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Abstract

We study Q-factorial terminal Fano 3-folds whose equations are modelled on those of

the Segre embedding of P2 × P2. These lie in codimension 4 in their total anticanonical

embedding and have Picard rank 2. They fit into the current state of classification in

three different ways. Some families arise as unprojections of degenerations of complete

intersections, where the generic unprojection is a known prime Fano 3-fold in codimen-

sion 3; these are new, and an analysis of their Gorenstein projections reveals yet other

new families. Others represent the “second Tom” unprojection families already known

in codimension 4, and we show that every such family contains one of our models. Yet

others have no easy Gorenstein projection analysis at all, so prove the existence of Fano

components on their Hilbert scheme.
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1 Introduction

1.1 Fano 3-folds, Gorenstein rings and P2 × P2

A Fano 3-fold is a complex projective variety X of dimension 3 with Q-factorial terminal

singularities and −KX ample. We construct several new Fano 3-folds, and others which

explain known phenomena. The anticanonical ring R(X) = ⊕m∈NH
0(X,−mKX) of a Fano

3-fold X is Gorenstein, and provides an embedding X ⊂ wP in weighted projective space

(wps) that we exploit here, focusing on the case X ⊂ wP7 of codimension 4.

According to folklore, when seeking Gorenstein rings in codimension 4 one should look to

P2×P2 and P1×P1×P1. Each embeds by the Segre embedding as a projectively normal variety

in codimension 4 with Gorenstein coordinate ring (by [GW78, §5] since their hyperplane

sections are subcanonical). We consider W = P2 × P2, expressed as

(1.1) W
∼=−→ V :

 2∧x1 x2 x3
x4 x5 x6
x7 x8 x9

 = 0

 ⊂ P8,

or, in words, as the locus where a generic 3 × 3 matrix of forms drops rank. As part of a

more general theory of weighted homogeneous varieties, the case of P2 × P2 was worked out

by Szendrői [Sze05], which was the inspiration for our study here.

The number of deformation families of Fano 3-folds is finite [Kaw92, KMMT00], and

the Graded Ring Database (Grdb) [BK, Bro07] has a list of rational functions P (t) that
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includes all Hilbert series PX(t) =
∑

m∈N h
0(−mKX)tm of Fano 3-folds with Pic(X) = Z ·

(−KX). (In fact, we do not know of any Fano 3-fold whose Hilbert series is not on that list,

even without this additional condition.) An attempt at an explicit classification, outlined

in [ABR02], aims to describe all deformation families of Fano 3-folds for each such Hilbert

series. All families whose general member lies in codimension ≤ 2 are known [CCC11], and

almost certainly those in codimension 3 are too [ABR02, BK]. An analysis of (Gorenstein)

projections [BKR12a, Pap08, Tay] provides much of the classification in codimension 4, but

it is not complete, and codimension 4 remains at the cutting edge.

We use the methods of [BKR12a] freely, although we work through an example in detail

in §3 and explain any novelties as they arise.

1.2 The aims of this paper

We describe families of Fano 3-folds X ⊂ wP7 whose equations are a specialisation of the

format (1.1); that is, they are regular pullbacks, as in §2. It is usually hard to describe

the equations of varieties in codimension 4—see papers from Kustin and Miller [KM83] to

Reid [Rei15]—but if we decree the format in advance, then the equations come almost for

free, and the question becomes how to put a grading on them to give Fano 3-folds. Our

results come in three broad flavours, which we explain in §§4–6 and summarise here.

§4 Unprojecting Pfaffian degenerations: We find new varieties in P2 × P2 format that

have the same Hilbert series as known Fano 3-folds but lie in different deformation families.

From another point of view, we understand this as the unprojection analysis of degenera-

tions of complete intersections, and this treatment provides yet more families not exhibited

by [BKR12a]. (The key point is that the unprojection divisor D ⊂ Y does not persist through-

out the degeneration Y  Y0, and so the resulting unprojection is not a degeneration in a

known family.)

For example, No. 1.4 in Takagi’s analysis [Tak02] exhibits a single family of Fano 3-folds

with Hilbert series

P26989(t) =
1− 3t2 − 4t3 + 12t4 − 4t5 − 3t6 + t8

(1− t)7(1− t2)
= 1 + 7t+ 26t2 + 66t3 + · · · ;

this is number 26989 in the Grdb. Our P2 × P2 analysis finds another family with ρX = 2,

and a subsequent degeneration–unprojection analysis of the situation finds a third family.

Theorem 1.1. There are three deformation families of Fano 3-folds X with Hilbert series

PX = P26989. Their respective general members X ⊂ P(17, 2) all lie in codimension 4 with

degree −K3
X = 17/2 and a single orbifold singularity 1

2(1, 1, 1), and with invariants:

ρX e(X) h2,1(X) Construction N

Family 1 ([Tak02, 1.4]) 1 −14 9 §3.1 : c.i. unprojection 6

Family 2 2 −16 11 §3.2 : Tom3 5

Family 3 2∗ −12 9∗ §3.3 : Jer1,3 7

(The superscript ∗ in Family 3 indicates a computer algebra calculation.)

We prove this particular result in §3; the last two columns of the table refer to the un-

projection calculation (N is the number of nodes, as described in §3), which is explained in
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the indicated sections. The Euler characteristic e(X) is calculated during the unprojection

following [BKR12a, §7] and the other invariants follow. We do not know whether there are

any other deformation families realising the same Hilbert series PX = P26989(t).

We calculate the Hodge number h2,1(X) in Family 3 using Ilten’s computer package [Ilt12]

for the computer algebra system Macaulay2 [GS] following [DNFF17]: denoting the affine cone

over X by AX , Theorem 2.5 of [DNFF17] gives

H2,1(X) ∼=
(
T 1
AX

)
−1 ,

and this is exactly what [Ilt12] calculates (compare [BF17, §4.1.3]).

In this case, all three families lie in codimension 4. It is more common that the known

family lies in codimension 3 and we find new families in codimension 4. Thus the corresponding

Hilbert scheme contains different components whose general members are Fano 3-folds in

different codimensions, a phenomenon we had not seen before.

Further analysis of degenerations finds yet more new Fano 3-folds even where there is no

P2 × P2 model; the following result is proved in §4.2.

Theorem 1.2. There are two deformation families of Fano 3-folds X with Hilbert series PX =

P548. Their respective general members X have degree −K3
X = 1/15, and are distinguished by

their embedding in wps and Euler characteristics as follows:

X ⊂ wP e(X) #nodes

Family 1 X ⊂ P(1, 3, 4, 5, 6, 7, 10) −42 8

Family 2 X ⊂ P(1, 3, 4, 5, 6, 7, 9, 10) −40 9

In this case there is no P2 × P2 model: such a model would come from a specialised Tom

unprojection, but the Tom and Jerry analysis outlined in §4.2 rules this out.

§5 Second Tom: The Big Table [BKR12b] lists all (general) Fano 3-folds in codimen-

sion 4 that have a Type I projection. Such projections can be of Tom type or Jerry type

(see [BKR12a, 2.3]). The result of that paper is that every Fano 3-fold admitting a Type I

projection has at least one Tom family and one Jerry family. However in some cases there

is a second Tom or second Jerry (or both). Two of these cases were already known to

Szendrői [Sze05], even before the Tom and Jerry analysis was developed.

Euler characteristic is of course constant in families, but whenever there is a second Tom,

the Euler characteristics of members of the two Tom families differ by 2. Theorem 5.1 below

says that in this case the Tom family with smaller Euler characteristic always contains special

members in P2 × P2 format.

§6 No Type I projection: Finally, we find some Fano 3-folds that are harder to describe,

including some that currently have no construction by Gorenstein unprojection. Such Fano

3-folds were expected to exist, but this is the first construction of them in the literature we

are aware of. It may be the case that there are other families of such Fano 3-folds having

Picard rank 1, but our methods here cannot answer that question.

1.3 Summary of results

Our approach starts with a systematic enumeration of all possible P2×P2 formats that could

realise the Hilbert series of a Fano 3-fold after appropriate specialisation. In §7, follow-

ing [BKZ14, Qur17], we find 53 varieties in P2 × P2 format that have the Hilbert series of a
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Fano 3-fold. We summarise the fate of each of these 53 cases in Table 1; the final column sum-

marises our results, as we describe below, and the rest of the paper explains the calculations

that provide the proof.

Table 1: 53 Fano 3-fold Hilbert series in P2 × P2 format.

(Number of nodes is given as a superscript to Tom/Jer.)

k a b Grdb c T/J wP in Grdb codim 4 models in this paper

4 000 112 26989 4 P(17, 2) Tom5, Jer7 in P(17, 2)

5 000 122 20652 4 TTJ P(15, 23) second Tom

5 001 112 20543 3 n/a P(15, 22) Tom7, Jer9 in P(15, 23)

5 001 112 24078 4 TTJ P(16, 2, 3) second Tom

6 000 222 12960 4 TJ P(13, 25) subfamily of Tom

6 001 122 16339 4 TTJJ P(14, 23, 3) second Tom

7 001 123 11436 3 n/a P(13, 23, 3) Tom13 in P(13, 23, 32)

7 001 123 16228 4 TTJJ P(14, 22, 3, 4) second Tom

7 011 122 11455 4 TTJJ P(13, 23, 32) second Tom

8 001 223 11157 5 n/a P(13, 22, 32, 42) bad 1/4 point

8 001 223 6878 4 TTJJ P(12, 23, 33) second Tom

8 011 123 11125 4 TTJJ P(13, 22, 32, 4) second Tom

9 001 233 5970 4 TTJJ P(12, 22, 33, 4) second Tom

9 012 123 11106 4 TTJJ P(13, 22, 3, 4, 5) second Tom

9 012 123 11021 4 TTJJ P(13, 2, 32, 42) second Tom

9 012 123 5962 3 n/a P(12, 22, 33) Tom11, Jer13 in P(12, 22, 33, 4)

9 012 123 6860 4 TTJ P(12, 23, 32, 5) second Tom

10 001 234 5870 4 TTJJ P(12, 22, 32, 4, 5) second Tom

10 011 233 5530 4 TTJJ P(12, 2, 33, 42) second Tom

10 012 124 10984 3 n/a P(13, 2, 3, 4, 5) bad 1/4 point

10 012 124 5858 3 n/a P(12, 22, 32, 5) Tom13, Jer14 in P(12, 22, 32, 4, 5)

11 011 234 5306 4 TTJJ P(12, 2, 32, 42, 5) second Tom

11 012 134 5302 3 n/a P(12, 2, 32, 42) Tom16 in P(12, 2, 32, 42, 5)

11 012 134 5844 3 n/a P(12, 22, 3, 4, 5) bad 1/6 point and no 1/5

11 012 134 10985 4 TTJJ P(13, 2, 3, 4, 5, 6) second Tom

12 012 234 1766 4 no I P(1, 2, 33, 42, 5) quasismooth P2 × P2 model

12 012 234 5215 4 TTJJ P(12, 2, 3, 42, 52) second Tom

12 012 234 2427 4 TTJJ P(1, 22, 32, 4, 52) second Tom

12 012 234 5268 4 TTJJ P(12, 2, 32, 4, 5, 6) second Tom

13 001 345 1413 4 TTJJ P(1, 2, 32, 42, 52) second Tom

13 012 235 5177 4 TJ P(12, 2, 3, 4, 52, 6) bad 1/5 point

13 012 235 2422 4 TTJJ P(1, 22, 32, 4, 5, 7) second Tom

14 011 345 5002 4 TTJJ P(12, 3, 42, 52, 6) second Tom

14 012 245 5163 4 TTJJ P(12, 2, 3, 4, 5, 6, 7) second Tom

14 012 245 1410 4 TJJ P(1, 2, 32, 42, 5, 7) bad 1/4 point

14 013 235 4999 3 n/a P(12, 3, 42, 52, 6) bad 1/4 point

14 013 235 1396 3 n/a P(1, 2, 32, 4, 52) Tom9, Jer11 in P(1, 2, 32, 4, 52, 6)

Continued on next page
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Table 1 continued from previous page

15 012 345 878 4 no I P(1, 32, 42, 52, 6) quasismooth P2 × P2 model

15 012 345 4949 4 TTJJ P(12, 3, 4, 52, 62) second Tom

15 012 345 1253 4 TTJ P(1, 2, 3, 42, 52, 7) second Tom

15 012 345 1218 4 TTJJ P(1, 2, 3, 4, 53, 6) second Tom

15 012 345 4989 4 TTJJ P(12, 3, 42, 5, 6, 7) second Tom

16 012 346 1186 4 TJJ P(1, 2, 3, 4, 52, 6, 7) bad 1/5 point

17 012 356 648 4 no I P(1, 3, 42, 52, 6, 7) bad 1/5 point

17 012 356 4915 4 TTJJ P(12, 3, 4, 5, 6, 7, 8) second Tom

18 012 456 577 4 no I P(1, 3, 4, 52, 62, 7) quasismooth but not terminal

18 012 456 645 4 TJ P(1, 3, 42, 5, 6, 72) bad 1/4 point

18 012 456 4860 4 TTJJ P(12, 4, 5, 62, 72) second Tom

19 012 457 570 4 TJJ P(1, 3, 4, 52, 6, 7, 8) bad 1/5 point

20 012 467 4839 4 TTJJ P(12, 4, 5, 6, 7, 8, 9) second Tom

22 012 568 1091 4 TJJ P(1, 2, 5, 6, 72, 8, 9) bad 1/7 point

22 012 568 393 4 TJ P(1, 4, 52, 6, 7, 8, 9) bad 1/4, 1/5 points

23 012 578 360 4 no I P(1, 4, 5, 6, 72, 8, 9) bad 1/7 point

The columns of Table 1 are as follows. Column k is an adjunction index, described in §7.1,

and columns a and b refer to the vectors in §2 that determine the weights on the weighted

P2 × P2. Column Grdb lists the number of the Hilbert series in [BK], column c indicates

the codimension of the usual model suggested there, and wP its ambient space. Column

T/J shows the number of distinct Tom and Jerry components according to [BKR12a]. For

example, TTJ indicates there are 2 Tom unprojections and 1 Jerry unprojection in the Big

Table [BKR12b]. We write ‘no I’ when the Hilbert series does not admit a numerical Type I

projection, and so the Tom and Jerry analysis does not apply, and ‘n/a’ if the usual model is

in codimension 3 rather than 4.

The final column describes the results of this paper; it is an abbreviation of more detailed

results. For example, Theorem 1.1 expands out the first line of the table, k = 4, and other

lines of the table that are not indicated as failing have analogous theorems that the final

column summarises. If the P2 × P2 model fails to realise a Fano 3-fold at all, it is usually

because the general member does not have terminal singularities; we say, for example, ‘bad

1/4 point’ if the format forces a non-quasismooth, non-terminal index 4 point onto the variety.

When the Grdb model is in codimension 3, we list which Tom and Jerry unprojections

of a degeneration work to give alternative varieties in codimension 4, indicating the number

of nodes as a superscript and the codimension 4 ambient space. (We don’t say which Tom or

Jerry since that depends on a choice of rows and columns.) In each case the Tom unprojection

gives the P2 × P2 model determined by the parameters a and b. The usual codimension 3

model arises by Type I unprojection with number of nodes being one more that that of the

P2 × P2 Tom model.

When the Grdb model is in codimension 4 with 2 Tom unprojections, the P2×P2 always

works to give the second of the Tom families. The further Tom and Jerry analysis of the

unprojection is carried out in [BKR12a] and we do not repeat the result here. When the

Grdb model is in codimension 4 with only a single Tom unprojection, the model usually

fails. The exception is family 12960, which does work as a P2 × P2 model. There is also a

case of a Hilbert series, number 11157, where the Grdb offers a prediction of a variety in
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codimension 5, but this fails as a P2 × P2 model.

In §7.1, we outline a computer search that provides the a, b parameters of Table 1 which

are the starting point of the analysis here. In §7.2, we summarise the results of [Sze05] that

provide the most general form of the Hilbert series of a variety in P2 × P2 format; that paper

also discovered cases 11106 and 11021 of Table 1 that inspired our approach here. First we

introduce the key varieties of the P2 × P2 format in §2.

2 The key varieties and weighted P2 × P2 formats

The affine cone C(P2 × P2) on P2 × P2 is defined by the equations (1.1) on C9. It admits a

6-dimensional family of C∗ actions, or equivalently 6 degrees of freedom in assigning positive

integer gradings to its (affine) coordinate ring. We express this as follows.

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors of integers that satisfy a1 ≤ a2 ≤ a3,
and similarly for the bi, and that a1 + b1 ≥ 1. We define a weighted P2 × P2 as

(2.1) V = V (a, b) =

 2∧x0 x1 x2
x3 x4 x5
x6 x7 x8

 = 0

 ⊂ P8(a1 + b1, . . . , a3 + b3),

where the variables have weights

(2.2) wt

x0 x1 x2
x3 x4 x5
x6 x7 x8

 =

a1 + b1 a1 + b2 a1 + b3
a2 + b1 a2 + b2 a2 + b3
a3 + b1 a3 + b2 a3 + b3

 =: aT + b.

Thus V (a, b) = C(P2 × P2)//C∗, where the C∗ action is determined by the grading. We treat

V (a, b) as a key variety for each different pair a, b. (Note that the entries of a and b may also

all lie in 1
2 + Z, without any change to our treatment here.)

Proposition 2.1. V (a, b) is a 4-dimensional, Q-factorial projective toric variety of Picard

rank ρV = 2.

Proof First we describe a toric variety W (a, b) by its Cox ring. The input data is the

weight matrix (2.2), which is weakly increasing along rows and down columns. The key is

to understand the freedom one has to choose alternative vectors a(i), b(i), for i = 1, 2, to

give the same matrix. For example, if we choose a
(1)
1 = 0, then b(1) is determined by the

top row, and then a
(1)
2 and a

(1)
3 are determined by the first column. Alternatively, choosing

b
(2)
1 = 0 determines different vectors a(2) and b(2). Concatenating the a and b vectors to give

v(i) = (a
(i)
1 , . . . , b

(i)
3 ) ∈ Q6 determines a 2-dimensional Q-subspace U = Ua,b ⊂ Q6 together

with a chosen integral basis
〈
v(1), v(2)

〉
.

We define W (a, b) as a quotient of C6 by C∗×C∗ as follows. In terms of Cox coordinates,

it is determined by the polynomial ring R in variables u1, u2, u3, v1, v2, v3, bi-graded by the

columns of the matrix (giving the two C∗ actions)

(2.3)

(
a
(1)
1 a

(1)
2 a

(1)
3 b

(1)
1 b

(1)
2 b

(1)
3

a
(2)
1 a

(2)
2 a

(2)
3 b

(2)
1 b

(2)
2 b

(2)
3

)
.

The irrelevant ideal is B(a, b) = 〈u1, u2.u3〉 ∩ 〈v1, v2.v3〉, and

W (a, b) =
(
C6 \ V (B(a, b))

)
/ C∗ × C∗.
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If W (a, b) is well formed, then it is a toric variety determined by a fan (the image of all

non-irrelevant cones of the fan of C6 under projection to a complement of U). The bilinear

map

Φa,b : W (a, b) −→ P(a1 + b1, a1 + b2, . . . , a3 + b3)

(u1, . . . , v3) 7→ (u1v1, u1v2, . . . , u3v3)
(2.4)

is an isomorphism onto its image V (a, b), and the conclusions of the proposition all follow at

once. (Q-factoriality holds since the Cox coordinates correspond to the 1-skeleton of the fan,

and so any maximal cone with at least 5 rays must contain all ui or all vj , contradicting the

choice of irrelevant ideal.)

If W (a, b) is not well formed, then, just as for wps, there is a different weight matrix

that is well formed and determines a toric variety W ′ isomorphic to W (a, b). (See Iano-

Fletcher [IF00, 6.9–20] for wps and Ahmadinezhad [Ahm17, 2.3] for the general case.) The

proposition follows using W ′. QED

The well forming process used in the proof is easy to use. For example, if an integer n > 1

divides every entry of some row of the weight matrix (2.3), then we may divide that row

through by n; the subspace U ⊂ Q6 is unchanged by this. Or if an integer n > 1 divides

all columns except one, then the corresponding Cox coordinate u appears only as un in the

coordinate rings of standard affine patches and we may truncate R by replacing the generator

u by un; this does not change the coordinate rings of the affine patches, and so the scheme it

defines is isomorphic to the original (c.f. [Ahm17, Lemma 2.9] for the more general statement).

This multiplies the u column of (2.3) by n, changing the subspace U ⊂ Q6, and then we may

divide the whole matrix by n as before. See [Ahm17, 2.3] for the complete process.

Having said that, in practice we will work with non-well-formed quotients if they arise,

since they still admit regular pullbacks that are well formed, and the grading on the target

wps is something we fix in advance. More importantly for us here is that well forming step

u un destroys the P2 × P2 structure, so we avoid it.

Example 2.2. Consider V (a, b) ⊂ P(26, 33) for a = (1, 1, 1), b = (1, 1, 2). Selecting a(i) and b(i)

as above gives bi-grading matrix (
0 0 0 2 2 3

2 2 2 0 0 1

)
on variables u1, u2, u3, v1, v2, v3. (We use the vertical line in the bi-grading matrix to indicate

the irrelevant ideal B(a, b).) The map Φ of (2.4) is then

W (a, b) −→ P(2, 2, 3, 2, 2, 3, 2, 2, 3) = P(26, 33)

(u1, . . . , v3) 7→ (u1v1, u1v2, . . . , u3v3),

since the monomials having gradings ( 2
2 ) and ( 3

3 ), as necessary. The image V (a, b) is defined

by (2.1), and we often write the target weights of Φ in matching array:2 2 3

2 2 3

2 2 3

 .

In this case V (a, b) is not well formed: the locus V (a, b) ∩ P(26) has dimension 3 (by

Hilbert–Burch), so has codimension 1 in V (a, b) but nontrivial stabiliser Z/2 in the wps. Well
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forming the gradings using v23, as above, gives a new bi-grading(
0 0 0 1 1 3

1 1 1 0 0 1

)
.

That process is well established, but has a problem: for this presentation W ′ of W , the Segre

map is not bi-linear: u1v1 has bidegree ( 1
1 ), but u1v3 has an independent bidegree ( 3

2 ). We

could use u21v3 instead, which has proportional bidegree ( 3
3 ). Taking V ′ = ProjR, where R is

the graded ring of forms of degrees ( m
m ) for m ≥ 0, gives W ′ → V ′ ⊂ P(16, 36), which is now

well formed, but we have lost the codimension 4 property of V we want to exploit. In a case

like this, we work directly with the non-well-formed W (a, b) and its non-well-formed image

V ⊂ P(26, 33).

We use the varieties V (a, b) as key varieties to produce new varieties from by regular

pullback; see [Rei11, §1.5] or [BKZ14, §2]. In practical terms, that means writing equations

in the form of (1.1) inside a wps wP7 where the xi are homogeneous forms of positive degrees,

and the resulting loci X ⊂ wP7 are the Fano 3-folds we seek.

Alternatively, we may treat X as a complete intersection in a projective cone over V (a, b),

as in 3.2 below, where the additional cone vertex variables may have any positive degrees; this

point of view is taken by Corti–Reid and Szendrői in [CR02, Sze05, QS12, Qur15]. It follows

from this description that the Picard rank of X is 2.

3 Unprojection and the proof of Theorem 1.1

The Hilbert series number 26989 in the Graded Ring Database (Grdb) [BK] is

P =
1− 3t2 − 4t3 + 12t4 − 4t5 − 3t6 + t8

(1− t)7(1− t2)
.

In §3.1 we describe the known family of Fano 3-folds X(1) ⊂ P(17, 2) that realise this Hilbert

series, PX(1) = P . These 3-folds are not smooth: the general member of the family has

a single 1
2(1, 1, 1) quotient singularity. We exhibit a different family in §3.2 with the same

Hilbert series in P2 × P2 format, and the subsequent “Tom and Jerry” analysis yields a third

distinct family in §3.3.

Recall (from [BKR12a, §4], for example) that if X 99K Y ⊃ D is a Gorenstein unprojection

and Y is quasismooth away from N nodes, all of which lie on D, then

(3.1) e(X) = e(Y ) + 2N − 2.

3.1 The classical 7× 12 family

A general member of the first family can be constructed as the unprojection of a coordinate

D = P2 inside a c.i. Y2,2,2 ⊂ P6 (see, for example, Papadakis [Pap04]). In general, Y has 6

nodes that lie on D: in coordinates x, y, z, u, v, w, t of P6, setting D = (u = v = w = t = 0),

the general Y has equations defined byA1,1 · · · A1,4

A2,1 · · · A2,4

A3,1 · · · A3,4



u

v

w

t

 =

0

0

0

 ,
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for general linear forms Ai,j ; singularities occur when the 3 × 4 matrix drops rank, which is

calculated by evaluating the numerator of the Hilbert series of that locus at 1:

Psings =
1− 4t3 + 3t4

(1− t)3
=

1 + 2t+ 3t2

1− t
, so there are 1 + 2 + 3 = 6 nodes.

The coordinate ring of X has a 7 × 12 free resolution. If Ygen is a nonsingular small

deformation of Y , then e(Ygen) = −24 (by the usual Chern class calculation, since Ygen is a

smooth 2, 2, 2 complete intersection) so, by (3.1),

e(X) = −24 + 12− 2 = −14.

This family is described by Takagi [Tak02]; it is No. 1.4 in the tables there of Fano 3-folds of

Picard rank 1.

3.2 A P2 × P2 family with Tom projection

Consider the P2 × P2 key variety Va,b ⊂ P(16, 23), where a = (12 ,
1
2 ,

1
2) and b = (12 ,

1
2 ,

3
2). We

define a quasismooth variety X(2) ⊂ P(17, 2) in codimension 4 as a regular pullback.

In explicit terms, in coordinates x, y, z, t, u, v, w, s on P(17, 2), a 3× 3 matrix M of forms

of degrees

aT + b =

1 1 2

1 1 2

1 1 2


gives a quasismooth X(2) = (∧2M = 0) ⊂ P(17, 22); for example,

M =

x t s

y u x2 − z2 + t2 + v2

z v xt+ yu+ w2


works. Alternatively, note that X(2) may be viewed as a complete intersection

X(2) = C1Va,b ∩Q1 ∩Q2 ⊂ P(17, 23),

where C1Va,b ⊂ P(17, 23) is the projective cone over Va,b on a vertex of degree 1 (by introducing

a new variable of degree 1), and Qi are general quadrics (which are quasilinear, and so may

be used to eliminate two variables of degree 2). The general such X(2) is quasismooth (since

in particular the intersection misses the vertex). Described in these terms, C1Va,b has Picard

rank 2, and so ρX(2) = 2.

Any such X(2) has a single quotient singularity 1
2(1, 1, 1), at the coordinate point Ps ∈ X(2)

as the explicit equations make clear, since y, z, u, v are implicit functions in a neighbourhood

of Ps ∈ X(2). The Gorenstein projection from this point Ps has image Y = (Pf N = 0) ⊂ P6,

where

N =


0 x y z

t u v

x2 − z2 + t2 + v2 xt+ yu+ w2

0


is an antisymmetric 5×5 matrix, and Pf N denotes the sequence of 5 maximal Pfaffians of N .

(The nonzero entries of N are those of MT with the entry s deleted.)
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This Y contains the projection divisor D = (y = z = u = v = 0) and has 5 nodes on

D (either by direct calculation, or by the formula of [BKR12a, §7]). The divisor D ⊂ Y is

in Tom3 configuration: entries ni,j of the skew 5 × 5 matrix N defining Y lie in the ideal

ID = (y, z, u, v) if both i 6= 3 and j 6= 3; that is, all entries off row 3 and column 3 of N are

in ID. Thus, in particular, we can reconstruct X(2) from D ⊂ Y as the Tom3 unprojection.

It follows from Papadakis–Reid [PR04, §2.4] that ωX(2) = OX(2)(−1) and so X(2) is a Fano

3-fold.

It remains to show that e(X(2)) = −16, so that this Fano 3-fold must lie in a different

deformation family from the classical one constructed in §3.1.

The degree of the (1, 2) entry f1,2 of N is in fact zero while the degree of f4,5 is 2, although

each entry is of course the zero polynomial in this case; we denote this by indicating the degrees

of the entries with brackets around those that are zero in this case:

(3.2)


(0) 1 1 1

1 1 1

2 2

(2)

 .

We may deform Y by varying these two entries to f1,2 = ε and f4,5 = εf , where ε 6= 0 and

f is a general quadric on P6 (and, of course, the skew symmetric entries in f2,1 and f5,4).

Denoting the deformed matrix by Nε, and Yε = (Pf Nε = 0), we see a small deformation of Y

to a smooth Fano 3-fold Yε ⊂ P6 that is a 2, 2, 2 complete intersection. (The nonzero constant

entries of Nε provide two syzygies that eliminate two of the five Pfaffians.) As in §3.1, the

smoothing Yε has euler characteristic −24, so by (3.1) we have that eX(2) = −24+10−2 = −16.

Note that the Pfaffian smoothing Yε of Y destroys the unprojection divisor D ⊂ Y : for

D to lie inside Yε the entries f3,4 and f3,5 of Nε would have to lie in ID (so Nε would be in

Jer4,5 format with the extra constraint f4,5 = 0), but then Y would be singular along D since

3 of the 5 Pfaffians would lie in I2D.

3.3 A third family by Jerry unprojection

A Tom and Jerry analysis following [BKR12a] shows that varieties D ⊂ Y ⊂ P6 defined by

Pfaffians as in §3.2 by the maximal Pfaffians of a syzygy matrix N with weights
0 1 1 1

1 1 1

2 2

2

 .

can also be constructed in Jer1,3 format: that is, with all entries fi,j of N lying in ID whenever

i or j lie in {1, 3}. The general such D ⊂ Y has 7 nodes on D. Unprojecting D ⊂ Y gives a

general member X(3) of a third family with e(X(3)) = −24 + 2× 7− 2 = −12.

This completes the proof of Theorem 1.1.

4 Unprojecting Pfaffian degenerations

4.1 P2 × P2 models with a codimension 3 Pfaffian component

Each of the Fano Hilbert series 1396, 5302, 5858, 5962, 11436, 20543 is realised by a codimen-

sion 3 Pfaffian model, which is the simple default model presented in the Grdb. (So too are
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4999, 5844 and 10984, but we do not find new models for these.) We show that they can also

be realised by a P2×P2 model in a different deformation family (and sometimes a third model

too). The key point is that a projection of the usual model admits alternative degenerations

in higher codimension that also contain a divisor that can be unprojected.

For example, consider series number 20543 is

P20543(t) =
1− 4t3 + 4t5 − t8

(1− t)5(1− t2)2
.

There is a well-known family that realises this as X = (Pf(M) = 0) ⊂ P(15, 22) in codimen-

sion 3, where M has degrees 
1 1 1 1

2 2 2

2 2

2

 .

A typical member of this family has a two 1
2(1, 1, 1) quotient singularities, and making the

Gorenstein projection from either of them presents X as a Type I unprojection of

P2 = D ⊂ Y3,3 ⊂ P(15, 2).

In general, Y has 8 nodes lying on D, and it smooths to a nonsingular Fano 3-fold Ygen
with Euler characteristic e(Ygen) = −40. Thus a general X has Euler characteristic e(X) =

−40 + 2× 8− 2 = −26.

A quasismooth P2×P2 family We can write another (quasismooth) model X ⊂ P(15, 23)

in codimension 4 in P2 × P2 format with weights1 1 2

1 1 2

2 2 3

 .

Projecting from 1
2(1, 1, 1) has image Y = (Pf(M) = 0) ⊂ P(15, 22) where M has degrees

(4.1)


(0) 1 1 2

1 1 2

2 3

(3)

 ,

and Y has 7 nodes lying on D; in coordinates x, y, z, t, u, w, v, we may take D = P2 to be

(t = u = v = w = 0). By varying the (1, 2) entry from zero to a unit, Y has a deformation to

a quasismooth 3, 3 complete intersection Ygen as before, and so, e(X) = e(Ygen) + 2× 7− 2 =

−40+14−2 = −28. Thus these P2×P2 models are members of a different deformation family

from the original one.

More is true in this case: the general member of this new deformation family is in P2×P2

format. Starting with matrix (4.1) and D = P2 as above, the (1, 2) entry of the general Tom3

matrix is necessarily the zero polynomial. In general, the four entries (1, 4), (1, 5), (2, 4)

and (2, 5) of the matrix are in the ideal 〈t, u, v, w〉, and for the general member these four

variables are dependent on those entries. Thus the (4, 5) entry can be arranged to be zero by

row-and-column operations.
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Another family in codimension 4 There is a third deformation family in this case. The

codimension 3 format (4.1) also admits a Jerry15 unprojection with 9 nodes on D, giving

X ⊂ P(15, 23) in codimension 4 with e(X) = −24.

4.2 Pfaffian degenerations of codimension 2 Fano 3-folds

The key to the cases in §4.1 that the P2×P2 model exposes is the degeneration of a codimen-

sion 2 Fano 3-fold. More generally, Table 3 of [Bro06] lists 13 cases of Fano 3-fold degenerations

where the generic fibre is a codimension 2 complete intersection and the special fibre is a codi-

mension 3 Pfaffian. In each case, the anti-symmetric 5× 5 syzygy matrix of the special fibre

has an entry of degree 0, which is the zero polynomial in the degeneration, but when nonzero

serves to eliminate a single variable. (In fact [Bro06] describes the graded rings of K3 surfaces,

but these extend to Fano 3-folds by the usual extension–deformation method introducing a

new variable of degree 1.)

For example, Y12,13 ⊂ P(1, 3, 4, 5, 6, 7) degenerates to codimension 3

Y 0 ⊂ P(1, 3, 4, 5, 6, 7, 9) with syzygy degrees


0 3 4 7

5 6 9

9 12

13

 .

Both of these realise Fano Hilbert series number 547, and the Euler charactistic of a general

member is e(Y ) = −56.

The codimension 2 family has a subfamily whose members contain a Type I unprojection

divisor,

D = P(1, 3, 7) ⊂ Y = Y12,13 ⊂ P(1, 3, 4, 5, 6, 7)

on which Y has 8 nodes; the unprojection of D ⊂ Y gives the codimension 3 Pfaffian family

(4.2) Hilbert series no. 548: X12,13,14,15,16 ⊂ P(1, 3, 4, 5, 6, 7, 10).

Imposing the same unprojection divisor D ⊂ Y 0 can be done in two distinct ways, coming

from different Tom and Jerry arrangments. In one way, there are degenerations Y t
12,13  Y 0

which contain the same D in every fibre Yt. These unproject to a degeneration of the family

(4.2) by the following lemma: indeed unprojection commutes with regular sequences by [BR13,

Lemma 5.6], and so unprojection commutes with flat deformation, if one fixes the unprojection

divisor; so the lemma is a particular case of [BR13, Lemma 5.6].

Lemma 4.1. Let P = P(a0, . . . , as) be any wps and fix D = P(a0, . . . , ad) ⊂ P, for some

d ≤ s − 2. Suppose Yt ⊂ Y → T is a flat 1-dimensional family of projectively Gorenstein

subschemes of P over smooth base 0 ∈ T , each one containing D and with dimYt = dimD+1 =

d+1, and with ωY = OY (kY ). Let X 3 Xt ⊂ P(a0, . . . , as, b) be the unprojection of D×T ⊂ Y,

where b = kY −kD = a0 + · · ·+ad−1. Then X is flat over T , and for each closed point t ∈ T
the fibre Xt ∈ X is the unprojection of D ⊂ Yt.

But the Jer24 unprojection is different: small deformations of Y 0 do not contain D. Indeed,

in this D ⊂ Y 0 model, Y 0 has 9 nodes on D, which is a numerical obstruction to any such

deformation. This D ⊂ Y 0 unprojects to a codimension 4 Fano 3-fold

X0 ⊂ P(1, 3, 4, 5, 6, 7, 9, 10)

with the same Hilbert series number 548 as (4.2) but lying in a different component: it has

Euler characteristic −56 + 2× 9− 2 = −40. This proves Theorem 1.2.
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5 P2 × P2 and the second Tom

The Big Table [BKR12b], which contains the results of [BKR12a], lists deformation families

of Fano 3-folds in codimension 4 that have a Type I projection to a Pfaffian 3-fold in codimen-

sion 3. The components are listed according to the Tom or Jerry type of the projection: the

type of projection is invariant for sufficiently general members of each component. The result

of this section gives an interpretation of the Big Table of [BKR12a], but does not describe

any new families of Fano 3-folds.

Theorem 5.1. For every Hilbert series listed in the Big Table [BKR12b] that is realised by

two distinct Tom projections, there is a Fano 3-fold in P2 × P2 format that lies on the family

containing 3-folds with the smaller (more negative) Euler characteristic.

The theorem is proved simply by constructing each case. There are 29 Hilbert series that

have two Tom families. Using ‘TTJ’ to indicate a series realised by 2 Tom components and 1

Jerry component and ‘TTJJ’ to indicate 2 of each, they are:

Table 2: Hilbert series in P2×P2 format that admit a second

Tom unprojection.

Grdb P2 × P2 weights T/J families centre: #nodes

1253
(

3 4 5
4 5 6
5 6 7

)
TTJ 1

7 : 6

1218
(

3 4 5
4 5 6
5 6 7

)
TTJJ 1

5 : 9

1413
(

3 4 5
3 4 5
4 5 6

)
TTJJ 1

5 : 7

2422
(

2 3 5
3 4 6
4 5 7

)
TTJJ 1

7 : 5

2427
(

2 3 4
3 4 5
4 5 6

)
TTJJ 1

5 : 6

4839
(

4 6 7
5 7 8
6 8 9

)
TTJJ 1

5 : 20; 1
9 : 13

4860
(

4 5 6
5 6 7
6 7 8

)
TTJJ 1

7 : 13

4915
(

3 5 6
4 6 7
5 7 8

)
TTJJ 1

4 : 19; 1
8 : 11

4949
(

3 4 5
4 5 6
5 6 7

)
TTJJ 1

6 : 11

4989
(

3 4 5
4 5 6
5 6 7

)
TTJJ 1

4 : 15; 1
7 : 10

5002
(

3 4 5
4 5 6
4 5 6

)
TTJJ 1

4 : 14; 1
5 : 11; 1

6 : 10

5163
(

2 4 5
3 5 6
4 6 7

)
TTJJ 1

3 : 19; 1
7 : 9

5215
(

2 3 4
3 4 5
4 5 6

)
TTJJ 1

5 : 9

5268
(

2 3 4
3 4 5
4 5 6

)
TTJJ 1

3 : 14; 1
5 : 8

5306
(

2 3 4
3 4 5
3 4 5

)
TTJJ 1

3 : 13; 1
4 : 9; 1

5 : 8

5530
(

2 3 3
3 4 4
3 4 4

)
TTJJ 1

3 : 11; 1
4 : 8

5870
(

2 3 4
2 3 4
3 4 5

)
TTJJ 1

3 : 10; 1
5 : 7

5970
(

2 3 3
2 3 3
3 4 4

)
TTJJ 1

3 : 9; 1
4 : 7

6860
(

1 2 3
2 3 4
3 4 5

)
TTJ 1

5 : 4

Continued on next page
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Table 2 continued from previous page

6878
(

2 2 3
2 2 3
3 3 4

)
TTJJ 1

3 : 8

10985
(

1 3 4
2 4 5
3 5 6

)
TTJJ 1

2 : 23; 1
6 : 7

11021
(

1 2 3
2 3 4
3 4 5

)
TTJJ 1

4 : 7

11106
(

1 2 3
2 3 4
3 4 5

)
TTJJ 1

2 : 15; 1
5 : 6

11125
(

1 2 3
2 3 4
2 3 4

)
TTJJ 1

2 : 14; 1
3 : 7; 1

4 : 6

11455
(

1 2 2
2 3 3
2 3 3

)
TTJJ 1

2 : 11; 1
3 : 6

16228
(

1 2 3
1 2 3
2 3 4

)
TTJJ 1

2 : 9; 1
4 : 5

16339
(

1 2 2
1 2 2
2 3 3

)
TTJJ 1

2 : 8; 1
3 : 5

20652
(

1 2 2
1 2 2
1 2 2

)
TTJ 1

2 : 6

24078
(

1 1 2
1 1 2
2 2 3

)
TTJ 1

3 : 4

For example, for Hilbert series number 4839,

P4839(t) =
1− t11 − 2t12 − 2t13 − 2t14 − t15 − t16 + · · · − t40∏

a∈[1,1,4,5,6,7,8,9](1− ta)
,

[BKR12b] describes 4 deformation families of Fano 3-folds

X ⊂ P(1, 1, 4, 5, 6, 7, 8, 9).

A general such X has Type I projections from both 1
5(1, 1, 4) and 1

9(1, 1, 8). (It is enough to

consider just one of these centres of projection, but [BKR12a] calculates both, drawing the

same conclusion twice.)

We construct a P2 × P2 model for P4839. Consider P = P7(1, 1, 4, 5, 6, 7, 8, 9) with coordi-

nates x, y, z, t, u, v, w, s. The 2× 2 minors of the matrix z u v

t v + x7 − y7 w + z2 + x8

u+ x6 + y6 w s

 of weights

4 6 7

5 7 8

6 8 9


define quasismooth X ⊂ P with quotient singularities 1

2(1, 1, 1), 1
5(1, 1, 4) and 1

9(1, 1, 8).

Eliminating either the variable t of degree 5 or s of degree 9 computes the two possible

Type I projections, with image a nodal codimension 3 Fano 3-fold Y containing D = P(1, 1, 4)

or D = P(1, 1, 8) with 20 or 13 nodes lying on D respectively. (Both t and s appear only once

in the matrix, so eliminating them simply involves omitting that entry and mounting the rest

of the matrix in a skew matrix, as usual.)

6 Cases with no numerical Type I projection

The five Hilbert series 360, 577, 648, 878 and 1766 do not admit a Type I projection, and so

the analysis of [BKR12a] does not apply. Nevertheless each is realised by a variety in P2×P2

format exist, although only two of these are Fano 3-folds.

In the two cases 360 and 648 the general P2 × P2 model is not quasismooth and has a

non-terminal singularity, so there is no P2×P2 Fano model. (Each of these admit Type II1 pro-

jections, so are instead subject to the analysis of [Pap08]; this is carried out by Taylor [Tay].)
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In the case 577, the P2 × P2 model is quasismooth, but it has a 1
4(1, 1, 1) quotient singularity

and so is not a terminal Fano 3-fold and again there is no P2 × P2 Fano model.

However, there is a quasismooth Fano 3-fold X ⊂ P(1, 32, 42, 52, 6) in P2×P2 format with

weights 3 4 5

4 5 6

5 6 7


realising Hilbert series 878. It has 4× 1

3(1, 1, 2), 2× 1
4(1, 1, 3) quotient singularities. There is

also a quasismooth Fano 3-fold X ⊂ P(1, 2, 33, 42, 5) in P2 × P2 format with weights2 3 4

3 4 5

4 5 6


realising Hilbert series 1799. It has 2× 1

2(1, 1, 1), 5× 1
3(1, 1, 2) quotient singularities. Each of

these two admit only Type II2 projections, and an analysis by Gorenstein projection has not

yet been attempted. Presumably such an analysis can in principle work, once we have much

better understanding of Type II unprojection, but until then our models are the only Fano

3-folds known to realise these two Hilbert series.

7 Enumerating P2 × P2 formats

7.1 Enumerating P2 × P2 formats and cases that fail

The Hilbert series PX(t) =
∑

m∈N h
0(−mKX)tm of such Gorenstein rings R(X) satisfy the

orbifold integral plurigenus formula [BRZ13, Theorem 1.3]

(7.1) PX(t) = Pini(t) +
∑
Q∈B

Porb(Q)(t),

where Pini is a function only of the genus g of X, where g + 2 = h0(−KX), and Porb is a

function of a quotient singularity Q = 1
r (1, a,−a), the collection of which form the basket B

of X (see [CPR00, §9]). When X ⊂ wP is quasismooth, and so is an orbifold, the basket B is

exactly the collection of quotient singularities of X. Thus the numerical data g,B gives the

basis for a systematic search of Hilbert series with given properties, which we develop further

here.

We may enumerate all P2 × P2 formats V (a, b) and then list all genus–basket pairs

g,B whose corresponding series (7.1) has matching numerator. This algorithm is explained

in [BKZ14, §4]. It works systematically through increasing k ∈ N, where k = 3(
∑
ai +

∑
bi),

the sum of the weights of the ambient space of the image of Φ in (2.4).

The enumeration does not have a termination condition, even though there can only

be finitely many solutions for Fano 3-folds, so this does not directly give a classification.

Nevertheless, we search for P2 × P2 formats for each k = 1, . . . , 31 to start the investigation.

This reveals 53 cases whose numerical data (basket and genus) match those of a Fano 3-fold.

The number # of cases found per value of k is:

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24–31

# 1 3 2 3 3 5 4 4 4 3 5 5 1 2 3 1 1 0 2 1 0
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This hints that we may have found all Fano Hilbert series that match some P2 × P2 format,

since the algorithm stops producing results after k = 23. Of course that is not a proof that

there are no other cases, and we do not claim that; the results here only use the outcome of

this search as their starting point, so how that outcome arises is not relevant.

7.2 Weighted GL(3,C)×GL(3,C) varieties according to Szendrői

The elementary considerations we deploy for the key varieties V (a, b) are part of a more

general approach to weighted homogeneous spaces by Grojnowski and Corti–Reid [CR02],

with other cases developed by Qureshi and Szendrői [QS11, QS12]. The particular case of

P2 × P2 was worked out detail by Szendrői [Sze05], which we sketch here.

In the treatment of [Sze05], G = GL(3,C)×GL(3,C) has weight latticeM = Hom(T,C∗) ∼=
Z6, for the maximal torus T ⊂ G. The construction of a weighted P2×P2, denoted wΣ(µ, u),

is determined by the choice of a coweight vector µ ∈ Hom(M,Z), in coordinates say µ =

(a1, a2, a3, b1, b2, b3) ∈ Hom(M,Z), and an integer u ∈ Z. These data are subject to the

positivity conditions that all ai + bj + u > 0. The construction of wΣ(µ, u) is described

in [QS11, §2.2]. It embeds in wps

(7.2) wΣ(µ, u) ↪→ wP8(a1 + b1 + u, . . . , a3 + b3 + u),

with image defined by 2× 2 minors

(7.3) wΣ =


2∧ x1 x2 x3

x4 x5 x6
x7 x8 x9

 = 0

 ⊂ wP8

with respect to the weights

deg

 x1 x2 x3
x4 x5 x6
x7 x8 x9

 =

 a1 + b1 + u a1 + b2 + u a1 + b3 + u

a2 + b1 + u a2 + b2 + u a2 + b3 + u

a3 + b1 + u a3 + b2 + u a3 + b3 + u

 .

The following theorem then follows from the general Hilbert series formula of [QS11, Theorem

3.1].

Theorem 7.1 (Szendrői [Sze05]). The Hilbert series of wΣ(µ, u) in the embedding (7.2) is

P (t) =
Pnum(t)∏

i,j

(
1− tai+bj+u

) ,
where the Hilbert numerator Pnum(t) is

1−

∑
i,j

t−ai−bj

 t2u+s+

4 +
∑
i 6=j

t−ai+aj +
∑
i 6=j

t−bi+bj

 t3u+s−

∑
i,j

tai+bj

 t4u+s+ t6u+2s,

with s = a1 + a2 + a3 + b1 + b2 + b3.

This numerator exposes the 9 × 16 resolution. The 2 × 2 minors in (7.3) are visible in

the first parentheses; for example t−a1−b1t2u+s = t(a2+b2+u)+(a3+b3+u) carries the degree of

x5x9 = x6x8. First syzygies appear in the second parentheses; for example, the syzygy

det

 x4 x5 x6
x4 x5 x6
x7 x8 x9

 ≡ 0
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has degree deg(x4x5x9) = (a2 + b1 +u)+(a2 + b2 +u)+(a3 + b3 +u) = (a2−a1)+3u+s. The

additional parameter u ∈ Z in this treatment is absorbed into the ai in our naive treatment

of §2, so the key varieties we enumerate are the same.
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