H1E10

In general one should be able to relate the tame Euler factors to Grössencharacters. This is
partially considered (in a different guise) in [Wei74] and [Wei76]. In particular, for primes p that
are 3 mod 4, we can take the hypergeometric data given by the squares modulo p, and find that
at a prime l that is 1 mod p with a suitably normalised t-value whose valuation vl(t) at l is p, the
Euler factor is a power (and Tate twist) of that for the canonical Grössencharacter of Q(

√−p).

> p := 11; assert p mod 4 eq 3 and p ne 3 and IsPrime(p);

> SQ := [-Integers()!x : x in GF(p) | IsSquare(x) and x ne 0];

> H := HypergeometricData([* x : x in [-&+SQ] cat SQ *]);

> GammaList(H);

[* -1, -3, -4, -5, -9, 22 *]

> Weight(H); assert Weight(H) eq (p-5)/2;

3

> K := QuadraticField(-p);

> I := Factorization(p*Integers(K))[1][1];

> G := HeckeCharacterGroup(I); // get Tate twist of canonical GR

> u := (Weight(H)+ClassNumber(K)) div 2;

> v := (Weight(H)-ClassNumber(K)) div 2; //u+v=wt, u-v=classno

> u,v;

2 1

> GR := Grossencharacter(G.0,[[u,v]]); // [6,3] for sqrt(-23)

> for l in [l : l in PrimesUpTo(1000) | l mod p eq 1] do

> ef := EulerFactor(H,l^p/MValue(H),l);

> F := Factorization(ef);

> assert #F eq 1 and F[1][2] eq (p-1)/2;

> assert F[1][1] eq EulerFactor(GR,l : Integral);

> printf "%o %o\n",l,F[1][1];

> end for;

23 12167*x^2 + 207*x + 1

67 300763*x^2 - 871*x + 1

89 704969*x^2 + 801*x + 1

199 7880599*x^2 + 3980*x + 1

Example H1E11

Here is an example of the use of PossibleHypergeometricData, enumerating the number of pos-
sibilities in small degree. A speed test is also done for the save-limit code.

> for d in [1..8] do

> [#PossibleHypergeometricData(d : Weight:=w) : w in [0..d-1]];

> end for;

[1]

[3, 10]

[3, 0, 10]

[11, 74, 30, 47]

[7, 0, 93, 0, 47]

[23, 287, 234, 487, 84, 142]

[21, 0, 426, 0, 414, 0, 142]

[51, 1001, 1234, 3247, 894, 1450, 204, 363]

> D4w1 := PossibleHypergeometricData(4 : Weight:=1);

> D := [HypergeometricData(x) : x in D4w1]; // 12 are self-twists

> #[x : x in D | Twist(x) eq x or Twist(x) eq SwapAlphaBeta(x)];

12

> #PossibleHypergeometricData(4 : Weight:=1,TwistMinimal);

43

> #PossibleHypergeometricData(4 : Weight:=1,Primitive);

64

> // speed test for SaveLimit

> H := HypergeometricData([1/2,1/2,1/2,1/2],[0,0,0,0]);

> HypergeometricMotiveSaveLimit(2000);

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 1.040

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 0.540

> HypergeometricMotiveClearTable();

> time _:=LGetCoefficients(LSeries(H,-1),2000);

Time: 1.030

1.3.1 Special Hypergeometric Motives
As indicated partially in the previous description, one can specialize the (singular)

parameter t = 1 in a family of a hypergeometric motives, and still get a arithmetic object.
In doing this, the degree drops by 1, or 2 if the original datum has even degree and odd
weight. However, the weight stays the same. All primes that are not involved with the
cyclotomic data can be considered “multiplicative” in that p|(t − 1). Magma contains a
“database” of bad Euler information for all HGMs up through degree 6. Some examples
are given below.

Example H1E12

Note that any degree 2 weight 1 hypergeometric datum will have a t = 1 specialization with a
degree 0 L-function, that is, the trivial L-function that is identically 1. One of the degree 2 weight
0 data gives the Riemann ζ-function, and the other two give Artin representations (which could
be written as Dirichlet characters).

> H := HypergeometricData([6],[1,2]);

> L := LSeries(H,1); L;

L-series of Artin rep C2: (1,-1) of ext<Q|x^2-3>, conductor 12

> H := HypergeometricData([3],[1,2]); // twist of above

> L := LSeries(H,1); L;

L-series of Riemann zeta function

> H := HypergeometricData([4],[1,2]);

> L := LSeries(H,1); L;

L-series of Artin rep C2: (1,-1) of ext<Q|x^2-2>, conductor 8

Magma automatically identifies the examples where the resulting degree is 2 or less, and also some
additional Artin representations. However, for (Φ5, Φ

2

6) and its twist, the resulting newform has
level 5400, and as the identification in this space might be expensive, it is not made.

> H := HypergeometricData([12],[1,2,3]); // degree 4

> L := LSeries(H,1); L; // drops to degree 3

L-series of Artin rep S4: (3,-1,1,0,-1) of ext<Q|x^4-4*x-6>, cond 6912

> // both the next two drop to degree 2 (odd wt)

> H := HypergeometricData([2,2,6],[10]);

> L := LSeries(H,1); L; CremonaReference(L‘parent);

L-series of Elliptic Curve y^2 + y = x^3 - 75*x + 256 over Q

225e1

> H := HypergeometricData([2,2,3],[4,4]);

> L := LSeries(H,1); L; Conductor(L);

L-series of q - 2*q^5 + 12*q^7 - 60*q^11 + O(q^12)

288

In general, the returned object is just an L-series label, with the correct bad Euler data attached.
There are also various examples (necessarily in even weight) where a translate of the Riemann
ζ-function is a factor of L-series.

> H := HypergeometricData([3,8],[1,2,2,2,6]);

> Degree(H), Weight(H);

6 2

> L:=LSeries(H,1);

> Degree(L); // drops by 1

5

> L;

(L-function for param t=1 of HG data given by [3,8] and [1,2,2,2,6] /

Translation by 1 of L-series of Riemann zeta function) *

(Translation by 1 of L-series of Riemann zeta function)

> BadPrimeData(L); // conductor 2^7 * 3^2

[

<2, 7, 8*x^3 - 4*x^2 - 2*x + 1>,

<3, 2, -27*x^3 - 3*x^2 + x + 1>

]

> CFENew(L); // check the bad Euler info

0.000000000000000000000000000000

In general, the local conductors bad Euler factors (possibly trivial) were found by a process of
trial and error, aided by ideas from David Roberts and Fernando Rodriguez-Villegas.

> H := HypergeometricData([5,6],[1,1,2,2,3]); // deg 6 wt 1

> L := LSeries(H,1); // degree 4

> BadPrimeData(L);

[

<2, 1, -2*x^3 + x + 1>, // (1-x)*(1+2x+2x^2)

<3, 1, -3*x^3 + 2*x^2 + 1>, // (1-x)*(1+x+3x^2)

<5, 4, 1>

]

> LSetPrecision(L,15);

> CFENew(L);

0.000000000000000

> //

> H := HypergeometricData([14],[1,1,1,2,3]); // deg 6 wt 2

> L := LSeries(H,1); // degree 5

> BadPrimeData(L); // cond too large to check here

[

<2, 10, 1>,

<3, 3, 3*x^2 - 4*x + 1>, // (1-x)(1-3x), mixed weight

<7, 5, 1>

]

There are some exotic examples where the specialized L-function factors into degree 2 L-functions
of modular forms (or elliptic curves), or at least has an identifiable factor of smaller degree.

> H := HypergeometricData([2,2,4,6],[3,10]);

> L := LSeries(H,1); // reduce to deg 4 and wt 1

> E1 := EllipticCurve("400c");

> E2 := EllipticCurve("1200l");

> X := LSeries(E1)*LSeries(E2);

> &and[EulerFactor(L,p) eq EulerFactor(X,p) : p in PrimesUpTo(100)];

true

> //

> H := HypergeometricData([2,2,2,2,2,2],[1,1,1,1,1,1]);

> L := LSeries(H,1); // reduce to deg 4 and wt 5

> f4 := Newforms(CuspForms(8,4))[1][1]; // modular forms

> f6 := Newforms(CuspForms(8,6))[1][1]; // of level 8

> Y := Translate(LSeries(f4),1)*LSeries(f6);

> &and[EulerFactor(L,p) eq EulerFactor(Y,p) : p in PrimesUpTo(100)];

true

> //

> H := HypergeometricData([3,3,3,3],[6,6,6,6]);

> L := LSeries(H,1); // deg 6 weight 7

> P := PrimesInInterval(5,100);

> &+[1.0*Coefficient(EulerFactor(L,p : Degree:=1),1)^2/p^7 : p in P]/#P;

1.99744382297573720150050401754 // imprimitive, 2 factors

> f6 := Newforms(CuspForms(36,6))[2][1]; // level 36 modwt 6

> LQ := Translate(LSeries(f6),1); // make it weight 7

> P30 := PrimesInInterval(5,30);

> &and[IsDivisibleBy(EulerFactor(L,p),EulerFactor(LQ,p)) : p in P30];

true

1.4 Jacobi Motives
A topic related to hypergeometric motives is that of Jacobi sum motives. These are

indeed simpler, and in fact the tame prime information for hypergeometric motives can be
determined from Jacobi motives, possibly twisted by Kummer and Tate characters.

The classical Jacobi sums were indicated by Weil to come from Grössencharacters
[Wei52], and this functionality is also included, with it indeed being the preferred method
to compute Euler factors and the L-series, once the reciprocity correspondence has been
established and the Grössencharacter identified.

1.4.1 Background
Let nj ∈ Z and xj ∈ Q/Z with θ =

∑

j nj〈xj〉 an element of the free group on Q/Z
with

∑

njxj ∈ Z.
Letting m be the least common multiple of the denominators of the xj , the field of

definition Kθ is a subfield of Q(ζm), corresponding by class field theory to quotienting out
by (Z/mZ)⋆ by elements which leave θ fixed when scaling by them. When scaling by −1
fixes θ this field Kθ is totally real, and otherwise it is a CM field.

For primes p with gcd(p,m) = 1, we consider Gauss sums corresponding for prime
ideals p in Q(ζm), defined by

Gψ
a/m(p) = −

∑

x∈F
⋆
p

(x

p

)a

m
ψ

(

Tr
Fp

Fp
x
)

,

where ψ is a nontrivial additive character on Fp and the power residue symbol takes values
in the roots of unity of Q(ζm) with

(x

p

)a

m
≡ x(q−1)a/m (mod p).

The associated Jacobi sum evaluation for θ at p is then given by
∏

j Gxj
(p)nj with the

result being independent of the choice of additive character ψ. This defines the Jacobi sum
for good primes p up to a choice of ζm into C.

If one is just interested in Euler factors over Q and not Kθ, then a p-adic method using
the Gross-Koblitz formula can also be used. There are known bounds on the conductor of
the resulting L-function, the first being that of Weil [Wei52].

1.4.2 Kummer and Tate Twists
A Jacobi motive can also be Kummer twisted by tρ for some rational ρ and nonzero

rational t. This can increase the field of definition so that m includes the denominator
of ρ. This corresponds to multiplying the various Jacobi sum evaluations by suitable roots
of unity.

Often one wants to Tate twist the Jacobi sum to gets its effective weight, and for this
reason the full unit is sometimes called a Jacket motive (for Jacobi, Kummer, and Tate).

1.5 Jacobi Motive Functionality

1.5.1 Creation Functions

JacobiMotive(A, B)

Kummer SeqEnum Default : [1, 0]

Tate RngIntElt Default : 0

Weight RngIntElt Default :

Given two sequences of rationals, corresponding to positive and negative elements
in the free group on Q/Z, create the resulting Jacobi motive. This requires that the
signed sum of the rationals is an integer. The optional Kummer vararg can specify a
Kummer twist, and similarly with the Tate vararg. Alternatively, the desired Tate
twist can be obtained by giving and integral argument to the Weight vararg, and
the effective Tate twist can be obtained by setting Weight as true. A variant with
only one argument (B is empty) is also available.

JacketMotive(A, B, t, rho, j)

Similar to above, this intrinsic spells out the Jacobi summands (A,B), the Kummer
twist tρ, and the Tate twist j explicitly.

KummerTwist(J, t, rho)

Given a Jacobi motive J , return its Kummer twist by tρ, where ρ is rational and t
is a nonzero rational.

TateTwist(J, j)

Given a Jacobi motive J and an integer j, return the jth Tate twist of J .

1.5.2 Operations

J1 * J2

Given two Jacobi motives, take their tensor product, eliminating any rationals com-
mon to the positive and negative parts.

J1 / J2

Given two Jacobi motives, take their tensor quotient, eliminating any rationals
common to the positive and negative parts.

J1 eq J2

J1 ne J2

Whether two Jacobi motives are equal, that is, whether they have the same positive
and negative parts, their tρ Kummer twists are the same, and they have the same
Tate twist parameter.

Scale(J, q)

Given a Jacobi motive, scale all the rational numbers defined the datum by the given
rational q. The denominator of q must be coprime to m, and q must be invertible
mod m. The resulting motive will be identical over Q but need only be conjugate
over Kθ.

1.5.3 Attributes

Field(J)

The field of definition of a Jacobi motive.

Weight(J)

The motivic weight of a Jacobi motive.

EffectiveWeight(J)

The effective motivic weight of a Jacobi motive, that is, the width of its Hodge
structure.

HodgeStructure(J)

HodgeVector(J)

EffectiveHodgeStructure(J)

The Hodge structure of a Jacobi motive.

1.5.4 L-function

EulerFactor(J, p)

Degree RngIntElt Default :

Roots BoolElt Default : false

Given a good prime p, that is, one which is coprime to m and the Kummer twisting
parameter t, compute its Euler factor. The Roots vararg also returns as a second
argument the p-adic approximations to the roots (associated to the prime ideals
above p). The Degree vararg can be used when the full Euler factor is not needed,
though it is often still just as easily computed. It is often easier to first identify the
Jacobi motive as a Grossencharacter, and then compute its Euler factors.

ComplexEvaluation(J, P)

Precision RngIntElt Default :

Given a Jacobi motive and a good degree 1 prime over Kθ, compute the associated
Jacobi sum as a complex number. This is used to identify motives that are equivalent
over Q but not over Kθ in some examples.

Grossencharacter(J)

Given a Jacobi motive, identify it as a Grössencharacter. This uses the Weil bound
on the conductor, and then tries enough good primes to distinguish the character.
This is now the preferred way to compute the LSeries of a Jacobi motive (though
the latter still exists).

1.6 Jacobi Motive Examples

Example H1E13

Here are some simple examples of Jacobi motives. The first involves the Fermat cubic, and various
twists.

> J := JacobiMotive([2/3,2/3],[1/3]); // CM elliptic curve conductor 27

> Weight(J);

1

> Field(J);

Number Field with defining polynomial y^2 - y + 1 over Q

> P := PrimesInInterval(11,100);

> E := EllipticCurve("27a");

> &and[EulerFactor(J,p) eq EulerFactor(E,p) : p in P];

true

> K := KummerTwist(J, 2, 1/3); // twist by 2^(1/3)

> Et := EllipticCurve("108a");

> &and[EulerFactor(K,p) eq EulerFactor(Et,p) : p in P];

true

> K4 := KummerTwist(J, 4, 1/3); // twist by 4^(1/3)

> E36 := EllipticCurve("36a");

> &and[EulerFactor(K4,p) eq EulerFactor(E36,p) : p in P];

true

> K2 := KummerTwist(J, -2, 1/2); // quadratic twist by 2

> Q := QuadraticTwist(E,-2);

> &and[EulerFactor(K2,p) eq EulerFactor(Q,p) : p in P];

true

Example H1E14

The next example is related to the Klein quartic and the elliptic curves of conductor 49.

> J := JacobiMotive([1/7,2/7,4/7]);

> Scale(J,2) eq J; // scaling by 2 or 4 gives same motive

true

> Field(J);

Number Field with defining polynomial y^2 - y + 2 over the Rational Field

> Weight(J);

3

> EffectiveWeight(J);

1

> T := TateTwist(J,1); // this twist is weight 1

> Weight(T);

1

> P := PrimesInInterval(11,100);

> E := EllipticCurve("49a");

> &and[EulerFactor(T,p) eq EulerFactor(E,p) : p in P];

true

> Grossencharacter(J);

Grossencharacter of type [[1, 2]] for Hecke-Dirichlet pair (1,$.1)

with modulus of norm 7 over Number Field y^2 - y + 2

> TateTwist($1,1);

Grossencharacter of type [[0, 1]] for Hecke-Dirichlet pair (1,$.1)

with modulus of norm 7 over Number Field y^2 - y + 2

Example H1E15

We next give an example with some tensor arithmetic.

> J := JacobiMotive([1/3,1/3,1/3]); // weight 3, effective wt 1

> J;

Jacobi motive given by 3*[1/3]

> Grossencharacter(J);

Grossencharacter of type [[1, 2]] for Hecke-Dirichlet pair

(1,$.1*$.2^2) with modulus of norm 9 over Number Field y^2 - y + 1

> J^3;

Jacobi motive given by 9*[1/3]

> Grossencharacter(J^3); // norm 3

Grossencharacter of type [[3, 6]] for Hecke-Dirichlet pair

(1,$.1) with modulus of norm 3 over Number Field y^2 - y + 1

> Grossencharacter(J^6); // norm 1

Grossencharacter of type [[6, 12]] for Hecke-Dirichlet pair

(1,1) with modulus of norm 1 over Number Field y^2 - y + 1

> A := JacobiMotive([2/3,2/3],[1/3]);

> J*A; // one of the 1/3 cancels

Jacobi motive given by 2*[1/3]+2*[2/3]

> Grossencharacter(J*A); // trivial character

Tate twist by -2 of Hecke character 1 in Group of Hecke characters

of modulus of norm 1 over Number Field y - 1

> K := KummerTwist(J*A, 3, 1/3); K;

Jacobi motive given by 2*[1/3]+2*[2/3] with Kummer twisting

parameters (t,rho)=(3,1/3)

> Grossencharacter(K); // bad reduction at 3

Grossencharacter of type [[2, 2]] for Hecke-Dirichlet pair (1,1)

with modulus of norm 81 over Number Field y^2 - y + 1

> K2 := KummerTwist(JacobiMotive([]),3,1/3); K2;

Unital Jacobi motive with Kummer twisting parameters (t,rho)=(3,1/3)

> Grossencharacter(K2); // twist of the above

Grossencharacter of type [[0, 0]] for Hecke-Dirichlet pair

(1,$.1^2) with modulus of norm 81 over Number Field y^2 - y + 1

> K/K2 eq J*A; // removing the Kummer twist from K, gives J*A

true

Example H1E16

Here is an example with motives that are the same over Q, but not over Q(
√
−3). One of the

Grössencharacters is seen to agree with the Jacobi motive at prime ideals.

> J := JacketMotive([], [], 2, 1/3, 0); J; // twist by 2^(1/3)

Unital Jacobi motive with Kummer twisting parameters (t,rho)=(2,1/3)

> GR := Grossencharacter(J); GR;

Grossencharacter of type [[0, 0]] for Hecke-Dirichlet pair (1,$.1)

with modulus of norm 36 over Number Field y^2 - y + 1

> ef := func<G,p | EulerFactor(G,p : Integral)>;

> P := PrimesUpTo(100);

> &and[ef(GR,p) eq ef(GR2,p) where GR2:=GR^2 : p in P]; // same over Q

true

> p7 := Ideal(Decomposition(Field(J),7)[1][1]); // norm 7, degree 1

> GR(p7);

-0.499999999999999999999999999998 - 0.866025403784438646763723170754*i

> (GR^2)(p7);

-0.500000000000000000000000000001 + 0.866025403784438646763723170752*i

> ComplexEvaluation(J,p7); // same as GR, not GR^2

-0.499999999999999999999999999998 - 0.866025403784438646763723170754*i

> PK := [p : p in PrimesUpTo(100,Field(J)) | Norm(p) ne 3];

> Max([Norm(GR(p)-ComplexEvaluation(J,p)) : p in PK | Degree(p) eq 1]);

1.01121993374575362499804556062E-59

Example H1E17

Jacobi motives also can be used to determine the tame prime information for a hypergeometric
motive. It is easiest to write the hypergeometric datum in its GammaList form when doing this.
The appropriate Kummer-Tate twist of the Jacobi motive gives the tame hypergeometric Euler
factor corresponding to trivialised inertia near t = 0 or t = ∞.

> H := HypergeometricData([* 1,2,3,3,6, -5,-5,-5 *]); H;

Hypergeometric data given by [1, 1, 2, 2, 3, 3, 3, 6] and [5, 5, 5]

> Weight(H);

3

> POS := [x/5 : x in GammaList(H) | x ge 0];

> NEG := [x/5 : x in GammaList(H) | x le 0];

> J:=JacobiMotive(POS,NEG); J; // weight 5

Jacobi motive given by 2*[1/5]+[2/5]+2*[3/5]

> p := 11; // check 5th powers for beta value

> EulerFactor(H,1/p^5/MValue(H),p); // weight 3-2

121*x^4 + 11*x^3 - 9*x^2 + x + 1

> EulerFactor(TateTwist(J,2),p); // weight 5-2*2

121*x^4 + 11*x^3 - 9*x^2 + x + 1

> [EulerFactor(H,u/p^5/MValue(H),p) : u in [1..p-1]];

[

121*x^4 + 11*x^3 - 9*x^2 + x + 1,

121*x^4 + 121*x^3 + 51*x^2 + 11*x + 1,

121*x^4 - 44*x^3 + 6*x^2 - 4*x + 1,

121*x^4 - 99*x^3 + 41*x^2 - 9*x + 1,

121*x^4 + 11*x^3 + 21*x^2 + x + 1,

121*x^4 + 11*x^3 + 21*x^2 + x + 1,

121*x^4 - 99*x^3 + 41*x^2 - 9*x + 1,

121*x^4 - 44*x^3 + 6*x^2 - 4*x + 1,

121*x^4 + 121*x^3 + 51*x^2 + 11*x + 1,

121*x^4 + 11*x^3 - 9*x^2 + x + 1

]

> [EulerFactor(JacketMotive(POS,NEG,u,1/5,2),p) : u in [1..p-1]];

[

121*x^4 + 11*x^3 - 9*x^2 + x + 1,

121*x^4 + 121*x^3 + 51*x^2 + 11*x + 1,

121*x^4 - 44*x^3 + 6*x^2 - 4*x + 1,

121*x^4 - 99*x^3 + 41*x^2 - 9*x + 1,

121*x^4 + 11*x^3 + 21*x^2 + x + 1,

121*x^4 + 11*x^3 + 21*x^2 + x + 1,

121*x^4 - 99*x^3 + 41*x^2 - 9*x + 1,

121*x^4 - 44*x^3 + 6*x^2 - 4*x + 1,

121*x^4 + 121*x^3 + 51*x^2 + 11*x + 1,

121*x^4 + 11*x^3 - 9*x^2 + x + 1

]

> p := 31;

> &and[EulerFactor(H,u/p^5/MValue(H),p) eq

> EulerFactor(JacketMotive(POS,NEG,u,1/5,2),p) : u in [1..p-1]];

true

The same can be done for the α parameters, with positive valuation in the t-values. Here there can
be various contributions depending which of the positive γ-values (1,2,3,3,6) divide the valuation.

> p := 7; // again take a prime that is 1 mod 6

> d := 6;

> D := Divisors(d);

> POS := [[x/e : x in GammaList(H) | x ge 0] : e in D];

> NEG := [[-x/e : x in GammaList(H) | x le 0] : e in D];

> A, B := CyclotomicData(H);

> for e in D do e,Multiplicity(A cat B,e); end for;

1 2 // weight should be 3 + 1 - 2

2 2 // weight should be 3 + 1 - 2

3 3 // weight should be 3 + 1 - 3

6 1 // weight should be 3 + 1 - 1

> EulerFactor(H,p^2/MValue(H),p);

49*x^2 - 14*x + 1

> f1 := EulerFactor(JacobiMotive(POS[1],NEG[1] : Weight:=2),p);

> f2 := EulerFactor(JacobiMotive(POS[2],NEG[2] : Weight:=2),p);

> f1 * f2;

49*x^2 - 14*x + 1

> function ef(t0,v) ans:=PolynomialRing(Integers())!1;

> for i in [1..#D] do

> e := D[i]; if Gcd(v,e) ne e then continue; end if;

> w := Weight(H)+1-Multiplicity(A cat B,e);

> J := JacobiMotive(POS[i],NEG[i] : Kummer:=[t0,1/e], Weight:=w);

> ans := ans*EulerFactor(J,p); end for;

> return ans; end function;

> for i in [1..100] do v:=Random([1..12]); t0:=Random([1..p-1]);

> assert EulerFactor(H,t0*p^v/MValue(H),p) eq ef(t0,v); end for;

1.7 Bibliography

[AG12] Gert Almkvist and Jesús Guillera. Ramanujan-like series for 1/π2 and String
Theory. Experimental Math., 21:223–234, 2012.

[Gui12] Jesús Guillera. Collection of Ramanujan-like series for 1/π2. 2012.

[Kat90] N. M. Katz. Exponential Sums and Differential Equations, volume 124. Annals
of Math. Studies., 1990.

[Kat96] N. M. Katz. Rigid Local Systems, volume 139. Annals of Math. Studies.,
1996.

[vGvS93] B. van Geemen and D. van Straten. The cusp forms of weight 3 on Γ2(2, 4, 8).
Math. Comp., 61(204):849–872, 1993.

[Wei52] A. Weil. Jacobi Sums as “Grössencharaktere”. Trans. AMS, 73:487–495,
1952.

[Wei74] A. Weil. Sommes de Jacobi et caractères de Hecke. Göttingen Nachr., 1:1–14,
1974.

[Wei76] A. Weil. Sur les périodes des intégrales abéliennes. Comm. Pure Appl. Math.,
XXIX:813–819, 1976.

