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Abstract. We exhibit seven linear codes exceeding the current best known minimum distance

d for their dimension k and block length n. Each code is defined over F8, and their invari-

ants [n, k, d] are given by [49, 13, 27], [49, 14, 26], [49, 16, 24], [49, 17, 23], [49, 19, 21], [49, 25, 16]

and [49, 26, 15]. Our method includes an exhaustive search of all monomial evaluation codes

generated by points in the [0, 5] × [0, 5] lattice square.

1. Introduction

The basic invariants of a linear code C over the finite field Fq are its dimension k and its block

length n. The code is the image in Fn
q of a k × n matrix M over Fq. The minimum distance

d of C is the smallest Hamming weight of any nonzero linear combination of the rows of M .

These invariants are conventionally recorded as a triple [n, k, d]. One usually seeks codes with

minimum distance d as large as possible for a given block length n and dimension k. There are

theoretical upper bounds for the minimum distance, although in many cases the largest known

example falls short of these bounds. Grassl [Gra] catalogues the best known linear codes in this

sense, and we refer to any code with larger minimum distance as a champion code1.

In this paper we find seven new champion codes defined over F8 by considering the class of

generalised toric codes introduced by Little [Lit11] (see §2).

Theorem 1.1. There are precisely five [n, k, d] profiles of champion generalised toric codes over

F8 generated by collections of points in a [0, 5]× [0, 5] square. There are (at least) another two

champion codes arising from a [0, 6]× [0, 6] square. These profiles are listed in Table 1.

The codes we consider correspond to subsets of lattice points in the [0,m]× [0,m] square for

small values of m. In principle, our approach is to enumerate all such sets of points, construct

the corresponding code over various small fields and then compute its invariants. In §3 we

describe an algorithm to enumerate all such sets of points up to affine equivalence. To prove the

theorem, we implement and run this algorithm to completion for m = 5, and a partial search

when m = 6. Since our algorithm is exhaustive, we can say more:

Theorem 1.2. There are no champion generalised toric codes over Fq when q ≤ 7.

It is worth noting that the new Bound A of [GBS12] does not improve the existing theoretical

upper bounds for minimum distance in the range of the champion codes we discover, so we

cannot say that the codes of Theorem 1.1 are the best possible amongst all linear codes.

2010 Mathematics Subject Classification: 14G50 (Primary); 52B20, 14M25 (Secondary).
1The profile [36, 19, 12] over F7 discovered in [BK13] is not currently recorded in [Gra], but we will not regard

any code matching these invariants as a champion.
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n k d Minm Example points

49 13 27 4 (0, 2), (0, 3), (0, 4), (1, 0), (1, 2), (2, 1), (2, 2), (2, 4), (3, 0), (3, 2), (4, 1),

(4, 3), (4, 4)

49 14 26 5 (0, 1) (0, 4), (1, 3), (2, 3), (2, 4), (3, 1), (3, 3), (3, 5), (4, 0), (4, 2), (4, 4),

(4, 5), (5, 2), (5, 5)

49 16 24 5 (0, 1), (0, 2), (0, 4), (0, 5), (1, 1), (1, 4), (1, 5), (2, 0), (2, 1), (2, 4), (3, 2),

(3, 3), (3, 5), (4, 2), (5, 0), (5, 5)

49 17 23 5 (0, 1), (0, 3), (0, 5), (1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1),

(3, 4), (3, 5), (4, 0), (4, 2), (5, 1), (5, 5)

49 19 21 5 (0, 0), (0, 2), (0, 4), (0, 5), (1, 0), (1, 1), (1, 5), (2, 1), (2, 2), (2, 5), (3, 1),

(3, 3), (3, 4), (4, 0), (4, 5), (5, 0), (5, 2), (5, 4), (5, 5)

49 25 16 6 (0, 4), (0, 5), (0, 6), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3),

(2, 5), (2, 6), (3, 0), (3, 2), (3, 4), (3, 6), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1),

(5, 5), (6, 2), (6, 3)

49 26 15 6 (0, 2), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 3), (2, 5),

(3, 0), (3, 1), (3, 3), (3, 5), (3, 6), (4, 3), (4, 4), (5, 0), (5, 2), (5, 3), (5, 4),

(5, 5), (6, 1), (6, 2), (6, 4)

Table 1. The [n, k, d] invariants of new champion generalised toric codes over

F8. In each case a single example is given, contained in the smallest possible

[0,m]× [0,m] square, and illustrated in Figure 1.

2. Generalised toric codes

Recall from [Han00] that a toric code C, over a sufficiently large field Fq, is determined by a

convex lattice polygon P ⊂ Z2 ⊗ Q as follows. Suppose that P lies in a [0,m] × [0,m] square,

where q ≥ m+ 2. Then C is given by the image of a k× n matrix M whose rows are generated

by evaluating each lattice point (a, b) ∈ P ∩ Z2 (regarded as a monomial xayb) at each vector

of the torus (F∗q)2. The dimension of C is the number of rows k =
∣∣P ∩ Z2

∣∣ of M and the block

length is the number of columns n = (q − 1)2.

A generalised toric code is constructed in the same way as a toric code but with the possibility

of omitting one or more of the lattice points of P ; equivalently, one may remove rows from the

generating matrix M . Conceptually this allows one to delete any particularly short vectors in

C that arise as rows of M . Although of course this does not necessarily increase the minimum

distance, they have recently also been proving fruitful in the search for champions [Rua09,

AHV09, CMO09, Lit11]. Little introduced the study of generalised toric codes, and found a

champion [49, 12, 28] code over F8 coming from a particular subset of points of a polygon in a

[0, 5] × [0, 5] square [Lit11]; this is illustrated in Figure 2(a). Systematic attempts to produce

examples of champion generalised toric codes have been performed over F4 and F5 [AHV09],

and over F7, F8 and F9 [CMO09].



SEVEN NEW CHAMPION LINEAR CODES 3

Figure 1. Example point configurations for the new champion generalised codes

over F8 listed in Table 1.

Small polygons. In [BK13] we assembled a comprehensive database of lattice polygons that

are contained, up to lattice automorphism and translation, in a [0,m]× [0,m] square, for m ≤ 7.

This database can be interrogated online via the Graded Ring Database [BKa], or from within

the computational algebra software Magma [BCP97]. In [BK13] we checked the toric code

corresponding to each such polygon, over all prime-powered fields Fq for m + 2 ≤ q ≤ 9, and

found a single new champion code, defined over F7 with invariants [36, 19, 12]. In this paper we

consider all generalised toric codes associated with polygons that lie in a [0,m]× [0,m] square,

for m ≤ 5 and m + 2 ≤ q ≤ 9. We also present partial results when m = 6; in this case

the number of possible generalised toric codes is too large to be searched systematically using

current techniques. The invariants listed in Table 1 are those of the champion codes we found

with this search.

(a) (b)

Figure 2. (a) The [49, 12, 28] code over F8 described by Little [Lit11]; (b) One

of 448 non-equivalent ways of generating a [49, 12, 28] code over F8 from points

in a [0, 4]× [0, 4] square.

Multiplicity of champions. Champion profiles such as [49, 13, 27] over F8 are often achieved

in many non-equivalent ways: this case, for example, is realised by four different sets of points in
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a [0, 4]× [0, 4] square, distinct up to lattice automorphism and translation; see Figure 3. Little’s

champion [49, 12, 28] code is more striking still: we have 448 non-equivalent generalised codes

in a [0, 4]× [0, 4] square that yield these invariants. An example is illustrated in Figure 2(b).

Figure 3. The possible choices of points in a [0, 4] × [0, 4] square giving a

[49, 13, 27] code over F8.

Toric codes often achieve best known minimum distance. We extracted the [n, k, d]

profiles of all generalised toric codes that matched, or exceeded, the largest minimum distances

available in Grassl’s catalogue over Fq for q ≤ 7. All such codes are contained in a [0, 5]× [0, 5]

square, and so our results are complete. The bounds attained are recorded in Appendix A;

generalised toric codes achieve (or exceed) the current best known minimum distance in 28 of

the 57 cases.

3. The algorithm

The proof of Theorems 1.1 and 1.2 is by a systematic computer search. The hurdle to

overcome is the sheer number of codes and the complexity of computing their minimum distances

(often these calculations would take millions of years if the code achieved its apparent minimum

distance). We describe an algorithm that carries out the enumeration of subsets of lattice points

of a lattice square up to affine equivalence. We have implemented this in Magma exactly as

described here, making use of the convex polytopes package [BBK11]. Our code is available to

download from [BKb].

Let S ⊂ Z2 be a collection of points contained in a [0,m] × [0,m] square generating the

generalised toric code CS over Fq. For any lattice translation S′ = S − u of the points S,

or more generally for any affine linear transformation s 7→ (s − u)M of S, where u ∈ Z2

and M ∈ GL2(Z), the toric codes CS and CS′ are monomially equivalent [LS07, Theorem 4].

Therefore it is enough to consider points S up to lattice translation and change of basis. Consider

now the lattice polygon P := conv(S) ⊂ Z2 ⊗ Q. Up to equivalence, P can be assumed to be

one of the polygons constructed in [BK13]. This motivates our approach: For each polygon P

contained in a [0,m] × [0,m] square we will generate, up to equivalence, all possible subsets S

of points P ∩ Z2 such that S contains the vertices vert(P ) of P . Insisting that vert(P ) ⊆ S is a

natural restriction; if this were not so, Q := conv(S) is a lattice polygon distinct from P in the

same [0,m]× [0,m] square, and, up to equivalence, that polygon will be considered separately.

Step 1: Compute the affine automorphism group of P . The first step is to compute the

affine automorphism group G := AffAut(P ) of the polygon P , where any element g ∈ G can be

written as a combination of elements of GL2(Z) and translations. Embed P at height 1 in the
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lattice Z3 = Z2 × Z; for example, simply append a coordinate 1 to each vertex of P . We refer

to this embedded image of P also as P . Form the cone σ with vertex the origin generated by

the points of the embedded image of P . Let Aut(σ) be the linear automorphism group of σ.

The action of this group on σ restricts to a faithful action on P , realising the full group of affine

lattice automorphisms of P .

Step 2: Extend the action to subsets of points of P . Clearly v · G ⊆ vert(P ) for any

v ∈ vert(P ). Let P := P ∩ Z2 \ vert(P ) be the set of non-vertex lattice points in P . We fix an

order of the points of P = {v1, . . . , vk}, where k := |P|; G acts on P via permutation. Choose

a largest orbit O1 of this action on P. Without loss of generality we assume that O1 permutes

the first k1 ≤ k elements.

Step 3: Enumerate subsets of a largest orbit up to the action. From now onwards we

regard G as acting on {0, 1}k, where an element s ∈ {0, 1}k corresponds to a choice of points

S ⊆ P ∩ Z2 via the obvious map

s = (b1, . . . , bk) 7→ S = vert(P ) ∪ {vi ∈ P | 1 ≤ i ≤ k, bi = 1}.

Let S1 be the set of all sequences in {0, 1}k1 , up to this action. Enumerating S1 for small

polygons is straightforward: in particular, S1 contains a unique sequence of zeros and also a

unique sequence containing a single 1. Larger numbers h ≥ 2 of nonzero coefficients depend on

the h-transitivity of the action: the number is determined by the orbit–stabiliser theorem, but

even without applying that the numbers are small enough simply to run through all possibilities

rejecting those already seen (up to the action). We only compute the results for at most bk1/2c
nonzero coefficients, since the remaining possibilities are obtained via symmetry by exchanging

0 and 1.

Step 4: Extend subsets to all of P. For each s ∈ S1 we extend s to an element of {0, 1}k

as follows. Let Gs := {g ∈ G | s · g = s} ≤ G, and let Ps := {vi ∈ P | k1 < i ≤ k}. By induction

we can construct the set of possible {0, 1}k−k1-sequences Ss, up to the action of Gs. Let s t s′

denote the concatenation of s ∈ {0, 1}k1 with an element s′ ∈ {0, 1}k−k1 , so that st s′ ∈ {0, 1}k.

Then

S = {s t s′ | s ∈ S1, s′ ∈ Ss}

corresponds to the set of all points in P ∩ Z2 \ vert(P ), up to the action of G.

Example 3.1. Consider the polygon B equal to the [0, 2]×[0, 2] square. This contains 32 points,

and hence there exist 23
2

subsets of points in B. If one insists that vert(B) ⊆ S for any subset

S of points, then this is reduced to 23
2−4 = 32 possibilities. Considering subsets S only up to

equivalence, we obtain the twelve equivalence classes illustrated in Figure 4.

At this point, we have a list of all possible subsets of points of P up to affine automorphisms

(and including its vertices). It remains to identify any champion generalised toric codes.
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Figure 4. The twelve equivalence classes of points S in the [0, 2]× [0, 2] square

B such that vert(B) ⊆ S.

Step 5: Run a trial minimum distance algorithm to exclude most cases. Fix a prime

power q and an integer 0 < m < q − 1. Given a set of points S ⊂ [0,m] × [0,m], compute the

generalised toric code C = CS(Fq). (In our case, S is one of the subsets of points of a polygon

enumerated in Step 4.) Let M = MC be the generator matrix of C. Compute the Hamming

length of the shortest nonzero vector that is a linear combination over Fq of up to four rows of

M – this is q4 − 1 vectors, which is manageable for the small values of q we consider. If this

length is strictly greater than the best known minimum distance for codes of dimension |S| and

block length q − 1, then keep the pair S, q for consideration at the next step; otherwise discard

the pair S, q, since the corresponding code cannot be a new champion.

Step 6: Compute the minimum distance of successful trial candidates. In principle

this is now the hard part. We employ Magma’s MinimumDistance function; at heart, it must

simply check the Hamming weight of all words in the code, and so can easily be expected to

take too long for our purposes. In practice when m ≤ 5, for the hundreds of thousands of codes

that pass our four-line trial in Step 5, we can always calculate the minimum distance within

a few hours, and there are several hundred cases realising champion invariants. So for m ≤ 5

there are no numerical profiles [n, d, k] other than the five listed in Table 1 that admit champion

generalised codes.

Remark 3.2. To get an idea of the effect of symmetries, Table 2 lists the number of subsets of

points 2(m+1)2−4 of the [0,m] × [0,m] square (excluding the vertices, since we handled vertices

of polygons separately) and the number of such subsets up to equivalence. Of course there are

eight symmetries of the square, and 8 × 265488 = 2123904; the full group of symmetries of P

has been exploited.

m 1 2 3 4

# subsets of points 1 32 4096 2097152

# up to symmetries 1 12 570 265488

Table 2. A comparison of the number of subsets of points in a [0,m] × [0,m]

square, and the number of subsets up to equivalence.
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It is conceivable that there are other ‘hidden’ symmetries that preserve the invariants of the

toric code, even if they do not preserve the lattice subset, and the multiplicity of champions

may be hinting at this.
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q n k dt dg Best Example points

3 4 3 2 2 y (0, 1), (1, 0), (1, 1)

3 4 4 1 1 y (0, 0), (0, 1), (1, 0), (1, 1)

4 9 3 6 6 y (0, 1), (1, 0), (1, 1)

4 9 4 4 5 n (0, 0), (0, 1), (1, 0), (1, 1)

4 9 5 3 4 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)

4 9 6 3 3 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)

4 9 7 2 2 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

4 9 8 2 2 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

4 9 9 1 1 y (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

5 16 3 12 12 y (0, 1), (1, 0), (1, 1)

5 16 4 10 11 n (0, 1), (1, 1), (1, 2), (2, 0)

5 16 5 8 9 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)

5 16 6 8 8 y (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)

5 16 7 7 7 y (0, 3), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 2)

5 16 8 6 7 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

5 16 9 6 6 y (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)

5 16 10 4 5 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2)

5 16 11 4 4 y (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

5 16 12 4 4 y (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1),

(3, 2)

5 16 13 3 3 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0),

(3, 1), (3, 2)

5 16 14 2 2 y (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0),

(3, 1), (3, 2), (3, 3)

5 16 15 2 2 y (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3),

(3, 0), (3, 1), (3, 2), (3, 3)

5 16 16 1 1 y (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2),

(2, 3), (3, 0), (3, 1), (3, 2), (3, 3)

7 36 3 30 30 y (0, 1), (1, 0), (1, 1)

7 36 4 27 28 n (0, 1), (1, 1), (1, 2), (2, 0)

7 36 5 24 27 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0)

7 36 6 24 25 n (0, 1), (0, 2), (1, 1), (1, 2), (2, 0), (2, 1)

7 36 7 23 24 n (0, 3), (1, 2), (1, 3), (2, 0), (2, 2), (3, 1), (3, 2)

7 36 8 20 22 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)

7 36 9 20 21 n (0, 3), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (3, 1), (3, 2)

7 36 10 18 20 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2)

7 36 11 18 19 n (0, 4), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), (4, 3)

continued on next page
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continued from previous page

q n k dt dg Best Example points

7 36 12 17 18 n (0, 4), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), (4, 2),

(4, 3)

7 36 13 15 17 n (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1), (2, 2), (2, 3), (3, 0),

(3, 1), (3, 2)

7 36 14 15 16 n (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(4, 0), (4, 1), (4, 2)

7 36 15 14 15 n (0, 4), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0), (3, 1), (3, 2),

(3, 3), (4, 1), (4, 2), (4, 3)

7 36 16 12 14 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 2), (4, 3), (4, 4)

7 36 17 12 13 n (0, 3), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1),

(3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)

7 36 18 12 13 n (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (3, 0),

(3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (4, 3)

7 36 19 12 11 y (0, 4), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (2, 5), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2)

7 36 20 10 11 n (0, 3), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4),

(3, 5), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2)

7 36 21 10 10 y (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),

(2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (4, 0), (4, 1), (4, 2), (5, 0)

7 36 22 9 10 n (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1),

(3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (5, 0), (5, 1), (5, 2)

7 36 23 8 9 n (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 1), (3, 2),

(3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 1), (5, 2), (5, 3),

(5, 4)

7 36 24 8 8 y (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (5, 0),

(5, 1), (5, 2)

7 36 25 6 7 n (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),

(4, 4), (4, 5), (5, 4)

7 36 26 6 7 n (0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2),

(2, 3), (2, 4), (2, 5), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2),

(4, 3), (4, 4), (4, 5), (5, 4)

7 36 27 6 6 y (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3), (2, 4),

(2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3),

(4, 4), (5, 0), (5, 1), (5, 2), (5, 3)

continued on next page
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q n k dt dg Best Example points

7 36 28 6 6 y (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2),

(4, 3), (4, 4), (5, 0), (5, 1), (5, 2), (5, 3)

7 36 29 5 6 n (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1), (2, 2), (2, 3),

(2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0), (4, 1), (4, 2),

(4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3)

7 36 30 4 5 n (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 0),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 2), (5, 3), (5, 4)

7 36 31 4 4 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 1),

(2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (4, 0),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3)

7 36 32 3 4 n (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 0),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4)

7 36 33 3 3 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 0),

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5),

(4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3), (5, 4)

7 36 34 2 2 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),

(3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 1), (5, 2), (5, 3), (5, 4),

(5, 5)

7 36 35 2 2 y (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),

(2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4),

(3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2), (5, 3),

(5, 4), (5, 5)

7 36 36 1 1 y (0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (1, 0), (1, 1), (1, 2), (1, 3), (1, 4),

(1, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 0), (3, 1), (3, 2), (3, 3),

(3, 4), (3, 5), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (5, 0), (5, 1), (5, 2),

(5, 3), (5, 4), (5, 5)
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