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Abstract. The Ehrhart quasi-polynomial of a rational polytope P is a fundamental invariant counting lattice
points in integer dilates of P. The quasi-period of this quasi-polynomial divides the denominator of P but
is not always equal to it: this is called quasi-period collapse. Polytopes experiencing quasi-period collapse
appear widely across algebra and geometry, and yet the phenomenon remains largely mysterious. By using
techniques from algebraic geometry – Q-Gorenstein deformations of orbifold del Pezzo surfaces – we explain
quasi-period collapse for rational polygons dual to Fano polygons and describe explicitly the discrepancy
between the quasi-period and the denominator.

1. Introduction

Let P ⊂ Zd ⊗Z Q be a convex lattice polytope of dimension d. Let LP(k) :�
��kP ∩ Zd

�� count the number
of lattice points in dilations kP of P, k ∈ Z≥0. Ehrhart [9] showed that LP can be written as a degree d
polynomial

LP(k) � cd kd
+ . . . + c1k + c0

which we call the Ehrhart polynomial of P. The leading coefficient cd is given by Vol(P)/d!, cd−1 is equal to
Vol(∂P)/2(d − 1)!, and c0 � 1. Here Vol( · ) denotes the normalised volume, and ∂P denotes the boundary
of P. For example, if P is two-dimensional (that is, P is a lattice polygon) we obtain

LP(k) �
Vol(P)

2
k2

+

��∂P ∩ Z2
��

2
k + 1.

Setting k � 1 in this expression recovers Pick’s Theorem [16]. The values of the Ehrhart polynomial of P
form a generating function EhrP(t) :�

∑
k≥0 LP(k)tk called the Ehrhart series of P.

When the vertices of P are rational points the situation is more interesting. Recall that a quasi-polynomial
with period s ∈ Z>0 is a function q : Z→ Q defined by polynomials q0 , q1 , . . . , qs−1 such that

q(k) � qi(k) when k ≡ i (mod s).

The degree of q is the largest degree of the qi . The minimum period of q is called the quasi-period, and
necessarily divides any other period s. Ehrhart showed that LP is given by a quasi-polynomial of degree d,
which we call the Ehrhart quasi-polynomial of P. Let πP denote the quasi-period of P. The smallest positive
integer rP ∈ Z>0 such that rPP is a lattice polytope is called the denominator of P. It is certainly the case
that LP is rP-periodic, however it is perhaps surprising that the quasi-period of LP does not always equal
rP ; this phenomenon is called quasi-period collapse.

Example 1.1 (Quasi-period collapse). Consider the triangle P :� conv{(5,−1), (−1,−1), (−1, 1/2)} with
denominator rP � 2. This has LP(k) � 9/2k2 + 9/2k + 1, hence πP � 1.

Quasi-period collapse is poorly understood, although it occurs in many contexts. For example,
de Loera–McAllister [7,8] consider polytopes arising naturally in the study of Lie algebras (the Gel’fand–
Tsetlin polytopes and the polytopes determined by the Clebsch–Gordan coefficients) that exhibit quasi-
period collapse. In dimension twoMcAllister–Woods [15] show that there exist rational polygons with rP

arbitrarily large but with πP � 1 (see also Example 3.8). Haase–McAllister [10] give a constructive view of
this phenomena in terms of GLd(Z)-scissor congruence; here a polytope is partitioned into pieces that are
individually modified via GLd(Z) transformation and lattice translation, then reassembled to give a new
polytope which (by construction) has equal Ehrhart quasi-polynomial but different rP .
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2 A.M.KASPRZYK AND B.WORMLEIGHTON

Example 1.2 (GL2(Z)-scissor congruence). The lattice triangle Q :� conv{(2,−1), (−1,−1), (−1, 2)} with
Ehrhart polynomial LQ(k) � 9/2k2+9/2k+1 canbepartitioned into two rational triangles as depicted on the
left below. Fix the bottom-most triangle, and transform the top-most triangle via the lattice automorphism
e1 7→ (3,−1), e2 7→ (4,−1). This gives the rational triangle P (depicted on the right) from Example 1.1.

7−→

We give an explanation for quasi-period collapse in two dimensions for a certain class of polygons
in terms of recent results in algebraic geometry arising from Mirror Symmetry. In §2 we explain how
mutation – a combinatorial operation arising from the theory of cluster algebras – gives an explanation of
this phenomenon, and explain how this is related to Q-Gorenstein (qG-) deformations of del Pezzo surfaces
as studied by Wahl [17], Kollár–Shepherd-Barron [14], Hacking–Prokhorov [11], and others. Finally, in
Corollary 3.6 we completely characterise the discrepancy between the denominator and the quasi-period
for this class of polygons.

2. Mutation

In [10] Haase–McAllister propose the open problem of finding a systematic and useful technique that
implements GLd(Z)-scissor congruence for rational polytopes. In the case when the dual polyhedron is a
lattice polytope it was observed in [2] that one such technique is given by mutation.

2.1. The combinatorics of mutation. Let N � Zd be a rank d lattice and set NQ :� N ⊗Z Q. Let P ⊂ NQ

be a lattice polytope. We require – and will assume from here onwards – that P satisfies the following two
conditions:

(a) P is of maximum dimension in N , dim(P) � d;
(b) the origin is contained in the strict interior of P, 0 ∈ P◦.

Condition (b) is not especially stringent, and can be satisfied by any polytope with P◦ ∩ N , � by lattice
translation. It is, however, an essential requirement in what follows.

Let M :� Hom(N,Z) � Zd denote the dual lattice. Given a polytope P ⊂ NQ, the dual polyhedron is
defined by

P∗ :� {u ∈ MQ | u(v) ≥ −1 for all v ∈ P} ⊂ MQ.

Condition (b) gives that P∗ is a (typically rational) polytope. It is on rational polytopes dual to lattice
polytopes that we focus. In this section we will explain howmutation corresponds to a piecewise-GLd(Z)
transformation of P∗, and hence is an instance of GLd(Z)-scissor congruence for P∗.

Following [2, §3], let w ∈ M be a primitive lattice vector. Then w : N → Z determines a height function
(or grading) which naturally extends to NQ → Q. We call w(v) the height of v ∈ NQ. We denote the set of
all points of height h by Hw ,h , and write

wh(P) :� conv
(
Hw ,h ∩ P ∩ N

)
⊂ NQ

for the (possibly empty) convex hull of lattice points in P at height h.

Definition 2.1. A factor of P ⊂ NQ with respect to w ∈ M is a lattice polytope F ⊂ w⊥ such that for every
negative integer h ∈ Z<0 there exists a (possibly empty) lattice polytope Rh ⊂ NQ such that

Hw ,h ∩ vert(P) ⊆ Rh + |h | F ⊆ wh(P).
Here ‘+’ denotes Minkowski sum, and we define � + Q � � for every lattice polytope Q.

Definition 2.2. Let P ⊂ NQ be a lattice polytope with w ∈ M and F ⊂ NQ as above. The mutation of P
with respect to the data (w , F) is the lattice polytope

µ(w ,F)(P) :� conv©­«
⋃

h∈Z<0

Rh ∪
⋃

h∈Z≥0

(wh(P) + hF)ª®¬ ⊂ NQ.
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It is shown in [2, Proposition 1] that, for fixed data (w , F), any choice of {Rh} satisfying Definition 2.1
gives GLd(Z)-equivalent mutations. Since we regard lattice polytopes as being defined only up to GLd(Z)-
equivalence, this means that mutation is well-defined. One can readily see that translating the factor
F by some lattice point v ∈ w⊥ ∩ N gives isomorphic mutations: µ(w ,F+v)(P) � µ(w ,F)(P). In particular
if dim(F) � 0 then µ(w ,F)(P) � P. Finally, we note that mutation is always invertible [2, Lemma 2]: if
Q :� µ(w ,F)(P) then P � µ(−w ,F)(Q).

Remark 2.3. Informally, mutation corresponds to the following operation on slices wh(P) of P: at height
h one Minkowski adds or “subtracts” |h | copies of F, depending on the sign of h. Definition 2.1 ensures
that the concept of Minkowski subtraction makes sense.

Mutation has a natural description in terms of the dual polytope P∗ [2, Proposition 4 and pg. 12].

Definition 2.4. The inner-normal fan in MQ of a polytope F ⊂ NQ is generated by the cones

σvF :� {u ∈ MQ | u(vF) � min{u(v) | v ∈ F}}, for each vF ∈ vert(F).

A mutation µ(w ,F) induces a piecewise-GLd(Z) transformation ϕ(w ,F) on MQ given by

ϕ(w ,F) : u 7→ u − uminw , where umin :� min{u(vF) | vF ∈ vert(F)}.
The inner-normal fan of F determines a chamber decomposition of MQ, and ϕ(w ,F) acts linearly within
each chamber. Let Q :� µ(w ,F)(P). Then ϕ(w ,F)(P∗) � Q∗. It is clear that the Ehrhart quasi-polynomials LP∗

and LQ∗ for the dual polytopes are equal, since the map ϕ(w ,F) is piecewise-linear. Hence mutation gives
a systematic way to produce examples of GLd(Z)-scissor congruence.

Example 2.5 (Mutation). Let P � conv{(1, 0), (0, 1), (−1,−1)} ⊂ NQ and w � (2,−1) ∈ M. Then F �

conv{(0, 0), (−1,−2)} ⊂ w⊥ is a factor. We see that Q :� µ(w ,F)(P) � conv{(1, 0), (0, 1), (−1,−4)}.

NQ :

-1 0 1

2

7−→

-1 0 1

2

On the dual side we have that MQ is divided into two chambers whose boundary is given by Q · w, and

ϕ(w ,F) : (u1 , u2) 7→
{
(u1 , u2), if u1 + 2u2 ≤ 0;
(3u1 + 4u2 ,−u1 − u2), otherwise.

MQ : 7−→

Thus we recover Example 1.2 from the view-point of mutation.

From here onwards we assume that P ⊂ NQ is Fano. That is, in addition to conditions (a) and (b) above,
P satisfies:

(c) the vertices vert(P) of P are primitive lattice points.
The property of being Fano is preservedundermutation [2, Proposition 2]. A FanopolytopeP corresponds
to a toric Fano variety XP via the spanning fan (that is, the fan whose cones are spanned by the faces of P).
See [6] for the theory of toric varieties and [13] for a survey of Fano polytopes. When P is a Fano polygon,
XP corresponds to a toric del Pezzo surface with at worst log terminal singularities. The singularity content



4 A.M.KASPRZYK AND B.WORMLEIGHTON

of P, which we recall in Definition 2.10 below, is a mutation-invariant of P introduced in [3]. In §2.4 we
remark briefly on the connection between singularity content and the qG-deformation theory of XP , and
how this gives a geometric explanation for the quasi-period collapse of P∗.

2.2. Quotient singularities. In order to state the definition of singularity content we first recall some of
the theory of quotient or orbifold surface singularities. A cyclic quotient singularity is a surface singularity
isomorphic to a quotient A2/G, where G is a finite cyclic group acting diagonally on A2. Assuming that
G acts faithfully means that it can be expressed as a subgroup of GL2(C) generated by(

ε
εa

)
where ε is a root of unity and a ∈ Z. Suppose that G has order r; all possible representations are obtained
(non-uniquely) by letting a range over 0, . . . , r − 1. If G is generated by the matrix above for ε a primitive
r-th root of unity, then denote by 1

r (1, a) the singularity A2/G. As a quotient of affine space by an abelian
group, 1

r (1, a) is an affine toric variety whose fan we now describe.
Let N � Z2 and M � HomZ(N,Z) be the cocharacter and character lattices respectively of an algebraic

two-torus (C×)2. A cone σ ⊂ NQ whose rays are generated by lattice points in N describes an affine toric
variety Xσ. More generally, a collection of cones given by a fan Σ describes a non-affine toric variety XΣ.
The singularity 1

r (1, a) is the affine toric variety associated to the cone

σ � cone{e2 , re1 − ae2} ⊂ NQ.

The lattice height of such a cone – that is, the lattice distance between the origin and the line segment
joining the two primitive ray generators of the cone (the edge of the cone) – is called the local index, and
can be calculated to be

`σ �
r

gcd{r, a + 1} .

The width of the cone is the number of unit-length lattice line segments along the edge of the cone or,
equivalently, one less than the number of lattice points along the edge. The width is equal to gcd{r, a + 1}.
We will often conflate a singularity and its corresponding cone in NQ. An isolated cyclic quotient
singularity is a T-singularity if it is smoothable by a qG-deformation.

Lemma 2.6 ( [14, Proposition 3.11]). An isolated cyclic quotient singularity is a T-singularity if and only if it
takes the form

1
dn2 (1, dnc − 1)

for some c with gcd{n , c} � 1.

The cone σ ⊂ NQ associated to a T-singularity 1
dn2 (1, dnc − 1) has local index ` � n and width dn; it is

easily seen that T-singularities are characterised by having the width divisible by the local index. Suppose
that P ⊂ NQ is a Fano polygon with edge E spanning σ. Let w ∈ M be the primitive inner-normal such
that w(E) � −`, and choose F ⊂ w⊥ of lattice length d. The mutation µ(w ,F)(P) collapses the edge E to a
vertex, removing the cone σ. This is equivalent to a local qG-smoothing of the T-singularity.

Example 2.7. Consider the polytope Q :� conv{(1, 0), (0, 1), (−1,−4)} appearing in Example 2.5. The
corresponding spanning fan has three two-dimensional cones, two of which are smooth and one of which,
cone{(1, 0), (−1,−4)}, corresponds to a 1

4 (1, 1) T-singularity.

The other relevant class of quotient singularities are the R-singularities introduced in [3].

Definition 2.8. A cyclic quotient singularity of local index ` and width k is an R-singularity if k < `.

Let σ ⊂ NQ be a cone of local index ` andwidth k. Write k � d`+ r, where d , r ∈ Z≥0, 0 ≤ r < `. If r � 0
then σ is a T-singularity. Assume that r , 0 and, as before, suppose that P ⊂ NQ is a Fano polygon with
edge E spanning σ. Let w ∈ M be the corresponding inner-normal, and pick F ⊂ w⊥ of lattice length d.
The mutation µ(w ,F)(P) transforms σ to a cone τ of width r corresponding to a 1

r` (1, rc/k − 1) singularity.
Crucially, τ has width strictly less than the local index, and so cannot be simplified via further mutation.
This is equivalent to a partial qG-smoothing of the original singularity σ, resulting in a singularity τ that is
rigid under qG-deformation. The R-singularity τ is independent of the choices made [3, Proposition 2.4].
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Definition 2.9. Let σ ⊂ NQ be a cone corresponding to a 1
r (1, c − 1) singularity. Let ` be the local index

and let k be the width of the cone. Write k � d` + r, where d , r ∈ Z≥0, 0 ≤ r < `. The residue of σ is

res(σ) �
{

1
r` (1, rc/k − 1), if r , 0;
�, otherwise.

The singularity content of σ is the pair (d , res(σ)). The singularity content is local qG-deformation-theoretic
data about σ.

Definition 2.10. Let P ⊂ NQ be a Fano polygon with cones σ1 , . . . , σn . The basket of P is the multiset

B :� {res(σi) | 1 ≤ i ≤ n},
where the empty residues are omitted1. The singularity content of P is the pair

(d1 + · · · + dn ,B),
where the di are the integers appearing in the singularity content of the σi . Singularity content is a
qG-deformation-invariant of XP .

2.3. Hilbert series. Any projective toric variety XP arising from a polytope P comes with a natural ample
divisor D given by its toric boundary D � XP \ T, where T is the big torus inside XP . When P is Fano,
D � −K, the anti-canonical divisor on XP . In this case, due to the standard toric dictionary allowing one
to move between lattice points in M and sections of line bundles on XP , one has that the Hilbert function
of (XP ,−K) equals the Ehrhart quasi-polynomial LP∗(k) of the rational polytope P∗. Hence the generating
function Hilb(XP ,−K)(t) for the Hilbert function of (XP ,−K) – the Hilbert series of (XP ,−K) – is equal to the
Ehrhart series of P∗. From here onwards we supress −K from the notation.

The Hilbert series of an orbifold del Pezzo surface X with basket B can be written in the form [3,
Corollary 3.5]:

HilbX(t) �
1 + (K2 − 2)t + t2

(1 − t)3 +

∑
σ∈B

Qσ ,

where Qσ are orbifold correction terms given by certain rational functions with denominators 1 − t`σ . For
example, the orbifold correction term for the R-singularity 1

3 (1, 1) is

Q 1
3 (1,1)

�
−t

3(1 − t3) � −
1
3
(t + t4

+ t7
+ . . . )

which contributes −1/3 to the coefficient of td when d ≡ 1 (mod 3) .
The Hilbert function is a quasi-polynomial when X is an orbifold (because the anti-canonical divisor is

Q-Cartier rather than Cartier). The anti-canonical divisor does not correspond to a line bundle, but some
integer multiple of it does. The smallest integer d such that −dK is Cartier is called the Gorenstein index of
X and denoted by `X . In the toric setting, −dK is Cartier if and only if dP∗ is a lattice polytope. Hence the
Gorenstein index `XP of XP equals the denominator rP∗ of P∗.

2.4. Algebraic geometry and the quasi-period. Mutations were introduced in [2] as part of an ongoing
program investigating Mirror Symmetry for Fano manifolds [5]. In two dimensions the picture is very
well understood: see [1] for the details. In summary, if two Fano polygons P and Q ⊂ NQ are related by
a sequence of mutations then there exists a qG-deformation between the corresponding toric del Pezzo
surfaces XP and XQ . Such a qG-deformation preserves the anti-canonical Hilbert series, hence LP∗ � LQ∗

and so the quasi-periods of P∗ and Q∗ agree. However it does not in general preserve theGorenstein index,
and hence the denominators rP∗ and rQ∗ need not be equal. The cones over the edges of P correspond to
the singularities of XP , and these admit partial qG-smoothings to the qG-rigid singularities given by the
basket B of residues.

Suppose that the singularity content of P is (d ,B). Then, by the absence of global obstructions to
qG-deformations on Fano varieties, XP is qG-deformation-equivalent to a (not necessarily toric) del Pezzo
surface X with singularities B and whose non-singular locus has topological Euler number d. Since
HilbXP (t) � HilbX(t), we have an explanation for quasi-period collapse of the dual polytope P∗. Specifi-
cally, the Gorenstein index of X is equal to the quasi-period of P∗.

1In [3] the basket is cyclically ordered. Although important from the viewpoint of classification, it is not required here.
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3. Studying quasi-period collapse

The Hilbert series of orbifold del Pezzo surfaces were studied in [18] with the aim of describing the
structure of the set of possible baskets B of R-singularities on orbifold del Pezzo surfaces with a fixed
Hilbert series. This is achieved by partitioning B into two pieces: a reduced basket and an invisible basket.
The latter, along with the T-singularities, is not detectable by the Hilbert series, and from our viewpoint
it is this invisibility that causes quasi-period collapse.

Definition 3.1. A collection σ1 , . . . , σn of R-singularities is a cancelling tuple if

Qσ1 + · · · + Qσn � 0.

A collection of R-singularities is called invisible if it is a union of cancelling tuples.

Example 3.2. Let σ be an R-singularity of local index ` and width k. Then there exists an R-singularity
σ′ of local index ` and width ` − k such that Qσ + Qσ′ � 0. Combinatorially, this is understood by the
observation that the union of the two cones gives a T-singularity.

Definition 3.3. Let X be an orbifold del Pezzo surface. A maximal invisible subcollection of the basket
B of X is called an invisible basket for X. Notice that such a maximal subcollection is not unique, since
singularities can appear in many different cancelling tuples. Given a choice of invisible basket IB ⊂ B,
the complement RB � B \ IB is called the reduced basket for X corresponding to the choice of IB.

Let P ⊂ NQ be a Fano polygon with singularity content (d ,B). Let IB be an invisible basket of B with
corresponding reduced basket RB. Hence B � RB q IB. Denote the collection of T-singularities on XP

by T (so |T | � d).

Theorem 3.4. Let P ⊂ NQ be a Fano polygon. The quasi-period of P∗ is given by2

πP∗ � lcm{`σ | σ ∈ RB}.
Furthermore, P∗ exhibits quasi-period collapse if and only if there exists some τ ∈ IB∪T of local index not dividing
lcm{`σ | σ ∈ RB}. Moreover, the quasi-period collapse is measured by IB:

rP∗ � lcm({πP∗} ∪ {`σ | σ ∈ IB ∪ T }).

Proof. We have

EhrP∗(t) � HilbXP (t) � initial term +

∑
σ∈B

Qσ � initial term +

∑
σ∈RB

Qσ .

As discussed, each orbifold correction term Qσ contributes to the coefficients of this series as a quasi-
polynomial with quasi-period `σ. When σ ∈ RB these terms are not cancelled and so make non-zero
contributions to the coefficients of the Ehrhart series, hence its quasi-period is given by:

πP∗ � lcm{`σ | σ ∈ RB}.
The Gorenstein index of P is equal to `XP � lcm{`σ | σ ∈ B ∪ T }. Hence

rP∗ � `XP � lcm{`σ | σ ∈ RB ∪ IB ∪ T } � lcm({πP∗} ∪ {`σ | σ ∈ IB ∪ T }).
This is distinct from πP∗ if and only if lcm{`σ | σ ∈ IB ∪ T } does not divide πP∗ . �

Remark 3.5. It follows from [18, §4] that the choice of IB is irrelevant in the statement of Theorem 3.4.

As a corollary to Theorem 3.4 we immediately obtain:

2We adopt the convention that lcm{�} � 1.
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Corollary 3.6. Let P ⊂ NQ be a Fano polygon. The discrepancy between the quasi-period and denominator of P∗ is
rP∗

πP∗
�

lcm{`σ | σ ∈ IB ∪ T }
gcd{lcm{`σ | σ ∈ RB}, lcm{`σ | σ ∈ IB ∪ T }} .

Example 3.7 (Detecting quasi-period collapse). Consider the polytope Q :� conv{(1, 0), (0, 1), (−1,−4)}
appearing in Example 2.5. This has singularity content (3,�), and T � {2 × smooth, 1

4 (1, 1)}. Applying
Corollary 3.6 we have that rQ∗ � 2πQ∗ .

We now give an example of an infinite family of Fano triangles, obtained via mutation, where the
denominator rP∗ can become arbitrarily large but where πP∗ � 1. Let P ⊂ NQ be a Fano triangle. Recall
that the corresponding toric variety XP is a fake weighted projective plane [12]: a quotient of a weighted
projective plane by afinite group N/N′ acting free in codimension one,where N′ is the sublattice generated
by the vertices of P.

Example 3.8 (Mutations of P2). In [4, 11] the graph of mutations of P2 is constructed. The vertices of this
graph are given by P(a2 , b2 , c2), where (a , b , c) ∈ Z3

>0 is a Markov triple satisfying

(3.1) a2
+ b2

+ c2
� 3abc.

Let XP � P(a2 , b2 , c2) be such a weighted projective plane, with P ⊂ NQ the corresponding Fano triangle.
Since XP is qG-deformation-equivalent to P2, so XP is smoothable and its anti-canonical Hilbert function
has quasi-period one. Hence πP∗ � 1. However, the denominator rP∗ of P∗ can be arbitrarily large. To see
this, note first that a , b , c must be pairwise coprime: if p | a and p | b then p2 | 3abc � a2 + b2 + c2, and
hence p | c; but then p appears as a square on the left-hand side and as a cube on the right-hand side
of (3.1). Let b be an inverse of b

(
mod a2) . Note that c2b

2
+ 1 ≡ (3abc − b2)b

2
+ 1 ≡ 3abc

(
mod a2) , and

so the singularity 1
a2 (b2 , c2) on XP has local index

a2

gcd
{
a2 , c2b

2
+ 1

} �

{
a , if a . 0 (mod 3);
a/3, if a ≡ 0 (mod 3).

Considering equation (3.1) (mod 3) shows that no Markov numbers are divisible by three. Hence the
three local indices on XP are a, b, and c, and so rP∗ � abc. The two triangles P and Q in Example 2.5 are the
simplest examples, arising from the Markov triples (1, 1, 1) and (1, 1, 2) respectively, and corresponding
to P2 and P(1, 1, 4).

Remark 3.9. There exist Fano triangles of quasi-period one not arising from the construction in Exam-
ple 3.8. For example, consider

P � conv{(3, 2), (−1, 2), (−1,−2)} ⊂ NQ.

The corresponding fake weighted projective plane XP � P(1, 1, 2)/(Z/4) has 2 × 1
4 (1, 3) and 1

8 (1, 3) T-
singularities. We see that P∗ has rP∗ � 2 and πP∗ � 1. In fact XP is qG-smoothable to the nonsingular
del Pezzo surface of degree two, and hence LP∗(k) � k2 + k + 1.
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