Estimating Gaussian Mixtures Using Sparse Polynomial Moment Systems

Julia Lindberg

Online Machine Learning Seminar

UT Austin
March 15, 2023
Joint work with Carlos Améndola and Jose Rodriguez

Table of Contents

(1) Problem Set Up
(2) (Numerical) Algebraic Geometry Primer
(3) Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

Problem Set Up

Density Estimation

- A common problem studied in statistics is density estimation

Problem Set Up

Density Estimation

- A common problem studied in statistics is density estimation
- Given N samples from a distribution p (unknown), can we estimate p ?

Problem Set Up

Density Estimation

- A common problem studied in statistics is density estimation
- Given N samples from a distribution p (unknown), can we estimate p ?
- Need to assume p is from some family of distributions

Problem Set Up

Density Estimation

- A common problem studied in statistics is density estimation
- Given N samples from a distribution p (unknown), can we estimate p ?
- Need to assume p is from some family of distributions

Theorem (Chapter 3 [GBC16])

A Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components.

Gaussian Mixture Models

- A random variable $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ is a Gaussian random variable if it has density

$$
f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)
$$

- X is distributed as a mixture of k Gaussians if it is the convex combination of k Gaussian densities

Figure: $\mathcal{N}(0,1)$ density (left) and $0.2 \mathcal{N}(-2,0.5)+0.8 \mathcal{N}(2,0.5)$ density (right).

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?
- Idea 1 : Maximum likelihood estimation

$$
\operatorname{argmax}_{\mu, \sigma^{2}, \lambda} \prod_{j=1}^{N} \sum_{i=1}^{k} \lambda_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y_{j}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?
- Idea 1 : Maximum likelihood estimation

$$
\operatorname{argmax}_{\mu, \sigma^{2}, \lambda} \prod_{j=1}^{N} \sum_{i=1}^{k} \lambda_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y_{j}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

- Iterative algorithms (EM) can find local optima

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?
- Idea 1: Maximum likelihood estimation

$$
\operatorname{argmax}_{\mu, \sigma^{2}, \lambda} \prod_{j=1}^{N} \sum_{i=1}^{k} \lambda_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y_{j}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

- Iterative algorithms (EM) can find local optima
- Local optima can be arbitrarily bad and random initialization will converge to these bad points with probability $1-e^{-\Omega(k)}\left[\mathrm{JZB}^{+} 16\right]$

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?
- Idea 1: Maximum likelihood estimation

$$
\operatorname{argmax}_{\mu, \sigma^{2}, \lambda} \prod_{j=1}^{N} \sum_{i=1}^{k} \lambda_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y_{j}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

- Iterative algorithms (EM) can find local optima
- Local optima can be arbitrarily bad and random initialization will converge to these bad points with probability $1-e^{-\Omega(k)}\left[\mathrm{JZB}^{+} 16\right]$
- No bound on number of critical points [AFS16]

Density Estimation

MLE

- Given iid samples, y_{1}, \ldots, y_{N}, distributed as the mixture of k Gaussians, how to recover parameters $\mu_{i}, \sigma_{i}^{2}, \lambda_{i}$?
- Idea 1: Maximum likelihood estimation

$$
\operatorname{argmax}_{\mu, \sigma^{2}, \lambda} \prod_{j=1}^{N} \sum_{i=1}^{k} \lambda_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(y_{j}-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

- Iterative algorithms (EM) can find local optima
- Local optima can be arbitrarily bad and random initialization will converge to these bad points with probability $1-e^{-\Omega(k)}\left[\mathrm{JZB}^{+} 16\right]$
- No bound on number of critical points [AFS16]
- Need to access all samples at each iteration

Density Estimation

Method of Moments

- Idea 2 : Method of moments

Density Estimation

- Idea 2 : Method of moments
- The method of moments estimator is consistent

Density Estimation

- Idea 2 : Method of moments
- The method of moments estimator is consistent
- Gaussian mixture models are identifiable from their moments

Density Estimation

- Idea 2 : Method of moments
- The method of moments estimator is consistent
- Gaussian mixture models are identifiable from their moments
- IF you can solve the moment equations, then can recover exact parameters

Method of Moments

- For $i \geq 0$, the i-th moment of a random variable X with density f is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

Method of Moments

- For $i \geq 0$, the i-th moment of a random variable X with density f is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

- For parameterized distributions, moments are functions of parameters

Method of Moments

- For $i \geq 0$, the i-th moment of a random variable X with density f is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

- For parameterized distributions, moments are functions of parameters
- Ex. The first few moments of a $\mathcal{N}\left(\mu, \sigma^{2}\right)$ random variable are:

$$
m_{1}=\mu, \quad m_{2}=\mu^{2}+\sigma^{2}, \quad m_{3}=\mu^{3}+3 \mu \sigma^{2}
$$

Method of Moments

- Consider a statistical model with p unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ and the moments up to order M as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{M}=g_{M}(\theta)
$$

Method of Moments

- Consider a statistical model with p unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ and the moments up to order M as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{M}=g_{M}(\theta)
$$

- Method of Moments:
(1) Compute sample moments

$$
\bar{m}_{i}=\frac{1}{N} \sum_{j=1}^{N} y_{j}^{i}
$$

Method of Moments

- Consider a statistical model with p unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ and the moments up to order M as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{M}=g_{M}(\theta)
$$

- Method of Moments:
(1) Compute sample moments

$$
\bar{m}_{i}=\frac{1}{N} \sum_{j=1}^{N} y_{j}^{i}
$$

(2) Solve $g_{i}(\theta)=\bar{m}_{i}$ for $i=1, \ldots, M$ to recover parameters

Method of Moments

- The moments of the Gaussian distributions are $M_{0}\left(\mu, \sigma^{2}\right)=1, M_{1}\left(\mu, \sigma^{2}\right)=\mu$,

$$
M_{\ell}\left(\mu, \sigma^{2}\right)=\mu M_{\ell-1}+(\ell-1) \sigma^{2} M_{\ell-2}, \quad \ell \geq 2
$$

Method of Moments

- The moments of the Gaussian distributions are $M_{0}\left(\mu, \sigma^{2}\right)=1, M_{1}\left(\mu, \sigma^{2}\right)=\mu$,

$$
M_{\ell}\left(\mu, \sigma^{2}\right)=\mu M_{\ell-1}+(\ell-1) \sigma^{2} M_{\ell-2}, \quad \ell \geq 2
$$

- The moments of mixtures of k Gaussians are

$$
m_{\ell}=\sum_{i=1}^{k} \lambda_{i} M_{\ell}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad \ell \geq 0
$$

Method of Moments

$k=1$

- When $k=1$ this is just density estimation for $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$

Method of Moments

$k=1$

- When $k=1$ this is just density estimation for $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$
- The moment equations are

$$
\begin{aligned}
1 & =\lambda_{1} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)
\end{aligned}
$$

Method of Moments

$k=1$

- When $k=1$ this is just density estimation for $\mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right)$
- The moment equations are

$$
\begin{aligned}
1 & =\lambda_{1} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)
\end{aligned}
$$

- There is a unique solution given by

$$
\lambda_{1}=1, \quad \mu_{1}=\bar{m}_{1}, \quad \sigma_{1}^{2}=\bar{m}_{2}-\bar{m}_{1}^{2}
$$

Method of Moments

$k=2$

- When $k=2$, the first 6 moment equations are

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{2}+\sigma_{2}^{2}\right) \\
\bar{m}_{3} & =\lambda_{1}\left(\mu_{1}^{3}+3 \mu_{1} \sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{3}+3 \mu_{2} \sigma_{2}^{2}\right) \\
\bar{m}_{4} & =\lambda_{1}\left(\mu_{1}^{4}+6 \mu_{1}^{2} \sigma_{1}^{2}+3 \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{4}+6 \mu_{2}^{2} \sigma_{2}^{2}+3 \sigma_{2}^{4}\right) \\
\bar{m}_{5} & =\lambda_{1}\left(\mu_{1}^{5}+10 \mu_{1}^{3} \sigma_{1}^{2}+15 \mu_{1} \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{5}+10 \mu_{2}^{3} \sigma_{2}^{2}+15 \mu_{2} \sigma_{2}^{4}\right)
\end{aligned}
$$

Method of Moments

$k=2$

- When $k=2$, the first 6 moment equations are

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{2}+\sigma_{2}^{2}\right) \\
\bar{m}_{3} & =\lambda_{1}\left(\mu_{1}^{3}+3 \mu_{1} \sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{3}+3 \mu_{2} \sigma_{2}^{2}\right) \\
\bar{m}_{4} & =\lambda_{1}\left(\mu_{1}^{4}+6 \mu_{1}^{2} \sigma_{1}^{2}+3 \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{4}+6 \mu_{2}^{2} \sigma_{2}^{2}+3 \sigma_{2}^{4}\right) \\
\bar{m}_{5} & =\lambda_{1}\left(\mu_{1}^{5}+10 \mu_{1}^{3} \sigma_{1}^{2}+15 \mu_{1} \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{5}+10 \mu_{2}^{3} \sigma_{2}^{2}+15 \mu_{2} \sigma_{2}^{4}\right)
\end{aligned}
$$

- Obervation: If $\left(\lambda_{1}, \mu_{1}, \sigma_{1}^{2}, \lambda_{2}, \mu_{2}, \sigma_{2}^{2}\right)$ is a solution, so is $\left(\lambda_{2}, \mu_{2}, \sigma_{2}^{2}, \lambda_{1}, \mu_{1}, \sigma_{1}^{2}\right)$

Method of Moments

$k=2$

- When $k=2$, the first 6 moment equations are

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{2}+\sigma_{2}^{2}\right) \\
\bar{m}_{3} & =\lambda_{1}\left(\mu_{1}^{3}+3 \mu_{1} \sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{3}+3 \mu_{2} \sigma_{2}^{2}\right) \\
\bar{m}_{4} & =\lambda_{1}\left(\mu_{1}^{4}+6 \mu_{1}^{2} \sigma_{1}^{2}+3 \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{4}+6 \mu_{2}^{2} \sigma_{2}^{2}+3 \sigma_{2}^{4}\right) \\
\bar{m}_{5} & =\lambda_{1}\left(\mu_{1}^{5}+10 \mu_{1}^{3} \sigma_{1}^{2}+15 \mu_{1} \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{5}+10 \mu_{2}^{3} \sigma_{2}^{2}+15 \mu_{2} \sigma_{2}^{4}\right)
\end{aligned}
$$

- Obervation: If $\left(\lambda_{1}, \mu_{1}, \sigma_{1}^{2}, \lambda_{2}, \mu_{2}, \sigma_{2}^{2}\right)$ is a solution, so is $\left(\lambda_{2}, \mu_{2}, \sigma_{2}^{2}, \lambda_{1}, \mu_{1}, \sigma_{1}^{2}\right)$
- This symmetry is called label swapping

Method of Moments

$k=2$

- When $k=2$, the first 6 moment equations are

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
\bar{m}_{1} & =\lambda_{1} \mu_{1}+\lambda_{2} \mu_{2} \\
\bar{m}_{2} & =\lambda_{1}\left(\mu_{1}^{2}+\sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{2}+\sigma_{2}^{2}\right) \\
\bar{m}_{3} & =\lambda_{1}\left(\mu_{1}^{3}+3 \mu_{1} \sigma_{1}^{2}\right)+\lambda_{2}\left(\mu_{2}^{3}+3 \mu_{2} \sigma_{2}^{2}\right) \\
\bar{m}_{4} & =\lambda_{1}\left(\mu_{1}^{4}+6 \mu_{1}^{2} \sigma_{1}^{2}+3 \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{4}+6 \mu_{2}^{2} \sigma_{2}^{2}+3 \sigma_{2}^{4}\right) \\
\bar{m}_{5} & =\lambda_{1}\left(\mu_{1}^{5}+10 \mu_{1}^{3} \sigma_{1}^{2}+15 \mu_{1} \sigma_{1}^{4}\right)+\lambda_{2}\left(\mu_{2}^{5}+10 \mu_{2}^{3} \sigma_{2}^{2}+15 \mu_{2} \sigma_{2}^{4}\right)
\end{aligned}
$$

- Obervation: If $\left(\lambda_{1}, \mu_{1}, \sigma_{1}^{2}, \lambda_{2}, \mu_{2}, \sigma_{2}^{2}\right)$ is a solution, so is $\left(\lambda_{2}, \mu_{2}, \sigma_{2}^{2}, \lambda_{1}, \mu_{1}, \sigma_{1}^{2}\right)$
- This symmetry is called label swapping
- For a k mixture model, solutions will come in groups of k !

Method of Moments

History Detour

- The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying measurements of Naples crab populations [Pea94]

Pearson Crab Data

Figure: Pearson's crab data

Method of Moments

History Detour

- The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying measurements of Naples crab populations [Pea94]

Figure: Pearson's crab data

- Pearson reduced this to finding roots of degree 9 polynomial in the variable $x=\mu_{1} \mu_{2}$

Method of Moments

History Detour

- The study of mixtures of Gaussians dates back to Karl Pearson in 1894 studying measurements of Naples crab populations [Pea94]

Figure: Pearson's crab data

- Pearson reduced this to finding roots of degree 9 polynomial in the variable $x=\mu_{1} \mu_{2}$
- Framework: Solve square polynomial system to get finitely many potential densities then select one closest to the next sample moments

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

(1) Algebraic: For what M is $\left|\Phi_{M}^{-1}(m)\right|<\infty$ for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

- $3 k-1$ [ARS18]

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

(1) Algebraic: For what M is $\left|\Phi_{M}^{-1}(m)\right|<\infty$ for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

- $3 k-1$ [ARS18]
(2) Statistical: For what M does $\left|\Phi_{M}^{-1}(m)\right|=k$! for all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?
- $4 k-2$ [KMV12]

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

(1) Algebraic: For what M is $\left|\Phi_{M}^{-1}(m)\right|<\infty$ for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

- $3 k-1$ [ARS18]
(2) Statistical: For what M does $\left|\Phi_{M}^{-1}(m)\right|=k$! for all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?
- $4 k-2$ [KMV12]
(3) Rational: For what M is $\left|\Phi_{M}^{-1}(m)\right|=k$! for almost all $m \in \operatorname{lm}\left(\Phi_{M}\right)$?

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

(1) Algebraic: For what M is $\left|\Phi_{M}^{-1}(m)\right|<\infty$ for almost all $m \in \operatorname{lm}\left(\Phi_{M}\right)$?

- $3 k-1$ [ARS18]
(2) Statistical: For what M does $\left|\Phi_{M}^{-1}(m)\right|=k$! for all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?
- $4 k-2$ [KMV12]
(3) Rational: For what M is $\left|\Phi_{M}^{-1}(m)\right|=k$! for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

Theorem (L., Améndola, Rodriguez)

Mixtures of k univariate Gaussians are rationally identifiable from moments $m_{1}, \ldots, m_{3 k+2}$.

Identifiability

Different notions of identifiability based on fiber of map:

$$
\begin{aligned}
\Phi_{M}: \Delta_{k-1} \times \mathbb{R}^{k} \times \mathbb{R}_{>0}^{k} & \rightarrow \mathbb{R}^{M} \\
\left(\lambda, \mu, \sigma^{2}\right) & \mapsto\left(m_{0}, \ldots, m_{M}\right)
\end{aligned}
$$

(1) Algebraic: For what M is $\left|\Phi_{M}^{-1}(m)\right|<\infty$ for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

- $3 k-1$ [ARS18]
(2) Statistical: For what M does $\left|\Phi_{M}^{-1}(m)\right|=k$! for all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?
- $4 k-2$ [KMV12]
(3) Rational: For what M is $\left|\Phi_{M}^{-1}(m)\right|=k$! for almost all $m \in \operatorname{Im}\left(\Phi_{M}\right)$?

Theorem (L., Améndola, Rodriguez)

Mixtures of k univariate Gaussians are rationally identifiable from moments $m_{1}, \ldots, m_{3 k+2}$.

- Conjecture: Gaussian mixture models are rationally identifiable from $m_{1}, \ldots, m_{3 k}$

Method of Moments Framework

(1) Solve moment equations

$$
\begin{aligned}
1 & =m_{0} \\
\bar{m}_{1} & =m_{1} \\
& \vdots \\
\bar{m}_{3 k-1} & =m_{3 k-1}
\end{aligned}
$$

over the complex numbers to get finitely many complex solutions

Method of Moments Framework

(1) Solve moment equations

$$
\begin{aligned}
& 1=m_{0} \\
& \bar{m}_{1}=m_{1} \\
& \vdots \\
& \bar{m}_{3 k-1}=m_{3 k-1}
\end{aligned}
$$

over the complex numbers to get finitely many complex solutions
(2) Filter out statistically meaningful solutions (real solutions with $\lambda_{i} \geq 0, \sigma_{i}^{2}>0$)

Method of Moments Framework

(1) Solve moment equations

$$
\begin{aligned}
& 1=m_{0} \\
& \bar{m}_{1}=m_{1} \\
& \vdots \\
& \bar{m}_{3 k-1}=m_{3 k-1}
\end{aligned}
$$

over the complex numbers to get finitely many complex solutions
(2) Filter out statistically meaningful solutions (real solutions with $\lambda_{i} \geq 0, \sigma_{i}^{2}>0$)
(3) Select statistically meaningful solution agreeing with moments $\bar{m}_{3 k}, \bar{m}_{3 k+1}, \bar{m}_{3 k+2}$

Method of Moments Framework

(1) Solve moment equations

$$
\begin{aligned}
& 1=m_{0} \\
& \bar{m}_{1}=m_{1} \\
& \vdots \\
& \bar{m}_{3 k-1}=m_{3 k-1}
\end{aligned}
$$

over the complex numbers to get finitely many complex solutions
(2) Filter out statistically meaningful solutions (real solutions with $\lambda_{i} \geq 0, \sigma_{i}^{2}>0$)
(3) Select statistically meaningful solution agreeing with moments $\bar{m}_{3 k}, \bar{m}_{3 k+1}, \bar{m}_{3 k+2}$

Question: How do I solve a square system of polynomial equations?

Table of Contents

(1) Problem Set Up
(2) (Numerical) Algebraic Geometry Primer
(3) Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

Algebraic Geometry Primer

- Let $f_{1}, \ldots, f_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. The (complex) variety of $F=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is

$$
\mathcal{V}(F)=\left\{x \in \mathbb{C}^{n}: f_{1}(x)=0, \ldots, f_{m}(x)=0\right\}
$$

Algebraic Geometry Primer

- Let $f_{1}, \ldots, f_{m} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$. The (complex) variety of $F=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is

$$
\mathcal{V}(F)=\left\{x \in \mathbb{C}^{n}: f_{1}(x)=0, \ldots, f_{m}(x)=0\right\}
$$

- Interested in case when $n=m$ and $|\mathcal{V}(F)|<\infty$

Algebraic Geometry Primer

Bezout Bound

- Consider $|\mathcal{V}(F)|<\infty$. Question: How big is $|\mathcal{V}(F)|$?

Algebraic Geometry Primer

Bezout Bound

- Consider $|\mathcal{V}(F)|<\infty$. Question: How big is $|\mathcal{V}(F)|$?

Theorem (Bezout)
$|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

Algebraic Geometry Primer

Bezout Bound

- Consider $|\mathcal{V}(F)|<\infty$. Question: How big is $|\mathcal{V}(F)|$?

Theorem (Bezout)
 $|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

- Can be strict upper bound when f_{i} are sparse

Algebraic Geometry Primer

- Consider $|\mathcal{V}(F)|<\infty$. Question: How big is $|\mathcal{V}(F)|$?

Theorem (Bezout)
 $|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

- Can be strict upper bound when f_{i} are sparse

Theorem (BKK Bound [Ber75, Kho78, Kou76])

$\left|\mathcal{V}(F) \cap\left(\mathbb{C}^{*}\right)^{n}\right| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

Algebraic Geometry Primer

Bezout Bound

- Consider $|\mathcal{V}(F)|<\infty$. Question: How big is $|\mathcal{V}(F)|$?

Theorem (Bezout)
 $|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

- Can be strict upper bound when f_{i} are sparse

Theorem (BKK Bound [Ber75, Kho78, Kou76])

$\left|\mathcal{V}(F) \cap\left(\mathbb{C}^{*}\right)^{n}\right| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

- In general, not easy to compute the mixed volume (\#P hard)

Finding All Complex Solutions

- Idea: Solving most polynomial systems is hard, but some are easy

Finding All Complex Solutions

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} x_{3}-x_{1} x_{4}\right)+3 x_{3}=0 \\
2\left(x_{1} x_{4}-x_{2} x_{3}\right)+4 x_{4}=0 \\
x_{1}^{2}+x_{3}^{2}=1 \\
x_{2}^{2}+x_{4}^{2}=1
\end{array}\right.
$$

$$
H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
x_{3}^{2}=1 \\
x_{4}^{2}=1
\end{array}\right.
$$

Finding All Complex Solutions

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} x_{3}-x_{1} x_{4}\right)+3 x_{3}=0 \\
2\left(x_{1} x_{4}-x_{2} x_{3}\right)+4 x_{4}=0 \\
x_{1}^{2}+x_{3}^{2}=1 \\
x_{2}^{2}+x_{4}^{2}=1
\end{array}\right.
$$

$$
H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
x_{3}^{2}=1 \\
x_{4}^{2}=1
\end{array}\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?

Finding All Complex Solutions

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} x_{3}-x_{1} x_{4}\right)+3 x_{3}=0 \\
2\left(x_{1} x_{4}-x_{2} x_{3}\right)+4 x_{4}=0 \\
x_{1}^{2}+x_{3}^{2}=1 \\
x_{2}^{2}+x_{4}^{2}=1
\end{array} \quad H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
x_{3}^{2}=1 \\
x_{4}^{2}=1
\end{array}\right.\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?
- Define $H_{t}:=(1-t) H_{S}+t H_{T}$ and compute H_{t} as $t \rightarrow 1$
- Called following homotopy paths

Finding All Complex Solutions

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} x_{3}-x_{1} x_{4}\right)+3 x_{3}=0 \\
2\left(x_{1} x_{4}-x_{2} x_{3}\right)+4 x_{4}=0 \\
x_{1}^{2}+x_{3}^{2}=1 \\
x_{2}^{2}+x_{4}^{2}=1
\end{array} \quad H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
x_{3}^{2}=1 \\
x_{4}^{2}=1
\end{array}\right.\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?
- Define $H_{t}:=(1-t) H_{S}+t H_{T}$ and compute H_{t} as $t \rightarrow 1$
- Called following homotopy paths
- Typically use predictor-corrector methods
- Predict: Take step along tangent direction at a point
- Correct: Use Newton's method

Homotopy Continuation Visual

Figure: The homotopy $H_{t}=(1-t) H_{S}+t H_{T}$ (left)[KW14] and the predictor corrector step (right) [BT18]

Homotopy Continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}

Homotopy Continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}
- If $|\mathcal{V}(F)| \approx d_{1} \cdots d_{n}$ then a total degree start system is suitable. i.e.

$$
H_{S}=\left\langle x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right\rangle
$$

Homotopy Continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}
- If $|\mathcal{V}(F)| \approx d_{1} \cdots d_{n}$ then a total degree start system is suitable. i.e.

$$
H_{S}=\left\langle x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right\rangle
$$

- If $\operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right) \ll d_{1} \cdots d_{n}$ then a polyhedral start system is suitable

Homotopy Continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}
- If $|\mathcal{V}(F)| \approx d_{1} \cdots d_{n}$ then a total degree start system is suitable. i.e.

$$
H_{S}=\left\langle x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right\rangle
$$

- If $\operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right) \ll d_{1} \cdots d_{n}$ then a polyhedral start system is suitable
- There exists an algorithm that finds this binomial start system [HS95]

Examples of Start Systems

$$
F=\left\langle x^{2}-3 x+2,2 x y+y-1\right\rangle
$$

Total degree: $\left\langle x^{2}-1, y^{2}-1\right\rangle$

Polyhedral: $\left\langle x^{2}+2, y-1\right\rangle$

Table of Contents

(1) Problem Set Up

(2) (Numerical) Algebraic Geometry Primer
(3) Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

Back to Gaussian Mixture Models

- There are three special cases of Gaussian mixture models commonly studied in the statistics literature:

Back to Gaussian Mixture Models

- There are three special cases of Gaussian mixture models commonly studied in the statistics literature:
(1) The mixing coefficients are known
(2) The mixing coefficients are known and the variances are equal
(3) Only the means are unknown

Main Result

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of lowest degree. Moreover, the mixed volume of each of set of equations is given below.

	Known mixing coefficients	Known mixing coefficients + equal variances	Unknown means
Moment equations	$m_{1}, \ldots, m_{2 k}$	m_{1}, \ldots, m_{k+1}	m_{1}, \ldots, m_{k}
Unknowns	μ_{i}, σ_{i}^{2}	μ_{i}, σ^{2}	μ_{i}
Mixed volume	$(2 k-1)!!k!$	$\frac{(k+1)!}{2}$	$k!$
Mixed volume tight	Yes for $k \leq 8$	Yes for $k \leq 8$	Yes

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!^{2}$	$k!$

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!^{2}$	$k!$

- Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!$	$k!$

- Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths
- In the final case if $\lambda_{i}=\frac{1}{k}$ and σ_{i}^{2} are equal, there is a unique solution up to symmetry

Table of Contents

(1) Problem Set Up

(2) (Numerical) Algebraic Geometry Primer
(3) Density Estimation for Gaussian Mixture Models

4 Applications in High Dimensional Statistics

Gaussian Mixture Models

In high dimensions

- A random variable $X \in \mathbb{R}^{n}$ is distributed as a multivariate Gaussian with mean $\mu \in \mathbb{R}^{n}$ and covariance $\Sigma \in \mathbb{R}^{n \times n}, \Sigma \succ 0$, if it has density

$$
f_{X}\left(x_{1}, \ldots, x_{n} \mid \mu, \Sigma\right)=\left((2 \pi)^{n} \operatorname{det}(\Sigma)\right)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right)
$$

Figure: Gaussian density in \mathbb{R}^{2} with mean $\mu=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and covariance $\Sigma=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Example

$k=n=2$
Suppose $X \sim \lambda_{1} \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)+\lambda_{2} \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)$ where

$$
\begin{array}{ll}
\mu_{1}=\binom{\mu_{11}}{\mu_{12}}, & \Sigma_{1}=\left(\begin{array}{ll}
\sigma_{111} & \sigma_{112} \\
\sigma_{112} & \sigma_{122}
\end{array}\right) \\
\mu_{2}=\binom{\mu_{21}}{\mu_{21}}, & \Sigma_{2}=\left(\begin{array}{ll}
\sigma_{211} & \sigma_{212} \\
\sigma_{212} & \sigma_{222}
\end{array}\right) .
\end{array}
$$

The moment equations up to order 3 are

$$
\begin{aligned}
& m_{00}=\lambda_{1}+\lambda_{2} \\
& m_{10}=\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
& m_{01}=\lambda_{1} \mu_{12}+\lambda_{2} \mu_{22} \\
& m_{20}=\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}\right) \\
& m_{11}=\lambda_{1}\left(\mu_{11} \mu_{12}+\sigma_{112}\right)+\lambda_{2}\left(\mu_{21} \mu_{22}+\sigma_{212}\right) \\
& m_{02}=\lambda_{1}\left(\mu_{12}^{2}+\sigma_{122}\right)+\lambda_{2}\left(\mu_{22}^{2}+\sigma_{222}\right) \\
& m_{30}=\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}\right) \\
& m_{21}=\lambda_{1}\left(\mu_{11}^{2} \mu_{12}+2 \mu_{11} \sigma_{112}+\mu_{12} \sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{2} \mu_{22}+2 \mu_{21} \sigma_{212}+\mu_{22} \sigma_{211}\right) \\
& m_{12}=\lambda_{1}\left(\mu_{11} \mu_{12}^{2}+\mu_{11} \sigma_{122}+2 \mu_{12} \sigma_{112}\right)+\lambda_{2}\left(\mu_{21} \mu_{22}^{2}+\mu_{21} \sigma_{222}+2 \mu_{22} \sigma_{212}\right) \\
& m_{03}=\lambda_{1}\left(\mu_{12}^{3}+3 \mu_{12} \sigma_{122}\right)+\lambda_{2}\left(\mu_{22}^{3}+3 \mu_{22} \sigma_{222}\right)
\end{aligned}
$$

Example

$k=n=2$
Suppose $X \sim \lambda_{1} \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)+\lambda_{2} \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)$ where

$$
\begin{array}{ll}
\mu_{1}=\binom{\mu_{11}}{\mu_{12}}, & \Sigma_{1}=\left(\begin{array}{ll}
\sigma_{111} & \sigma_{112} \\
\sigma_{112} & \sigma_{122}
\end{array}\right) \\
\mu_{2}=\binom{\mu_{21}}{\mu_{21}}, & \Sigma_{2}=\left(\begin{array}{ll}
\sigma_{211} & \sigma_{212} \\
\sigma_{212} & \sigma_{222}
\end{array}\right) .
\end{array}
$$

The moment equations up to order 3 are

$$
\begin{aligned}
& m_{00}=\lambda_{1}+\lambda_{2} \\
& m_{10}=\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
& m_{01}=\lambda_{1} \mu_{12}+\lambda_{2} \mu_{22} \\
& m_{20}=\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}\right) \\
& m_{11}=\lambda_{1}\left(\mu_{11} \mu_{12}+\sigma_{112}\right)+\lambda_{2}\left(\mu_{21} \mu_{22}+\sigma_{212}\right) \\
& m_{02}=\lambda_{1}\left(\mu_{12}^{2}+\sigma_{122}\right)+\lambda_{2}\left(\mu_{22}^{2}+\sigma_{222}\right) \\
& m_{30}=\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}\right) \\
& m_{21}=\lambda_{1}\left(\mu_{11}^{2} \mu_{12}+2 \mu_{11} \sigma_{112}+\mu_{12} \sigma_{111}\right)+\lambda_{2}\left(\mu_{21}^{2} \mu_{22}+2 \mu_{21} \sigma_{212}+\mu_{22} \sigma_{211}\right) \\
& m_{12}=\lambda_{1}\left(\mu_{11} \mu_{12}^{2}+\mu_{11} \sigma_{122}+2 \mu_{12} \sigma_{112}\right)+\lambda_{2}\left(\mu_{21} \mu_{22}^{2}+\mu_{21} \sigma_{222}+2 \mu_{22} \sigma_{212}\right) \\
& m_{03}=\lambda_{1}\left(\mu_{12}^{3}+3 \mu_{12} \sigma_{122}\right)+\lambda_{2}\left(\mu_{22}^{3}+3 \mu_{22} \sigma_{222}\right)
\end{aligned}
$$

Higher Order Moments

- Key Observation: The $m_{0,0, \ldots, 0, i_{t}, 0, \ldots 0}$-th moment is the same as the i_{t}-th order moment for the univariate Gaussian mixture model $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell t}, \sigma_{\ell t t}\right)$

Higher Order Moments

 moment for the univariate Gaussian mixture model $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell t}, \sigma_{\ell t t}\right)$

- Density estimation for high dimensional Gaussian mixture models becomes multiple instances of one dimensional problems
 moment for the univariate Gaussian mixture model $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell t}, \sigma_{\ell t t}\right)$
- Density estimation for high dimensional Gaussian mixture models becomes multiple instances of one dimensional problems
- Advantage: Only track the best statistically meaningful solution

Algorithm

Density Estimation for High Dimensional Gaussian Mixture Models
Input: A set of sample moments \boldsymbol{m}^{1}
${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

Algorithm

Density Estimation for High Dimensional Gaussian Mixture Models

Input: A set of sample moments \mathbf{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$

[^0]
Algorithm

Input: A set of sample moments \mathbf{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$
(1) Solve the general univariate case using sample moments $\bar{m}_{0, \ldots, 0,1}, \ldots, \bar{m}_{0, \ldots, 0,3 k-1}$ to get parameters $\lambda_{\ell}, \mu_{\ell, 1}$ and $\sigma_{\ell, 1,1}$

[^1]
Algorithm

Density Estimation for High Dimensional Gaussian Mixture Models

Input: A set of sample moments \mathbf{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$
(1) Solve the general univariate case using sample moments $\bar{m}_{0, \ldots, 0,1}, \ldots, \bar{m}_{0, \ldots, 0,3 k-1}$ to get parameters $\lambda_{\ell}, \mu_{\ell, 1}$ and $\sigma_{\ell, 1,1}$
(2) Select statistically meaningful solution with moments $\bar{m}_{0, \ldots, 0,3 k}, \bar{m}_{0, \ldots, 0,3 k+1}, \bar{m}_{0, \ldots, 0,3 k+2}$

[^2]
Algorithm

Input: A set of sample moments \mathbf{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$
(1) Solve the general univariate case using sample moments $\bar{m}_{0, \ldots, 0,1}, \ldots, \bar{m}_{0, \ldots, 0,3 k-1}$ to get parameters $\lambda_{\ell}, \mu_{\ell, 1}$ and $\sigma_{\ell, 1,1}$
(2) Select statistically meaningful solution with moments $\bar{m}_{0, \ldots, 0,3 k}, \bar{m}_{0, \ldots, 0,3 k+1}, \bar{m}_{0, \ldots, 0,3 k+2}$
(3) Using the mixing coefficients λ_{ℓ} solve the known mixing coefficients case $n-1$ times to obtain the remaining means and variances

[^3]
Algorithm

Input: A set of sample moments \mathbf{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$
(1) Solve the general univariate case using sample moments $\bar{m}_{0, \ldots, 0,1}, \ldots, \bar{m}_{0, \ldots, 0,3 k-1}$ to get parameters $\lambda_{\ell}, \mu_{\ell, 1}$ and $\sigma_{\ell, 1,1}$
(2) Select statistically meaningful solution with moments $\bar{m}_{0, \ldots, 0,3 k}, \bar{m}_{0, \ldots, 0,3 k+1}, \bar{m}_{0, \ldots, 0,3 k+2}$
(3) Using the mixing coefficients λ_{ℓ} solve the known mixing coefficients case $n-1$ times to obtain the remaining means and variances
(9) Select the statistically meaningful solution closest to next sample moments

[^4]
Algorithm

Input: A set of sample moments \boldsymbol{m}^{1}
Output: Parameters $\lambda_{\ell} \in \mathbb{R}, \mu_{\ell} \in \mathbb{R}^{n}, \Sigma_{\ell} \succ 0$ for $\ell \in[k]$ such that \mathbf{m} are the moments of distribution $\sum_{\ell=1}^{k} \lambda_{\ell} \mathcal{N}\left(\mu_{\ell}, \Sigma_{\ell}\right)$
(1) Solve the general univariate case using sample moments $\bar{m}_{0, \ldots, 0,1}, \ldots, \bar{m}_{0, \ldots, 0,3 k-1}$ to get parameters $\lambda_{\ell}, \mu_{\ell, 1}$ and $\sigma_{\ell, 1,1}$
(2) Select statistically meaningful solution with moments $\bar{m}_{0, \ldots, 0,3 k}, \bar{m}_{0, \ldots, 0,3 k+1}, \bar{m}_{0, \ldots, 0,3 k+2}$
(3) Using the mixing coefficients λ_{ℓ} solve the known mixing coefficients case $n-1$ times to obtain the remaining means and variances
(9) Select the statistically meaningful solution closest to next sample moments
(5) The covariances are linear in the other entries, solve this linear system

[^5]Example: $(k, n)=(2,2)$

- Suppose $X \sim \lambda_{1} \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)+\lambda_{2} \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)$ where

$$
\begin{array}{ll}
\mu_{1}=\binom{\mu_{11}}{\mu_{12}}, & \Sigma_{1}=\left(\begin{array}{cc}
\sigma_{111}^{2} & \sigma_{112} \\
\sigma_{112} & \sigma_{122}^{2}
\end{array}\right) \\
\mu_{2}=\binom{\mu_{21}}{\mu_{21}}, & \Sigma_{2}=\left(\begin{array}{cc}
\sigma_{211}^{2} & \sigma_{212} \\
\sigma_{212} & \sigma_{222}^{2}
\end{array}\right) .
\end{array}
$$

Example: $(k, n)=(2,2)$

- Suppose $X \sim \lambda_{1} \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)+\lambda_{2} \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)$ where

$$
\begin{array}{ll}
\mu_{1}=\binom{\mu_{11}}{\mu_{12}}, & \Sigma_{1}=\left(\begin{array}{ll}
\sigma_{111}^{2} & \sigma_{112} \\
\sigma_{112} & \sigma_{122}^{2}
\end{array}\right) \\
\mu_{2}=\binom{\mu_{21}}{\mu_{21}}, & \Sigma_{2}=\left(\begin{array}{cc}
\sigma_{211}^{2} & \sigma_{212} \\
\sigma_{212} & \sigma_{222}^{2}
\end{array}\right) .
\end{array}
$$

- Given sample moments

$$
\begin{aligned}
{\left[\bar{m}_{10}, \bar{m}_{20}, \bar{m}_{30}, \bar{m}_{40}, \bar{m}_{50}, \bar{m}_{60}\right] } & =[-0.25,2.75,-1.0,22.75,-6.5,322.75] \\
{\left[\bar{m}_{01}, \bar{m}_{02}, \bar{m}_{03}, \bar{m}_{04}, \bar{m}_{05}\right] } & =[2.5,16.125,74.5,490.5625,2921.25] \\
{\left[\bar{m}_{11}, \bar{m}_{21}\right] } & =[0.8125,7.75]
\end{aligned}
$$

Example (cont.)

Algorithm in Action

- Step 1: Solve general case to obtain $\lambda_{\ell}, \mu_{\ell 1}, \sigma_{\ell 11}^{2}$ for $\ell=1,2$

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
-0.25 & =\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
2.75 & =\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}^{2}\right) \\
-1 & =\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}^{2}\right) \\
22.75 & =\lambda_{1}\left(\mu_{11}^{4}+6 \mu_{11}^{2} \sigma_{111}^{2}+3 \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{4}+6 \mu_{21}^{2} \sigma_{211}^{2}+3 \sigma_{211}^{4}\right) \\
-6.5 & =\lambda_{1}\left(\mu_{11}^{5}+10 \mu_{11}^{3} \sigma_{111}^{2}+15 \mu_{11} \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{5}+10 \mu_{21}^{3} \sigma_{211}^{2}+15 \mu_{21} \sigma_{211}^{4}\right)
\end{aligned}
$$

Example (cont.)

Algorithm in Action

- Step 1: Solve general case to obtain $\lambda_{\ell}, \mu_{\ell 1}, \sigma_{\ell 11}^{2}$ for $\ell=1,2$

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
-0.25 & =\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
2.75 & =\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}^{2}\right) \\
-1 & =\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}^{2}\right) \\
22.75 & =\lambda_{1}\left(\mu_{11}^{4}+6 \mu_{11}^{2} \sigma_{111}^{2}+3 \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{4}+6 \mu_{21}^{2} \sigma_{211}^{2}+3 \sigma_{211}^{4}\right) \\
-6.5 & =\lambda_{1}\left(\mu_{11}^{5}+10 \mu_{11}^{3} \sigma_{111}^{2}+15 \mu_{11} \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{5}+10 \mu_{21}^{3} \sigma_{211}^{2}+15 \mu_{21} \sigma_{211}^{4}\right)
\end{aligned}
$$

- (Up to symmetry) two statistically meaningful solutions:

$$
\begin{aligned}
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.25,0.75,0,-1,3,1) \\
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.967,0.033,-0.378,3.493,2.272,0.396)
\end{aligned}
$$

Example (cont.)

Algorithm in Action

- Step 1: Solve general case to obtain $\lambda_{\ell}, \mu_{\ell 1}, \sigma_{\ell 11}^{2}$ for $\ell=1,2$

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
-0.25 & =\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
2.75 & =\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}^{2}\right) \\
-1 & =\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}^{2}\right) \\
22.75 & =\lambda_{1}\left(\mu_{11}^{4}+6 \mu_{11}^{2} \sigma_{111}^{2}+3 \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{4}+6 \mu_{21}^{2} \sigma_{211}^{2}+3 \sigma_{211}^{4}\right) \\
-6.5 & =\lambda_{1}\left(\mu_{11}^{5}+10 \mu_{11}^{3} \sigma_{111}^{2}+15 \mu_{11} \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{5}+10 \mu_{21}^{3} \sigma_{211}^{2}+15 \mu_{21} \sigma_{211}^{4}\right)
\end{aligned}
$$

- (Up to symmetry) two statistically meaningful solutions:

$$
\begin{aligned}
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.25,0.75,0,-1,3,1) \\
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.967,0.033,-0.378,3.493,2.272,0.396)
\end{aligned}
$$

- Step 2: First solution has $m_{60}=322.75$, second has $m_{60}=294.686$

Example (cont.)

Algorithm in Action

- Step 1: Solve general case to obtain $\lambda_{\ell}, \mu_{\ell 1}, \sigma_{\ell 11}^{2}$ for $\ell=1,2$

$$
\begin{aligned}
1 & =\lambda_{1}+\lambda_{2} \\
-0.25 & =\lambda_{1} \mu_{11}+\lambda_{2} \mu_{21} \\
2.75 & =\lambda_{1}\left(\mu_{11}^{2}+\sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{2}+\sigma_{211}^{2}\right) \\
-1 & =\lambda_{1}\left(\mu_{11}^{3}+3 \mu_{11} \sigma_{111}^{2}\right)+\lambda_{2}\left(\mu_{21}^{3}+3 \mu_{21} \sigma_{211}^{2}\right) \\
22.75 & =\lambda_{1}\left(\mu_{11}^{4}+6 \mu_{11}^{2} \sigma_{111}^{2}+3 \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{4}+6 \mu_{21}^{2} \sigma_{211}^{2}+3 \sigma_{211}^{4}\right) \\
-6.5 & =\lambda_{1}\left(\mu_{11}^{5}+10 \mu_{11}^{3} \sigma_{111}^{2}+15 \mu_{11} \sigma_{111}^{4}\right)+\lambda_{2}\left(\mu_{21}^{5}+10 \mu_{21}^{3} \sigma_{211}^{2}+15 \mu_{21} \sigma_{211}^{4}\right)
\end{aligned}
$$

- (Up to symmetry) two statistically meaningful solutions:

$$
\begin{aligned}
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.25,0.75,0,-1,3,1) \\
& \left(\lambda_{1}, \lambda_{2}, \mu_{11}, \mu_{21}, \sigma_{111}^{2}, \sigma_{211}^{2}\right)=(0.967,0.033,-0.378,3.493,2.272,0.396)
\end{aligned}
$$

- Step 2: First solution has $m_{60}=322.75$, second has $m_{60}=294.686$
- Select first solution

Example (cont.)

Algorithm in Action

- Step 3: Using $\lambda_{1}=0.25, \lambda_{2}=0.75$ solve

$$
\begin{aligned}
2.5 & =0.25 \cdot \mu_{12}+0.75 \cdot \mu_{22} \\
16.125 & =0.25 \cdot\left(\mu_{12}^{2}+\sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{2}+\sigma_{222}^{2}\right) \\
74.5 & =0.25 \cdot\left(\mu_{12}^{3}+3 \mu_{12} \sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{3}+3 \mu_{22} \sigma_{222}^{2}\right) \\
490.5625 & =0.25 \cdot\left(\mu_{12}^{4}+6 \mu_{12}^{2} \sigma_{122}^{2}+3 \sigma_{122}^{4}\right)+0.75 \cdot\left(\mu_{22}^{4}+6 \mu_{22}^{2} \sigma_{222}^{2}+3 \sigma_{222}^{4}\right)
\end{aligned}
$$

Example (cont.)

Algorithm in Action

- Step 3: Using $\lambda_{1}=0.25, \lambda_{2}=0.75$ solve

$$
\begin{aligned}
2.5 & =0.25 \cdot \mu_{12}+0.75 \cdot \mu_{22} \\
16.125 & =0.25 \cdot\left(\mu_{12}^{2}+\sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{2}+\sigma_{222}^{2}\right) \\
74.5 & =0.25 \cdot\left(\mu_{12}^{3}+3 \mu_{12} \sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{3}+3 \mu_{22} \sigma_{222}^{2}\right) \\
490.5625 & =0.25 \cdot\left(\mu_{12}^{4}+6 \mu_{12}^{2} \sigma_{122}^{2}+3 \sigma_{122}^{4}\right)+0.75 \cdot\left(\mu_{22}^{4}+6 \mu_{22}^{2} \sigma_{222}^{2}+3 \sigma_{222}^{4}\right)
\end{aligned}
$$

- One statistically meaningful solution

$$
\left(\mu_{12}, \mu_{22}, \sigma_{122}^{2}, \sigma_{222}^{2}\right)=(-2,4,2,3.5)
$$

Example (cont.)

Algorithm in Action

- Step 3: Using $\lambda_{1}=0.25, \lambda_{2}=0.75$ solve

$$
\begin{aligned}
2.5 & =0.25 \cdot \mu_{12}+0.75 \cdot \mu_{22} \\
16.125 & =0.25 \cdot\left(\mu_{12}^{2}+\sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{2}+\sigma_{222}^{2}\right) \\
74.5 & =0.25 \cdot\left(\mu_{12}^{3}+3 \mu_{12} \sigma_{122}^{2}\right)+0.75 \cdot\left(\mu_{22}^{3}+3 \mu_{22} \sigma_{222}^{2}\right) \\
490.5625 & =0.25 \cdot\left(\mu_{12}^{4}+6 \mu_{12}^{2} \sigma_{122}^{2}+3 \sigma_{122}^{4}\right)+0.75 \cdot\left(\mu_{22}^{4}+6 \mu_{22}^{2} \sigma_{222}^{2}+3 \sigma_{222}^{4}\right)
\end{aligned}
$$

- One statistically meaningful solution

$$
\left(\mu_{12}, \mu_{22}, \sigma_{122}^{2}, \sigma_{222}^{2}\right)=(-2,4,2,3.5)
$$

- Step 4: Choose only statistically meaningful solution

Example (cont.)

- Step 5: Solve the linear system

$$
\begin{aligned}
0.8125 & =0.25 \cdot\left(2+\sigma_{112}\right)+0.75 \cdot \sigma_{212} \\
7.75 & =0.25 \cdot\left(-4+2 \cdot \sigma_{112}\right)+9
\end{aligned}
$$

Example (cont.)

- Step 5: Solve the linear system

$$
\begin{aligned}
0.8125 & =0.25 \cdot\left(2+\sigma_{112}\right)+0.75 \cdot \sigma_{212} \\
7.75 & =0.25 \cdot\left(-4+2 \cdot \sigma_{112}\right)+9
\end{aligned}
$$

- There is one solution

$$
\left(\sigma_{112}, \sigma_{212}\right)=(0.5,0.25)
$$

Example (cont.)

- Step 5: Solve the linear system

$$
\begin{aligned}
0.8125 & =0.25 \cdot\left(2+\sigma_{112}\right)+0.75 \cdot \sigma_{212} \\
7.75 & =0.25 \cdot\left(-4+2 \cdot \sigma_{112}\right)+9
\end{aligned}
$$

- There is one solution

$$
\left(\sigma_{112}, \sigma_{212}\right)=(0.5,0.25)
$$

- Estimate that our samples came from density

$$
0.25 \cdot \mathcal{N}\left(\left[\begin{array}{l}
-1 \\
-2
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 2
\end{array}\right]\right)+0.75 \cdot \mathcal{N}\left(\left[\begin{array}{l}
0 \\
4
\end{array}\right],\left[\begin{array}{cc}
3 & 0.25 \\
0.25 & 3.5
\end{array}\right]\right)
$$

Analysis of Algorithm

Computational Complexity

- Steps 3 and 4 can be run in parallel

Analysis of Algorithm

Computational Complexity

- Steps 3 and 4 can be run in parallel
- Need to track $N_{k}+(2 k-1)!!k!\cdot(n-1)$ homotopy paths where $N_{k}=\#$ of paths needed for a general k mixture model

Analysis of Algorithm

Computational Complexity

- Steps 3 and 4 can be run in parallel
- Need to track $N_{k}+(2 k-1)!!k!\cdot(n-1)$ homotopy paths where $N_{k}=\#$ of paths needed for a general k mixture model
- Number of homotopy paths is linear in n

Analysis of Algorithm

Computational Complexity

- Steps 3 and 4 can be run in parallel
- Need to track $N_{k}+(2 k-1)!!k!\cdot(n-1)$ homotopy paths where $N_{k}=\#$ of paths needed for a general k mixture model
- Number of homotopy paths is linear in n
- Even simpler in cases where some of the parameters are known

Analysis of Algorithm

Parameter Recovery

Figure: Two Gaussian mixture densities with $k=3$ components and the same first eight moments.

Figure: Individual components of two Gaussian mixture models with similar mixture densities.

Computational Results

- We perform the method of moments on the mixture of 2 Gaussians in \mathbb{R}^{n} with diagonal covariance matrices

n	10	100	1,000	10,000	100,000
Time (s)	0.17	0.71	6.17	62.05	650.96
Error	7.8×10^{-15}	4.1×10^{-13}	5.7×10^{-13}	3.0×10^{-11}	1.8×10^{-9}
Normalized Error	1.9×10^{-16}	1.0×10^{-15}	1.4×10^{-16}	7.3×10^{-16}	4.5×10^{-15}

Table: Average running time and numerical error for a mixture of 2 Gaussians in \mathbb{R}^{n}

Conclusion

- Gave new rational and algebraic identifiability results for Gaussian mixture models
- Gave upper bound for number of solutions to univariate Gaussian k mixture moment systems in three cases
- Applied these results to efficiently do density estimation in high dimensions

Thank you! Questions?

Paper: ‘Estimating Gaussian mixture models using sparse polynomial moment systems' arXiv:2106.15675

References I

[AFS16] Carlos Améndola, Jean-Charles Faugère, and Bernd Sturmfels, Moment varieties of Gaussian mixtures, J. Algebr. Stat. 7 (2016), no. 1, 14-28. MR 3529332
[ARS18] Carlos Améndola, Kristian Ranestad, and Bernd Sturmfels, Algebraic identifiability of Gaussian mixtures, Int. Math. Res. Not. IMRN (2018), no. 21, 6556-6580. MR 3873537
[Ber75] David N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1-4. MR 0435072
[BT18] Paul Breiding and Sascha Timme, Homotopycontinuation.jl: A package for homotopy continuation in Julia, Mathematical Software - ICMS 2018, Springer International Publishing, 2018, pp. 458-465.
[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep learning, MIT Press, 2016, http://www.deeplearningbook.org.
[HS95] Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64 (1995), no. 212, 1541-1555. MR 1297471
[JZB $\left.{ }^{+} 16\right]$ Chi Jin, Yuchen Zhang, Sivaraman Balakrishnan, Martin J. Wainwright, and Michael I. Jordan, Local maxima in the likelihood of gaussian mixture models: Structural results and algorithmic consequences, 30th Annual Conference on Neural Information Processing Systems, NIPS 2016, vol. 29, 2016, pp. 4116-4124.
[Kho78] Askold G. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51-61. MR 487230 [KMV12] Adam Tauman Kalai, Ankur Moitra, and Gregory Valiant, Disentangling Gaussians, Communications of The ACM 55 (2012), no. 2, 113-120.
[Kou76] Anatoli G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1-31. MR 419433
[KW14] Kei Kobayashi and Henry P. Wynn, Computational algebraic methods in efficient estimation, Geometric theory of information, Signals Commun. Technol., Springer, Cham, 2014, pp. 119-140. MR 3329739
[LAR21] Julia Lindberg, Carlos Améndola, and Jose Israel Rodriguez, Estimating gaussian mixtures using sparse polynomial moment systems., arXiv preprint arXiv:2106.15675 (2021).

References II

[Pea94] Karl Pearson, Contributions to the mathematical theory of evolution, Philosophical Transactions of the Royal Society A 185 (1894), 71-110.

[^0]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

[^1]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

[^2]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

[^3]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

[^4]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

[^5]: ${ }^{1}$ Sample moments need to be in the same cell as the moments of the true density

