A. The Problem

Pro [unlabeled PCA] $x \in \mathbb{R}^{m \times n}, \operatorname{rank}(x)=r$
GI: permutation of matrix entries $\tilde{X}=\mathcal{F}(x)$, What can we say about the recovery of x from \tilde{x} ? Can there be efficient algorithm?
Rem 2 At best, x can be recovered from \tilde{x} up to a row and column permutation $\Pi_{1} \times \Pi_{2}$
Rem 3 unlabeled PCA unlabeled
sensing PGA
B. Principal Component Analysis

$$
\tilde{X}=\left[\tilde{x}_{1} \ldots \tilde{x}_{s}\right] \in \mathbb{R}^{m \times s}
$$

goal: find $V \subset \mathbb{R}^{m}$ of dimension r s.t. the \tilde{x}_{j}^{\prime} 's arecloseto or
no noise $r=\operatorname{rank}(\hat{X})$
V : column space of \tilde{X} SD
robust PCA
\mathcal{X} : rank-r ground, \tilde{X} : corruption of x
i) "sparse noise" $\tilde{x}=x+E$ $\min \|L\|_{n+2\|\tilde{x}-L\|_{0} \text { sparse }}^{\text {sp en }}$

$$
\begin{aligned}
& \text { ii) "outliers" } \\
& \tilde{X}=\left[x^{*} 0\right] \stackrel{\square}{\square}
\end{aligned}
$$

$$
\min _{\substack{\text { min }} L+Y} L\|x+\lambda\| Y \|_{2,1}<\begin{aligned}
& \text { works } \\
& \text { if } \\
& \text { sma } l^{\text {is }}
\end{aligned}
$$

ideally $L=\left[\begin{array}{ll}x & 0\end{array}\right]$ Algorittom $r=\left[\begin{array}{ll}0 & 0\end{array}\right] \quad A$

$$
\begin{aligned}
& \begin{array}{ll}
\min \left\|\tilde{X}^{\top} B\right\|_{0,2} & \text { s.t. } B^{\top} B=I_{c} \\
B \in \mathbb{R}^{\operatorname{mic}}
\end{array} \\
& c=\operatorname{codim} C(x) \\
& \text { works for } \\
& =\text { cony ro, but } \\
& \\
& =\text { non-cownes }
\end{aligned}
$$

matrixik
complion

$$
\begin{aligned}
\min \|L\|_{1} \text { sot. } \begin{array}{r}
\tilde{x}_{i j}=L_{i j} \\
(i, j) \in \Omega
\end{array}
\end{aligned}
$$

comections with alyebraic geometry, commutative alyebre combinatories

Dor k: infinite field $M(r, m \times n)=\left\{X \in k^{m \times n}: \operatorname{rank}(k) \leq r\right\}$ A^{Ω} : man matrices with support coordinate projection in Ω $V I_{\Omega}: M(r, m \times n) \rightarrow \mathbb{A}^{\Omega}$
Prb5 [algebraic mattoid of M Mrimul] Which OI's have finite generic fiber!
iv) "permutations"
G. Unlabeled Sensing

Unikrishnan et al. 15 , 18
 $\operatorname{mor}_{\text {fall rank }} \quad \rho: \mathbb{R}^{m} \rightarrow \mathbb{R}^{s}$

Pb 6 [unlabeled sensing] Do the data A, poor (b) uniquely define ξ !
Thu 7 [UHV, ${ }^{\prime} 15$] Yes, if A is generic and $s \geq 2 r$ rank
of ρ
dimensionality
of solution
Prb8[homomorphic sensing]
P: finite set of endomorphisms

$$
\tau_{i}: k^{m} \rightarrow k^{m}
$$

$V:$ linear subspace of k^{m} $\operatorname{dim} V=r$
$v_{1}, v_{2} \in V \quad \tau_{1}, \tau_{2} \in P$ HS Under what conditions

$$
\tau_{1}\left(v_{1}\right)=\tau_{2}\left(v_{z}\right) \Rightarrow v_{1}=v_{2} \text {, e }
$$

Tho $9\left[\right.$ Peng, $\left.T_{0}, 18-20\right]$
$\gamma_{\tau_{1}, x_{2}}$: variety of k^{m} defined by the 2 -minors of $\left[T_{1} z T_{2} z\right]$ $U_{z_{1}, \tau_{z}=}=\begin{gathered}\text { locally } \\ \text { closed }\end{gathered} \quad z=\left(\begin{array}{l}z_{2} \\ \vdots \\ z_{m}\end{array}\right)$ $\mathcal{T}_{\tau_{1}, \tau_{2}} \backslash \operatorname{Ker}\left(\tau_{1}\right) \cup \operatorname{Ker}\left(\tau_{2}\right) \cup \operatorname{Ker}\left(\tau_{1}-\tau_{2}\right)$ $V \in G r(r, m)$ generic and $\operatorname{dim} V \leq \operatorname{codim} U_{c_{1}, \tau_{2}} \Rightarrow$ USP \square

Rem 10 Also extends to subspace arrangements \square
dynamic programming \rightarrow branch k bound
Algorithms \rightarrow concave

$$
\begin{aligned}
& A_{m x r}=b, y=v(b) \\
& A, y \mapsto \xi \\
& k[z]=k\left[z_{1}, \ldots, z_{m}\right] \\
& P_{l}(z)=z_{1}^{l}+\cdots+z_{m}^{l}, l=1, \ldots, r \\
& P_{l}(A \xi)=P_{l}(y)^{\ell} r \text { constraints } \\
& \begin{array}{l}
\text { that the solution } \\
z \in k^{r} \text { satisfies }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& k[w]=k\left[w_{1}, \ldots, w_{r}\right] \\
& \hat{P}_{l}(w)=P_{l}\left(A_{w}\right)-P_{l}(y) \\
& l=1, \ldots, r
\end{aligned}
$$

Tho 12 [Chi, Coned, T., 18] A generic \Rightarrow the variety IV $\left(\hat{\rho}_{1}, \ldots, \hat{\rho}_{r}\right) \subset k^{r}$ consists of finitely many points.
Pr $p_{1}(z), \ldots, p_{r}(z)$: regular sequence of $k\left[z_{1}, \ldots, z_{m}\right]+$ Gröbner bases theory for weighted term orders \Rightarrow the $\hat{P}_{i}^{\prime}{ }^{\prime}$ are are $\hat{P}_{p}(w), \ldots ., \hat{P}_{r}(w):$ regular sequence of $k\left[w_{1}, \ldots, w_{r}\right]$

Alg 13 [Choi, Conca, Kneip, Peng,Shi, T., 18] Input: $V, y \rightarrow$ some permutation
r-dimensional
linear subspace
Output: b of some b $\in \mathscr{V}$

Solve the polynomial system

$$
p_{l}\left(A_{w}\right)-P_{l}(y)=0, l=1, \ldots, r
$$

at most $r!$ roots \rightarrow best root $\hat{\xi}$ $\operatorname{argmin}\left\|\Pi^{\prime} y-A_{x}\right\|_{2}$
rio alternating minimization initialized with $\hat{\jmath}$ ロ

Ex 14 r $=4, m=1000$, SN $=4018$ 0.4% estimation error in 15 msec

Thun15[Liang, Lu, $T_{0}, Z_{h i},{ }^{23}$] A: generic $m \times n, b=A \xi$, j: generic in $k^{r}, y=\sigma(b) \Rightarrow$ The variety $\operatorname{V}\left(\hat{p}_{1}(w), \ldots, \hat{p}_{r+1}(w)\right) c \kappa^{r}$ consists only of $\&$ (theoretiong)

Pb 16 Efficient and robust algorithm for solving $P_{l}\left(A_{m}\right)-P_{l}(y)=0, l=1, \ldots, r+1$?
D. Unlabeled PCA

Thu 17[T., 222]
X: generic in $M(r, m \times n)$ OI: any permutation of matrix
Then $\operatorname{rank}(\sigma(\alpha))=r \Leftrightarrow$

$$
\sigma(x)=\Pi_{1} x \Pi_{2} \text { or }
$$

$\sigma(X)=X^{\top}$, if $m=n$.
Pr [sKetch]
$Z=\left(Z_{i j}\right):$ man matrix of variables
$k[z]$: polynomial ring
of dimension mn
$I_{r+1}(z)$: ideal of $(r+1)$-minors of z

Thm 18 [Narasimbars '86; Sturmfels 290; Canighia, Gucionne J.A/J.J '90; Ma '94; Sturmitels, Sullivant 'oo] The $(r+1)$-minors of Z are a Gröbner basis for $I_{r+1}(Z)$ under any diagonal or anti-diagonal term onder a \Rightarrow the set of $x \in \mathbb{M}(r, m \times n)$ s.t. $v(x) \in \mathbb{M}(r, m \times n)_{D}$ is a proper subvariety of IM (r,mxn), except when orpernutes onky rows and columns

$$
\begin{aligned}
& p_{l}(z)=\sum_{\substack{i=1, \ldots, m \\
j=1, \ldots, n}} z_{i j}^{l}, l=1, \ldots, m n \\
& J=\text { ideal of } k[z] \text { generated by } \\
& \hat{p}_{l}(z)=p_{l}(z)-p_{l}(x), l=1, \ldots, m n
\end{aligned}
$$

Rem 19 With X generic, it is easy to see by Tom 19 that the variety $N\left(I_{m i n}(z), J\right)$ of $k^{m \times n}$ consists only of A and its row t colum permutations
Rem 20 The variety $M(r, m \times n)$ is irreducible of dimension $r(m+n-r)$

The 21 [T.,222]
X: generic in $M(r, m \times n)$
VI: any permutation of matrix entries
Then $r(m+n-r)+1$ generic linear combinations of $\hat{P}_{1}, \ldots, \hat{P}_{\text {mn }}$ cut $I M(r, m \times n)$ set-theoretically at all points $\Pi_{1} \times \Pi_{2} \quad$ (and X^{\top} if $m=n$)
Pry [sketch] Follows from:
Thun 22 [Hochster k Eagon, '71] The ring $k[z] / I_{r+1}(z)$ is Coben-Macaulay

Pop 23 A: Noetherian ring that contains as o infinite Field k, $I=\left(\alpha_{1}, \ldots, \alpha_{3}\right)$ ideal of A s.t. $\operatorname{grade}(I)>0$. Then a linear combination $\alpha=c_{1} \alpha_{1}+\cdots+c_{3} \alpha_{s}$ with the $c_{i}{ }^{\prime} s$ chosen generically in K is M-regular
E. A Special Case of UPCA [Yacc, Peng, T. , '21]
"column-wise permutations with a dominant permutation"

$$
\begin{aligned}
& X=\left[x_{1} \cdots x_{n}\right] \in \mathbb{R}^{m \times n} \\
& \sigma(x)=\left[\sigma_{1}\left(x_{1}\right) \cdots \sigma_{n}\left(x_{n}\right)\right]
\end{aligned}
$$

σ_{j} : permutes j-th column of x
$D f_{n} 24$ multiplicity $\mu\left(\Omega_{j}\right)$:

$$
\#\left\{j^{\prime}: \tau_{j^{\prime}}=v_{j}\right\}
$$

Ass $25 \exists$ j s.t. \mathcal{O}_{j} is dominant, i.e. $\mu\left(v_{j}\right) \gg \mu\left(v_{j^{\prime}}\right) \forall \sigma_{j^{\prime}} \neq \Omega_{j}$

Rem 26 C(x): column-space of x

$$
\sigma(x)=\left[\tilde{x}^{\prime} \theta\right] \Pi
$$

the columns outliers
lie in $\mathrm{O}_{\mathrm{j}}(\mathrm{C}(\mathrm{N})$)

Ex 28

(a) $r=3$

(b) $r=4$

6×29

2

THANK YOU!

