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Abstract. Fano polytopes are the convex-geometric objects corresponding to toric

Fano varieties. We give a brief survey of classification results for di↵erent classes of

Fano polytopes.

1. Fano polytopes

A normal projective variety X (over an algebraically closed field) with log terminal

singularities such that the anticanonical divisor �KX is an ample Q-Cartier divisor is

called a (Q-)Fano variety. Fano surfaces are more usually referred to as log del Pezzo

surfaces. The classification of smooth del Pezzo surfaces dates back to the late 19th

century: there are exactly ten cases, given by P2, P1 ⇥ P1, and P2 blown up in at most

eight points (in general position). Smooth Fano threefolds have also been classified: there

are 17 families with Picard number one [22, 23], and 88 other families [35, 36].

By restricting to the toric setting, a great deal more can be said. Recall that X is said

to be toric if it contains a dense algebraic torus (C⇥)n which acts in a natural way on X. If

M ⇠= Zn is the lattice of characters of (C⇥)n, then every toric variety has a combinatorial

description in terms of a fan � in NQ := Hom(M,Z) ⌦Z Q. Many geometric properties

of X can be rephrased as combinatorial statements about �. Let {⇢1, . . . , ⇢k} be the set

of rays of �. Each ⇢i is generated by a unique primitive lattice element vi 2 N , and X is

Fano if and only if {v1, . . . , vk} correspond to the vertices of a convex lattice polytope in

NQ. This motivates the following:

Definition 1.1. A convex lattice polytope P ⇢ NQ, dimP = dimN , is called Fano if:

(1) The origin is contained in the strict interior of P (we write 0 2 int(P ));

(2) Each vertex v 2 V(P ) is a primitive lattice point of N .

Of the ten smooth del Pezzo surfaces, the first five are toric. They correspond to the

first five polygons depicted in Figure 1. In dimension three there are 18 smooth toric

Fano varieties [4, 53]. The degree (�KX)n of any smooth Fano variety X of dimension n

is bounded, as is the number of deformation types [29]. Similar results are not known for

Fano varieties in general, however the number of isomorphism classes of toric Fano varieties

of fixed dimension and bounded discrepancy is known to be finite [10, 9]. Equivalently, a

result of Lagarias and Ziegler [33] implies that, for fixed dimension n and fixed l 2 Z>0,
1
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Figure 1. The 16 reflexive polygons, up to isomorphism.

Table 1. A summary of the known classifications of Fano polytopes [26].

Terminal Canonical

n Smooth Reflexive Simp. Total Reflexive Simplicial Total

2 5 5 5 5 16 16 16

3 18 [4, 53] 100 233 [24] 634 [24] 4,319 [31] 12,190 [26] 674,688 [26]

4 124 [6, 52] 166,841[32] 473,800,776 [32]

5 866 [30, 45]

6 7,622 [45]

7 72,256 [45]

8 749,892 [45]

there are only finitely many isomorphism classes of n-dimensional Fano polytopes with

int(P ) \ lZn = {0}.
Classifications of Fano polytopes of fixed dimension n divide into finite classifications

(usually by restricting the resulting singularities), and partial classifications of infinite

families (these tend to allow log terminal singularities, but satisfy other combinatorial

conditions). The currently known finite classifications are summarised in Table 1, along

with references.

2. Reflexive polytopes

In 1994 Batyrev [5] introduced reflexive polytopes as a key combinatorial tool for con-

structing topologically mirror-symmetric pairs of Calabi-Yau varieties as hypersurfaces

in Gorenstein toric Fano varieties. This initiated an intense study of the geometric and

combinatorial properties of reflexive polytopes [14, 19, 31, 32, 40, 42].

Definition 2.1. A Fano polytope P ⇢ NQ is called reflexive if each facet of P has

lattice distance one from 0. Equivalently, the dual polytope P ⇤ := {u 2 MQ | hu, vi �
�1 for all v 2 P} is a lattice polytope.

Reflexive polytopes naturally appear as dual pairs: P is reflexive if and only if P ⇤ is

reflexive. As varieties they correspond to Gorenstein toric Fano varieties. Since they

contain only one interior lattice point [5], there are finitely many reflexive polytopes up
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to unimodular equivalence in each dimension n: 16 when n = 2, 4319 when n = 3,

and 473, 800, 776 when n = 4 [31, 32]. This final value is, of course, the remarkable

achievement of Max Kreuzer and Harald Skarke. Classification results for n � 5 are

probably only realistic for subclasses of reflexive polytopes.

There are many open questions in higher dimensions. For example, it is still not known

how many vertices a reflexive n-tope can have, although the maximal value is conjectured

to be 6n/2 when n is even, attained by the product of hexagons. Much more is known

about simplicial reflexive polytopes (corresponding to Q-factorial Gorenstein toric Fano

varieties). Their combinatorics is quite restrictive: The vertex-edge-graph has diameter

two, and given any vertex v 2 V(P ) there exist at most three other vertices of P not

contained in a facet containing v [40]. Casagrande [14] showed that the maximal number

of vertices is 3n if n is even, or 3n� 1 if n is odd. Equivalently, this bounds the rank of

the Picard group of the corresponding variety X, since rk PicX = |V(P )|� dimP . The

simplicial reflexive polytopes achieving these bounds have been classified [42].

As special as reflexive polytopes are, it is interesting to note that in some sense they

are rather general [19]:

Proposition 2.2. Any lattice polytope is isomorphic to the face of a reflexive polytope.

3. Smooth polytopes

A cone � of a fan � is non-singular if and only if the generators {v1, . . . , vk} of the

rays of � form part of a Z-basis for the lattice N . We shall call a Fano polytope P ⇢ NQ

smooth if for each facet F 2 F(P ), the vertices V(F ) of F are a Z-basis for N . Clearly

any such polytope is necessarily simplicial and reflexive (the supporting hyperplane for

F must lie at lattice distance one from 0). Note that in geometric combinatorics, the

term “smooth” is often used in the dual sense: lattice polytopes whose tangent cones are

unimodular.

In dimension two, the classification of smooth polygons is well known – there are exactly

five cases. A complete classification in dimension three was obtained by Batyrev [4] and,

independently, by Watanabe and Watanabe [53] (18 cases), and in dimension four, the

classification was done by Batyrev [6] and Sato [52] (124 cases).

Batyrev [6] showed that the projection of a smooth n-tope P along a vertex v 2 V(P ) is

a reflexive (n� 1)-tope. Given the classification of reflexive (n� 1)-topes, there exists an

algorithm [30] “unprojecting” a reflexive polytope P 0 in all possible ways to generate the

smooth n-topes. Using the classification of reflexive 4-topes [32], the smooth polytopes in

dimension five were classified. There exists 866 isomorphism classes. In particular [30]:



4 A. M. KASPRZYK AND B. NILL

Proposition 3.1. Let X be an n-dimensional smooth toric Fano variety, n  5. Then

there exists precisely one X in each dimension with maximal anticanonical degree (�KX)n.

n 2 3 4 5

(�KX)n 9 64 800 14762

X P2 P3 PP3(OP3 �OP3(3)) PP4(OP4 �OP4(4))

We conclude this section by discussing the work of Øbro [45], which was used to classify

all smooth polytopes up to dimension eight.

Definition 3.2. Let P be a Fano polytope. A facet F 2 F(P ) is said to be special ifP
v2V(P ) v 2 pos(F ).

Clearly any Fano polytope P has at least one special facet F . Since P is smooth

we may assume that V(F ) = {e1, . . . , en}, the standard basis for N . This is called

a special embedding for P . Let v = (a1, . . . , an) 2 V(P ) be a vertex of P , so that

gcd{a1, . . . , an} = 1, and define a := a1 + . . . + an. Then �n  a  1 and each ai
satisfies [45]:

0

�1

a

9
>=

>;
 ai 

8
><

>:

1, if a = 1,

n� 1, if a = 0,

n+ a, if a < 0.

Already this is a finite problem. In fact it is possible to avoid repetitions by carefully

defining an order on the smooth polytopes. Let A and B be finite subsets of N . We

recursively define A � B if and only if A = ;, or B 6= ; and minA � minB _ (minA =

minB ^ A \ {minA} � B \ {minB}).
Definition 3.3. Let P be a smooth polytope. The order of P is given by

ord(P ) := min{V(Q) | Q is a special embedding of P}.
If P1 and P2 are two smooth polytopes, we say that P1  P2 if and only if ord(P1) �
ord(P2). This defines a total order on the set of isomorphism classes of smooth n-topes.

A classification algorithm using this order can avoid expensive isomorphism testing by

insisting that V(P ) = ord(P ). In particular, the classification can be generated in such a

way that if P1  P2 then P1 is discovered before P2. This is very e�cient, and has been

used to classify all smooth polytopes up to dimension eight. Applications include new

examples of Einstein-Kähler manifolds [43], and the study of Riemannian polytopes [21].

4. Gorenstein polytopes

Definition 4.1. A lattice polytope Q ⇢ MQ is called Gorenstein of index r if there exists

an integer r 2 Z>0 and lattice point m 2 rQ \M such that rQ�m is reflexive.
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Minkowski summands of reflexive polytopes define complete intersections (CYCIs) in

Gorenstein toric Fano varieties. Their stringy Hodge numbers can be computed from the

combinatorial and geometric data of the associated Cayley polytope [7, 12], which is a

Gorenstein polytope [8]. In order to obtain a duality for this construction, one needs to

consider special Minkowski summands called nef-partitions [11]. Not all Gorenstein poly-

topes arise as Cayley polytopes, however stringy Hodge numbers of Gorenstein polytopes

are always well-defined [44] and satisfy the mirror-symmetry property [12].

Gorenstein polytopes can be characterised in terms of the lattice distance of the sup-

porting hyperplanes in much the same way as reflexive polytopes. A lattice polytope Q

is Gorenstein of index r if and only if there exists a rational point x 2 int(Q) \ (1/r)M

having lattice distance 1/r from any facet F 2 F(Q). Another characterisation can be

given in terms of reflexive Gorenstein cones.

Given an (n+1)-dimensional lattice M with dual lattice N , recall that a cone � ⇢ MQ

is Gorenstein if it is generated by finitely many lattice points contained in an a�ne

hyperplane Hu� := {x 2 MQ | hx, u�i = 1}, for some primitive vector u� 2 N . In

particular, u� 2 int(�_) is uniquely determined, and int(�_) \N = u� + �_ \N .

The height one slice �\Hu� defines an n-dimensional lattice polytope called the support

of �. Conversely, given any n-dimensional lattice polytope P ⇢ MQ, one can associate a

Gorenstein cone � in M := M � Z simply by taking cone(P ⇥ {1}). A Gorenstein cone

� is called reflexive if �_ is also a Gorenstein cone. The value r := hu�_ , u�i is called the

index of �.

Batyrev and Borisov showed that reflexive Gorenstein cones correspond to Gorenstein

polytopes [8]. Whilst Gorenstein polytopes do not possess interior lattice points when

r > 1, they still satisfy a beautiful duality. Here, the dual Gorenstein polytope Q⇤ is

defined to be the support of the dual cone �_. When r � 1 it is not generally true

that the reflexive polytopes rQ and rQ⇤ are dual to each other: one must move to a

sublattice [3]. Nevertheless, (rQ)⇤ and Q⇤ have the same set of boundary lattice points.

Analogous behaviour occurs in the study of l-reflexive polygons (see Section 7).

There are 5363 Gorenstein 4-topes of index two, but only 36 Gorenstein polytopes of

index three. Whilst a classification of reflexive polytopes in dimension n � 5 is impracti-

cal, it is a more tractable task for Gorenstein polytopes of relatively large index[2]. We

refer to the article of Harald Skarke in this volume for how this can be achieved in several

cases up to dimension seven.

5. Terminal and canonical polytopes

We say that a fan � is terminal if each cone � 2 � satisfies the following:
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(1) The generators {v1, . . . , vk} of the rays of � are contained in an a�ne hyperplane

Hu,l := {v 2 NQ | hu, vi = l} for some primitive vector u 2 M and integer l 2 Z>0;

(2) The only other lattice point in the cone � on or below Hu,l is the origin, i.e. {v 2
� \N | hu, vi  l} = {0, v1, . . . , vk}.

A toric variety X has at worst terminal singularities if and only if the cones of � are

all terminal. Relaxing the definition slightly to allow lattice points on Hu,l, one obtains

the definition of a canonical cone, and X has canonical singularities [50].

Definition 5.1. A Fano polytope P is called terminal if P \ N = V(P ) [ {0}. If

int(P ) \N = {0} then P is said to be canonical.

Terminal singularities play an important role in birational geometry [34, 50, 38]. In

dimension two, a consequence of Castelnuovo’s Contractibility Criterion is that a normal

surface has only terminal singularities if and only if it is smooth. Mori [37] proved that,

with two exceptions, isolated canonical cyclic quotient singularities in dimension three are

all either Gorenstein or terminal, whilst Reid [51] addressed the issue of classifying 3-fold

terminal singularities.

The only empty polygons (i.e. polygons Q such that Q \ Z2 = V(Q)) are the triangle

and the square – these are the possible facets of a terminal 3-tope P . Furthermore, if P

is also simplicial and reflexive, then P must be smooth. There are 634 three-dimensional

terminal polytopes [24], of which 233 are simplicial and 100 are reflexive.

Consider now a canonical 3-tope. Up to isomorphism, there are 674, 688 possibili-

ties [26]. In this case, there is no known a priori description of the facets that can occur,

although inspection gives 4248 distinct facets, ranging from triangles (of which there are

97 choices), through to a unique facet with 9 vertices and 7 interior points.

The approach to classification is essentially the same in both the terminal and canonical

case; we will describe the canonical setting.

Definition 5.2. Let P be a canonical n-tope. We say that P is minimal if, for all

v 2 V(P ), the polytope conv(P \N \ {v}) obtained by subtracting v from P is not a

canonical n-tope.

Given a canonical polytope P and a lattice point v 2 N , take the convex hull P 0 :=

conv(P [ {v}); if P 0 fails to be canonical then discard it. If one starts with the minimal

canonical polytopes, one will achieve a complete classification using this technique. As-

sume that P 0 is obtained by adding the vertex v to P . The ray passing through the origin

and �v will intersect @P in a point x on some face F not containing v. Take the smallest

subset S ⇢ V(F ) such that x 2 conv(S); the simplex conv(S [ {v}) contains the origin

strictly in its (relative) interior, hence is a canonical simplex of dimension |S|  dimP .
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Since there are only finitely many such simplices [10, 9], there are only finitely many

choices for v.

All that remains is to describe the minimal polytopes. Again, we state the result only

in the canonical case.

Proposition 5.3. Any minimal canonical n-tope P is either a simplex, or can be written

as P = conv(S [ P 0) for some S a minimal canonical k-simplex and P 0 a minimal canon-

ical (n� k + r)-tope, where 0  r < k < n. Moreover, dim(S \ P 0)  r, and r equals the

number of common vertices of S and P 0.

By definition of minimality, given any canonical polytope Q there exists a minimal

polytope P such that P ⇢ Q, hence Vol(P ⇤) � Vol(Q⇤). In dimension three there are 26

minimum canonical polytopes, giving:

Theorem 5.4. Let X be a toric Fano threefold with at worst canonical singularities. Then

(�KX)3  72, with equality if and only if X is isomorphic to P(1, 1, 1, 3) or P(1, 1, 4, 6).

6. Fano simplices

Definition 6.1. Let P := conv{v0, . . . , vn} ✓ NQ be a Fano simplex, and let (�0, . . . ,�n)

be a positive collection of weights �0  . . .  �n such that gcd{�0, . . . ,�n} = 1 and

�0v0 + . . .+ �nvn = 0. The rank one Q-factorial variety X associated with the spanning

fan of P is called a fake weighted projective space with weights (�0, . . . ,�n).

Besides being compelling combinatorial objects, Fano simplices arise naturally in toric

Mori theory [49, 51, 10, 13]. Let ⇤V(P ) denote the sublattice generated by the vertices

V(P ) of P , and define the multiplicity of P to be the index multP := [N : ⇤V(P )].

Then[10, 13, 15, 25]:

Theorem 6.2. Let X be a fake weighted projective space with weights (�0, . . . ,�n), and

let P be the associated simplex in NQ. Let Q ✓ NQ be the simplex corresponding to

Y := P(�0, . . . ,�n).

(1) X ⇠= Y if and only if multP = 1.

(2) X is the quotient of the weighted projective space Y by the action of the finite

group N/⇤V(P ) acting free in codimension one. In particular ⇡1
1(X) = N/⇤V(P ).

(3) There exists a Hermite normal form H with determinant multP such that P =

QH (up to the action of GLn(Z)).
(4) If P is canonical (resp. terminal) then Q is canonical (resp. terminal) and

multP  hn�1

�1�2 . . .�n
=

�0

h
(�KY )

n, where h :=
nX

i=0

�i.

(5) If P is reflexive then Q is reflexive and multP | multQ⇤.
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If P is canonical, Pikhurko [46] gives an upper bound on the sum of the weights h 
23n�215(n�1)2n+1

. In dimensions two and three this is far from sharp (the maximum values

are 1 + 2 + 3 = 6 and 5 + 6 + 22 + 33 = 66, respectively). There also exists a bound [25]

�i  h/(n� i+ 2), for 2  i  n.

Reflexive simplices have been studied in some detail [5, 15, 41]. The crucial observation

is:

Proposition 6.3. Let Y = P(�0, . . . ,�n). Then Y is Gorenstein if and only if �i | h for

all i.

Recall that a family of positive natural numbers (k0, k1, . . . , kn) is called a unit partition

if 1/k0 + 1/k1 + . . . + 1/kn = 1. Clearly Gorenstein weighted projective spaces and unit

partitions are in bijection via ki = h/�i. Closely associated with unit partitions is the

Sylvester sequence

y0 := 2, yj := 1 + y0 · · · yj�1.

Then max{k0, k1, . . . , kn}  yn, h  tn := yn � 1, and �i � h/((i+ 1)tn�i).

We conclude with the following (cf. Theorem 5.4) [41]:

Theorem 6.4. Suppose that X is a Gorenstein fake weighted projective space.

(1) If n = 3 then (�KX)3  72, with equality if and only if X is isomorphic to

P(1, 1, 1, 3) or P(1, 1, 4, 6);
(2) If n � 4 then (�KX)n  2t2n�1, with equality if and only if X is isomorphic to

P(1, 1, 2tn�1/yn�2, . . . , 2tn�1/y0).

The results of Theorem 6.4 are conjectured to hold more generally for any Gorenstein

Fano variety with canonical singularities. In dimension three this is known as the Fano–

Iskovskikh conjecture, and was proven by Prokhorov [48].

7. Fano polygons

Log del Pezzo surfaces have been extensively studied by Nukulin, Alexeev, and Nakayama [1,

39]. In the toric setting they correspond to the Fano polygons, which we usually refer

to as LDP-polygons. The LDP-triangles were first studied by Dais [16, 17], followed by

study of the LDP-polygons and a classification algorithm [18, 27].

Definition 7.1. Let F 2 F(P ) be a facet of an LDP-polygon P . There exists a unique

primitive lattice vector uF 2 M \ {0} such that huF , F i = {lF}, where lF is a positive

integer called the local index of F . The index of P is defined by l := lcm{lF | F 2 F(P )}.
The value lF is the lattice distance of F from 0. Notice that l is the smallest positive

integer such that lP ⇤ is a lattice polygon; equivalently, l is the smallest integer such that

�lKX is a Cartier divisor, and is often referred to as the Gorenstein index.
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Table 2. The classification of LDP-polygons [27] with index l  17. Here

n(l) is the total number of LDP-polygons, m(l) is the number of LDP-

triangles (i.e. rank one toric log del Pezzo surfaces), nT (l) is the number of

LDP-polygons with T-singularities [20], and mT (l) is the number of LDP-

triangles with T-singularities.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

n(l) 16 30 99 91 250 379 429 307 690 916 939 1279 1142 1545 4312 1030 1892

m(l) 5 7 18 13 33 26 45 27 51 51 67 53 69 74 133 48 89

nT (l) 16 30 11 11 1 56 0 1 2 20 0 66 0 5 28 1 0

mT (l) 5 7 5 2 1 8 0 0 0 4 0 4 0 1 4 0 0

For fixed index l, it is possible to classify all LDP-polygons [27]. The algorithm relies

on the notion of a special facet, and was su�cient to allow all LDP-polygons up to index

17 to be classified (see Table 2).

Definition 7.2. A Fano polytope P is called l-reflexive if, for some l 2 Z>0, the local

index lF equals l for every facet F 2 F(P ).

The 1-reflexive polytopes are precisely the reflexive polytopes introduced by Batyrev [5].

In fact they generalise many important combinatorial properties [28]. For example, P is l-

reflexive if and only if lP ⇤ is l-reflexive. It is also tempting to regard Gorenstein polytopes

as being “1
r -reflexive”.

In dimension two the l-reflexive polygons form a special subclass of the LDP-polygons

of index l. It is unusual for an LDP-polygon to be l-reflexive; for example, there are no

l-reflexive polygons of even index. They satisfy a very restrictive condition [28]:

Proposition 7.3. Let P ✓ NQ be an l-reflexive polygon (or more generally an l-reflexive

loop), and let ⇤P ⇢ N denote the sublattice generated by the boundary points @P \ N .

Then ⇤lP ⇤ = l⇤P
⇤. Moreover, ⇤P ⇢ N and l⇤P

⇤ ⇢ M are both sublattices of index l.

As a corollary, P restricted to the lattice ⇤P is a reflexive polygon Q, and Q⇤ is iso-

morphic to lP ⇤ with respect to ⇤lP ⇤ . From this observation there follows an e�cient

classification algorithm. We also see why there exist no l-reflexive polygons of even index.

For assume otherwise. Without loss of generality let F := conv{(a, l), (b, l)} 2 F(P ) be a

facet of P . Since the vertices are primitive, both a and b must be odd, hence the midpoint

between the two is a non-vertex lattice point on F . By symmetry this is true for every

facet of P , and similarly for lP ⇤. This property must also hold for the reflexive polytope

Q given by restricting to ⇤P , and for Q⇤. However, a brief glance at Figure 1 shows that

this is impossible.

We summarise the key results in the following theorem (cf. Theorem 6.2 (1)-(3)).



10 A. M. KASPRZYK AND B. NILL

Table 3. The classification of l-reflexive polygons [28] with index l  80.

Here n(l) is the total number of l-reflexive polygons.

l 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

n(l) 16 1 12 29 1 61 81 1 113 131 2 163 50 2 215 233 2 34 285 3

l 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

n(l) 317 335 2 367 182 3 419 72 4 469 489 3 93 539 4 571 591 3 185 641

Theorem 7.4. Let P ✓ NQ be an l-reflexive polygon, and let Q be the restriction of P to

⇤P . Let X(P ) denote the toric variety generated by the spanning fan of P .

(1) X(P ) is Gorenstein if and only if [N : ⇤P ] = 1.

(2) X(P ) is the quotient of the Gorenstein surface X(Q) by the action of the finite

group N/⇤P .

(3) There exists a Hermite normal form H with determinant [N : ⇤P ] such that P =

QH (up to the action of GL2(Z)).

Finally, we conclude with an intriguing combinatorial result. Recall that for any re-

flexive polygon Q, the sum |@Q \N | + |@Q⇤ \M | is twelve [47]. This can be proved

combinatorially, or in terms of the associated toric variety using Noether’s formula. Since

any property of the boundary points of reflexive polygons lifts to l-reflexive polygons, we

have:

Corollary 7.5. Let P ⇢ NQ be an l-reflexive polygon (or more generally an l-reflexive

loop). Then |@P \N |+ |@(lP ⇤) \M | = 12.

8. About Max Kreuzer (by the second author)

Max had a sincere interest in the lattice polytope community to which he made lasting

contributions. He also had a wonderfully approachable and generous personality. I recall

a little incident when I first met him in January 2003 at snowy Oberwolfach, whilst I was

still a PhD student. Max invited me to a snowball fight, however I was reluctant to throw

a ball at this famous professor from Vienna. But he insisted, declaring, “Ich bin nicht aus

Zuckerwatte.”

Acknowledgments. The first author is supported by EPSRC grant EP/I008128/1.

The second author is supported by the US National Science Foundation (DMS 1203162),

and is grateful to the Erwin Schrödinger Institute and Universität Wien for financial

support.

References

1. Valery Alexeev and Viacheslav V. Nikulin, Del Pezzo and K3 surfaces, MSJ Memoirs, vol. 15, Math-

ematical Society of Japan, Tokyo, 2006.



FANO POLYTOPES 11

2. Victor Batyrev and Dorothee Juny, Classification of Gorenstein toric del Pezzo varieties in arbitrary

dimension, Mosc. Math. J. 10 (2010), no. 2, 285–316, 478.

3. Victor Batyrev and Benjamin Nill, Combinatorial aspects of mirror symmetry, Integer points in

polyhedra—geometry, number theory, representation theory, algebra, optimization, statistics, Con-

temp. Math., vol. 452, Amer. Math. Soc., Providence, RI, 2008, pp. 35–66.

4. Victor V. Batyrev, Toric Fano threefolds, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 4, 704–717,

927.

5. , Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J.

Algebraic Geom. 3 (1994), no. 3, 493–535.

6. , On the classification of toric Fano 4-folds, J. Math. Sci. (New York) 94 (1999), no. 1,

1021–1050, Algebraic geometry, 9.

7. Victor V. Batyrev and Lev A. Borisov, Mirror duality and string-theoretic Hodge numbers, Invent.

Math. 126 (1996), no. 1, 183–203.

8. , Dual cones and mirror symmetry for generalized Calabi-Yau manifolds, Mirror symmetry,

II, AMS/IP Stud. Adv. Math., vol. 1, Amer. Math. Soc., Providence, RI, 1997, pp. 71–86.

9. A. A. Borisov, Convex lattice polytopes and cones with few lattice points inside, from a birational

geometry viewpoint, (2000), arXiv:math.AG/0001109.

10. A. A. Borisov and L. A. Borisov, Singular toric Fano three-folds, Mat. Sb. 183 (1992), no. 2, 134–141,

text in Russian. English transl.: Russian Acad. Sci. Sb. Math., 75 (1993), 277–283.

11. Lev A. Borisov, Towards the mirror symmetry for calabi-yau complete intersections in gorenstein

toric fano varieties, (1993), arXiv:9310001.

12. Lev A. Borisov and Anvar R. Mavlyutov, String cohomology of Calabi-Yau hypersurfaces via mirror

symmetry, Adv. Math. 180 (2003), no. 1, 355–390.

13. Weronika Buczyńska, Toryczne przestrzenie rzutowe, Magister thesis, text in Polish, available from

http://www.mimuw.edu.pl/⇠jarekw/ (English translation from arXiv:0805.1211v1), June 2002.

14. Cinzia Casagrande, The number of vertices of a Fano polytope, Ann. Inst. Fourier (Grenoble) 56

(2006), no. 1, 121–130.

15. Heinke Conrads, Weighted projective spaces and reflexive simplices, Manuscripta Math. 107 (2002),

no. 2, 215–227.

16. Dimitrios I. Dais, Geometric combinatorics in the study of compact toric surfaces, Algebraic and

geometric combinatorics, Contemp. Math., vol. 423, Amer. Math. Soc., Providence, RI, 2006, pp. 71–

123.

17. , Classification of toric log del Pezzo surfaces having Picard number 1 and index  3, Results

Math. 54 (2009), no. 3-4, 219–252.

18. Dimitrios I. Dais and Benjamin Nill, A boundedness result for toric log del Pezzo surfaces, Arch.

Math. (Basel) 91 (2008), no. 6, 526–535.

19. Christian Haase and Ilarion V. Melnikov, The reflexive dimension of a lattice polytope, Ann. Comb.

10 (2006), no. 2, 211–217.

20. Paul Hacking and Yuri Prokhorov, Smoothable del Pezzo surfaces with quotient singularities, Compos.

Math. 146 (2010), no. 1, 169–192.
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