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Abstract. A new structure connecting toric degenerations of smooth Fano threefolds by projections

was introduced by I. Cheltsov et al. in “Birational geometry via moduli spaces”; using Mirror Symmetry,

these connections were transferred to the side of Landau–Ginzburg models, and a nice way to connect

the Picard rank one Fano threefolds was described. We apply this approach to all smooth Fano three-

folds, connecting their degenerations by toric basic links. In particular, we find many Gorenstein toric

degenerations of the smooth Fano threefolds we consider. We implement mutations in this framework

too. It turns out that appropriately chosen toric degenerations of the Fanos are connected by toric basic

links from a few roots. We interpret the relations we found in terms of Mirror Symmetry.
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1. Introduction

One of the central topics of research in birational geometry are Fano varieties — varieties with ample

anticanonical bundle. They play a crucial role in the Minimal Model Program and present a rich geometric

picture. Fano varieties are central in Mirror Symmetry — many constructions of mirror duality are either

Calabi–Yau manifolds or are for Fano varieties.

The classification problem for smooth Fano varieties goes back to the XIX century. Riemann showed

that the only Fano curve is a projective line P1. Pasquale del Pezzo classified the smooth Fano surfaces

(now called del Pezzo surfaces in his honour). He showed that these surfaces (with very ample anti-

canonical class) are non-degenerate surfaces of degree n in Pn; now we also add two trigonal examples

of degrees 2 and 1. These surfaces have degree at most 9 and form an irreducible family in each degree,

with the exception of degree 8 where there are two irreducible families. The modern (that is, classical,

not pre-classical) description of del Pezzo surfaces is as blow-ups of general-enough points on P2, together

with a quadric surface. That is, they are projections of an anticanonically embedded P2 ⊂ P9 from

general-enough points (again together with a quadric). If we choose any points as centres of projection

we obtain singular del Pezzo surfaces because, in this case, the projection may contract lines through the

point; however we arrive at the same family, so smooth del Pezzo surfaces can be obtained as smoothings

of projected singular ones.

Classification of Fano threefolds is more tricky. It was initiated by Gino Fano and developed later by

Iskovskikh [43, 44] (the modern definition of Fano varieties is due to Iskovskikh, who named them after

Fano). Soon afterwards, Mori and Mukai, using Iskovskikh approach and the Minimal Model Program,

classified all smooth Fano threefolds [58]; there are 105 families (the final family, accidentally overlooked
1
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in the original classification, was found in 2002 [59]). There is currently no classification known in higher

dimensions, however Kollár–Miyaoka–Mori show that there is a finite number of families of Fano varieties

in any given dimension. It is expected that even in dimension 4 the number of families of Fano varieties

is very large.

Unlike the two-dimensional case, there is no structure in the list of Fano threefolds (see [46]) system-

atically relating one with each other. An approach to obtaining such a structure is described in [15].

Briefly, the idea is as follows: similarly to the two-dimensional case, one hopes to relate all Fano varieties

to some “specific” varieties (not necessary smooth); a class of simple relations between these new varieties

should include projections from singular points, tangent spaces to smooth points, lines, and conics.

To place the problem on the combinatorial level, we choose toric Fano varieties as the “specific”

varieties. We call the simple projections between toric varieties toric basic links. One can describe the

needed projections in terms of the spanning polytopes. An example of a nice subtree in the projections

tree relating Picard rank one Fano varieties (see Figure 1) is found in [15]. Moreover, one can add

mutations to this picture (see §4); that is, deformations from one toric degeneration to another. In this

paper we study projections systematically for all Fano threefolds. In particular, we prove the following.

Given a toric variety T let us call a projection in an anticanonical embedding from tangent space to

invariant smooth point, invariant cDV point, or an invariant smooth line an F-projection.

Theorem 1.1 (Theorem 8.1). Given any smooth Fano threefold X, there exists a Gorenstein toric degen-

eration of X that can be obtained by a sequence of mutations and F-projections from a toric degeneration

of one of 15 smooth Fano threefolds (see Table 2). The directed graph connecting all Fano varieties with

very ample anticanonical class via the projections and mutation is presented in Table 3. Each of the toric

degenerations we use can be equipped with a toric Landau–Ginzburg model.

Theorem 1.2 (Theorem 8.3). (i) For any smooth Fano threefold with very ample anticanonical

class there exists a choice of Gorenstein toric degeneration such that all these degenerations are

connected by sequences of F-projections. The directed graph of such projections can be chosen as

a union of 15 trees with roots shown in Table 2. The directed graph connecting all Fano varieties

with very ample anticanonical class via projection and mutation is presented in Figure 5. Each

of the toric degenerations can be equipped with a toric Landau–Ginzburg model.

(ii) For any smooth Fano threefold with very ample anticanonical class there exists a choice of toric

degeneration such that all these degenerations are connected by sequences of projections in the

anticanonical embedding with toric centres which are either tangent spaces to smooth points, or

cDV points, or smooth lines, or smooth conics. The directed (sub)graph of such projections

connecting degenerations of all smooth Fano threefolds can be chosen to have five roots which are:

P3, P(OP2 ⊕OP2(2)), the quadric threefold, P1×P1×P1, and P3 blown-up in a line. The directed

graph connecting all Fano varieties via the projections and mutations is presented in Figure 6.

Each of the toric degenerations can be equipped with a toric Landau–Ginzburg model.

Note that P3 blown-up in a line is not a projection of P3 since a line in anticanonical embedding has

degree 4.

As the theorems suggest, the toric degenerations providing basic links correspond to toric Landau–

Ginzburg models (that is, Laurent polynomials related to toric degenerations and representing mirrors;

see below), and the theorems show that two Fano varieties are related by a toric basic link if their toric

Landau–Ginzburg models are closely related too.

The idea of presenting Landau–Ginzburg models dual to Fano varieties, or dual to varieties close to

Fano, as Laurent polynomials goes back to Givental. In [33] he suggested a Landau–Ginzburg model for a

smooth toric variety as a complex torus with a complex-valued function (a superpotential) represented by

a Laurent polynomial with support equal to the spanning polytope of the toric variety. His construction

was generalized to varieties admitting nice toric degenerations; in this case one associates the Laurent

polynomial with the fan of the toric degeneration of the Fano variety. This idea goes back to Batyrev–

Borisov’s approach [9] to mirror duality for toric varieties as duality of the corresponding polytopes and

good deformational behavior of Gromov–Witten invariants (ses [8] and references therein). In this spirit
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Laurent presentations of Landau–Ginzburg models for Grassmannians were constructed by Eguchi–Hori–

Xiong [30], and for Grassmannians and partial flag varieties by Batyrev–Ciocan-Fontanine–Kim–van

Straten [10,11].

The crucial part of the duality between Fano varieties and Landau–Ginzburg models in this approach

is an identification of (a part of) Gromov–Witten theory for the Fano varieties and periods of the dual

one-dimensional family. If the total space of the family is a complex torus, then the Landau–Ginzburg

model, as we mentioned above, is (in some basis) represented by a Laurent polynomial. In this case the

main period of the family is a generating series for constant terms of powers of Laurent polynomials,

see §3. In [33] Givental proves the coincidence of the two series for smooth toric varieties; the same was

done in [10,11] for Grassmannians and for partial flag varieties.

In [33] Givental suggested an approach to constructing Landau–Ginzburg models for (almost) Fano

complete intersections in toric varieties. This approach was generalized to complete intersections in

Grassmannians and (partial) flag varieties in [10,11], see also [12]. The output of Givental’s construction

is not a complex torus with a function but a complete intersection in a torus with a function. These

Landau–Ginzburg models satisfy the Gromov–Witten period condition via Quantum Lefshetz Theorem,

which enables one to pass from Gromov–Witten theory of a variety to Gromov–Witten theory of an ample

(Fano) hypersurface.

The natural idea is to realise birationally Landau–Ginzburg models as Laurent polynomials. This

was done in [20, 42, 65–67] for smooth Fano threefolds and complete intersections in projective spaces.

In the case of Fano complete intersections (Picard rank one) it was shown that the resulting Laurent

polynomials are related to toric degenerations. This led to the idea that Laudau–Ginzburg models

presented as Laurent polynomials should be assigned with toric degenerations used in the generalisation

of Givental’s approach. Another concept is the Compactification Principle which says that a correctly

chosen Laurent Landau–Ginzburg model admits a fiberwise compactification to a family of compact

Calabi–Yau varieties such that this family satisfy (an algebraic part of) Homological Mirror Symmetry.

These two concepts, together with the initial concept of Gromov–Witten period coincidence, form the

central ideas on which the present paper is based. The above ideas were initiated by Golyshev, who has

suggested a program of finding (toric) Landau–Ginzburg model by guessing Laurent polynomials having

prescribed constant terms and, hence, periods. The first results were obtained for smooth rank one

Fano threefolds in [65, 66]; later in [42] the proof of their toricity was completed. These results clarified

the connection with toric degenerations to (possibly very singular) toric varieties. The specific simple

form of found Laurent polynomials leads to binomial principle suggested in [66]. This principle states

that coefficients on facets of the Newton polytope of the Laurent polynomial correspond to binomial

coefficients of a power of a sum of independent variables. Surprisingly this principle covers most of (but

not all) smooth Fano threefolds: most of them have toric degenerations with cDV singularities, which

means that integral points of the Newton polytope for Laurent polynomial are the origin and points lying

on edges. This gives an algorithm for finding Landau–Ginzburg models.

Binomial principle was generalised to the Minkowski principle in [19]. It relates coefficients of the

Laurent polynomial with Minkowski decompositions of facets of its Newton polytope into particular ele-

mentary summands. Moreover, all canonical polytopes that are Newton polytopes of Minkowski Laurent

polynomials were found and all J-series of smooth Fano threefolds were computed. This gives, for any

smooth Fano threefold, a Laurent polynomial (which is not unique) satisfying the period condition. In

this paper we establish toric degeneration condition as well, see §5.

Theorem 1.3. Let T be a Gorenstein toric variety appeared in Theorems 1.1 and 1.2. Then T is a toric

degeneration of the corresponding Fano threefold.

Remark 1.4. The assertion of Theorem 1.3 holds for much larger class of Gorenstein toric varieties, see

Appendix B.

As we have mentioned, a Laurent polynomial, as a mirror dual to Fano, is not unique. However its

Calabi–Yau compactification is unique. Indeed, under mild natural conditions, this holds for rank one

Fano threefolds [29, 42]. This means that Landau–Ginzburg models are birational over the base field

C(x). In other words, corresponding Laurent polynomials differ by mutations. It is proven in [2] that

all Laurent polynomials with support on reflexive polytopes that produce the same period differ by (a
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sequence of) mutations. So they have a common log Calabi–Yau compactification. This suggests the

current and strongest concept of assigning a Laurent Landau–Ginzburg model to a reflexive polytope,

the maximal mutational principle. It is described in details in §4.

The above findings can be interpreted categorically. We propose the following:

Conjecture 1.5. The moduli spaces of Landau–Ginzburg models (defined in [25]) for directed graphs

of Fano varieties from Theorem 1.2 are contained in each other with the top Landau–Ginzburg models

contained in the ones obtained by projections.

In such a way the behaviour of Landau–Ginzburg models for three-dimensional Fano varieties is very

similar to the behaviour of Landau–Ginzburg models of del Pezzo surfaces. We lift this conjecture to

further categorical levels. As a consequence of the connection of curve complexes and stability conditions

it was noticed in [26] that stability conditions should behave well in families. Later on, the following the-

orem was proven by Haiden–Katzarkov–Kontsevich–Pandit [38]. Below we use the definition of stability

conditions given by Bridgeland. We give the most general version of the statement. After that we will

explain the connection with our situation. In what follows we give a categorical description of a family

of hyperplane sections. We use the language of comonads. Here the category Cspecial is the analogue of a

singular hyperplane section and the category Cgeneral is the analogue of a general section. The category

C0 is the global family.

Theorem 1.6. Consider the following data:

(i) a category Cspecial which is an (∞, 1)-category;

(ii) a stability condition on Cspecial;

(iii) a comonad T on Cspecial such that Cone(T → Id) = [2].

Let C0 be a category of comodules corresponding to Cspecial and T . There is a functor Cspecial → C0. We

define Cgen = C0/Cspecial. In the situation above there exists a stability condition on Cgen such that its

central charge and its phase are lift from a central charge and a phase on Cspecial.

Applied to our situation the above theorem suggests the following:

(i) Stability conditions of Fano varieties can be obtained from stability conditions of (singular) toric

varieties. Indeed, the latter have exceptional collections and moduli spaces of stability conditions

are easier to understand.

(ii) Stability conditions of Calabi–Yau varieties can be obtained from stability conditions of Fano

manifolds via Tyurin degenerations.

Combining these facts with the finding of the present paper suggests:

Conjecture 1.7. The moduli spaces of stability conditions (defined by Bridgeland) for directed graphs

of Fano varieties in Theorem 1.2 are contained in each other with the top moduli spaces of stability

conditions contained in the ones obtained by projections.

The above observations suggest that obtaining, via degenerations, stability conditions for one of three-

dimensional Fano varieties leads to computing stability conditions for all of them. In a similar fashion we

propose that Apery constants (defined in [34]) for all these Fano varieties are connected with each other.

We expect that similar behaviour of Fano varieties extends to high dimensions.

The paper is organized as follows. In §2 we recall results from [15] and define toric basic links relating

Fano threefolds. In §3 we define the toric Landau–Ginzburg models associated with toric Fano threefolds.

Toric basic links can be interpreted as their transformations. In §4 we define mutations between toric

Landau–Ginzburg models; that is, relative birational transformations between them. They correspond

to deformations of toric degenerations of given Fano threefolds and they can be implemented to the toric

basic links graph. In §5 we study toric degenerations of Fano threefolds. In §6 we describe the directed

graph of reflexive polytopes. In §7 we describe the algorithm we use to compute the projections graph.

In §8 we compute the directed (sub)graph of projections relating smooth Fano threefolds; roots of the

graphs are several particular Fano threefolds. Finally in the Appendices we present the data which is the

output of our construction. In Appendix A we present the appropriate projection directed (sub)graphs.

In Appendix B we present Gorenstein toric degenerations of Fano threefolds.
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1.1. Notation. Smooth del Pezzo threefolds, that is, smooth Fano threefolds of index two, we denote

by Vd, where d is the degree with respect to a generator of the Picard group; the single exception is

the quadric, which we denote by Q. Fano threefold of Picard rank one, index one, and degree d, we

denote by Xd. The remaining Fano threefolds we denote by Xk–n, where k is the Picard rank and n is its

number according to [46]. When k = 4 the numbers n differ from the identifiers in Mori–Mukai’s original

classification [58] due to the ‘missing’ rank four Fano X4–2 [59], which has been placed in the appropriate

position within the list.

To any reflexive polytope P ⊂ NQ we associate the Gorenstein toric Fano variety XP whose fan Σ in

the lattice N is generated by taking the cones over the faces of P . We call Σ the spanning fan of P . The

moment polytope is denoted by either P ∗ ⊂MQ or by ∆ ⊂MQ, and is dual to P . We identify Gorenstein

toric Fano varieties by the corresponding reflexive polytope P , numbered from 1 to 4319 by the Reflexive

ID as given by the online Graded Ring Database [14]. This agrees with the order of the output from

the software Palp [56], developed by Kreuzer–Skarke for their classification [54], and with the databases

used by the computational algebra systems Magma and Sage, the only complication being whether the

numbering starts from 1 (as we do here) or from 0 (as done in, for example, Sage).

The Laurent polynomial associated to a Fano threefold of Picard rank k and number m we denote by

fk–m. The toric variety whose spanning fan is generated by the Newton polytope of fk–m we denote by

Fk–m. When appropriate, we may refer to the period period sequence πf (t) of a Laurent polynomial f

by its Minkowski ID, an integer from 1 to 165. The Minkowski IDs are defined in [2, Appendix A], used

in [20], and can be looked-up online at [14].

1.2. The use of computer algebra and databases. Because of the large number of 3-dimensional

Gorenstein toric Fano varieties, several results are derived with the help of computational algebra soft-

ware and databases of classifications such as [14]. Computer-assisted rigorous proofs play an increasingly

important role as we move from surfaces to threefolds, and will become an essential mathematical tech-

nique if we ever hope to progress to the systematic study of fourfolds and Kreuzer–Skarke’s massive

classification [55] of 473 800 776 reflexive polytopes in dimension four.

We highlight our use of computer algebra. In §5, step (i), we make use of Magma [13] in order

to compute additional toric models, besides those arising from the Minkowski polynomials as classified

in [2]. In §5, step (iii), we use Macaulay2 [35] to compute the dimension of the tangent space for each

of the Gorenstein toric Fano threefolds. The software Topcom [70] is used in §5.2 to search for reflexive

polytopes with appropriate boundary triangulations. Finally, in §8 we make use of several computer

programs that rely on Palp [56] in order to build and manipulate the relevant projection graphs, as well

as to further explore the effects of using different combinations of allowed projections and mutations.

We emphasise that although any particular example can be worked by hand, the number of cases under

consideration means that the only practical way to ensure accuracy is to employ the use of a computer.

1.3. Acknowledgements. We are extreamly grateful to Nathan Ilten for his help with the calculations

in §5. Without his generous contributions, this paper would not have been possible. Alexander Kasprzyk

is supported by EPSRC Fellowship EP/N022513/1. Ludmil Katzarkov was supported by a Simons

Research Grant, NSF DMS 150908, ERC Gemis, DMS-1265230, DMS-1201475, OISE-1242272 PASI,

Simons collaborative Grant — HMS, Simons investigator grant — HMS; he is partially supported by

the Laboratory of Mirror Symmetry NRU HSE, RF Government grant, ag. № 14.641.31.0001. Victor

Przyjalkowski was partially supported by the Laboratory of Mirror Symmetry NRU HSE, RF Government

grant, ag. № 14.641.31.0001. He is a Young Russian Mathematics award winner and would like to thank

its sponsors and jury.

2. Basic links

Definition 2.1. A Fano variety X is called Gorenstein if its anticanonical class −KX is a Cartier

divisor. Such a variety is called canonical (or is said to have canonical singularities) if for any resolution

π : X̃ → X the relative canonical class KX − π∗KX̃ is an effective divisor.

Definition 2.2. A threefold singularity P (not necessary isolated) is called cDV if its general transversal

section has a du Val singularity at P .
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The only canonical Gorenstein Fano curve is P1. Canonical Gorenstein Fano surfaces are called

del Pezzo surfaces; they are given by the quadric surface, P2, and the blow-up of P2 in at most eight

points in general position, along with the degenerations of these smooth surfaces. Canonical Gorenstein

Fano threefolds are not yet classified, although partial results can be found in [16,47,48,60,64]. Smooth

Fano threefolds were classified by Iskovskikh [43,44] and Mori–Mukai [58,59]: there are 105 deformation

classes, of which 98 have very ample anticanonical divisor −KX .

Let ϕ|−KX | : X → Pg+1 be a map given by |−KX |. Then one of the following occurs:

(i) ϕ|−KX | is not a morphism, that is Bs |−KX | 6= ∅, and all such X are found in [47];

(ii) ϕ|−KX | is a morphism but not an embedding, the threefold X is called hyperelliptic, and all such

X are found in [16];

(iii) ϕ|−KX | is an embedding and ϕ|−KX |(X) is not an intersection of quadrics — then the threefold

X is called trigonal, and all such X are found in [16];

(iv) ϕ|−KX |(X) is an intersection of quadrics.

In particular an anticanonically embedded Fano variety is either trigonal or an intersection of quadrics.

The varieties that cannot be anticanonically embedded are classified: only few of them can be smoothed.

In this paper we focus on anticanonically embedded threefolds.

2.1. The del Pezzo surfaces. In the 1880s Pasquale del Pezzo considered the surfaces of degree n in

Pn; in other words, surfaces with a very ample anticanonical class. The modern definition of del Pezzo

surfaces as ones with ample anticanonical class adds blow-ups of P2 in seven and eight general points to

del Pezzo’s initial list of surfaces.

When classifying Fano varieties, we in fact classify their moduli spaces or components of their deforma-

tion spaces. This means that it is natural to consider degenerations of Fano varieties. Given one point on

each moduli space together with its deformation information one can reconstruct a classification of Fano

varieties. For del Pezzo surfaces this means that we allow birational transformations related to points in

both general and non-general position. Of course, in this case we may get singular surfaces. Following

the work of del Pezzo, let us consider anticanonically embedded surfaces. A blow-up of a general point is

simply a projection from this point. A similar transformation related to a non-general point is a blow-up

of this point followed by taking the anticanonical model. The anticanonical map contracts −2-curves

that can appear after the blow-up, i.e. strict transforms of the lines passing through the original point.

Thus these transformations are nothing but projections in the anticanonical embedding.

Projections from smooth points relate (possibly non-general) anticanonically embedded del Pezzo

surfaces, starting at either P2 = S9 ⊂ P9 or the quadric Q, and finishing with the cubic S3 ⊂ P3:

Q

π8′

��
P2 = S9

π9 // S8
π8 // S7

π7 // S6
π6 // S5

π5 // S4
π4 // S3.

Our projections terminated on a cubic: further projections are non-birational. The reason for this is that

cubic surface is trigonal, and blowing up a point produces a hyperelliptic surface whose anticanonical

map is a double covering. Thus we want to consider birational transformations

X̃

α

��

ϕ|−K
X̃
|

  
X

πi

// X ′,

where α is a blow-up, such that:

(i) the map ϕ|−KX̃ | is birational;

(ii) the variety X ′ is Fano.

Condition (i) is satisfied by being X an intersection of quadrics; in this case, X̃ is at most trigonal. Via

a careful choice of centres of the blow-ups, condition (ii) can also be satisfied. Considering projections in

the surface case, we need to include smooth points in the set of admissible centres; a posteriori we see

that this is sufficient.
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In order to simplify the model surface picture, we make one final choice: the particular points of

the deformation spaces of del Pezzo surfaces that we want to relate. We wish to make use of the toric

del Pezzo surfaces. Our main motivation for this choice comes from our desire to exploit the relation, via

toric Landau–Ginzburg models, with mirror symmetry; the relative ease of working with toric varieties;

and the classifications of toric varieties. In this case, we insist that the centres of blow-ups should also

be toric points. Thus we obtain to the following definition:

Definition 2.3. A diagram

S̃i
αi

��

ϕ|−K
S̃i
|

!!
Si πi

// Si−1,

where αi is a blow-up of a smooth point and i ≥ 4 is called a basic link between del Pezzo surfaces. If

the varieties and the centre of the blow-up are toric then the basic link is called toric.

There are 16 toric del Pezzo surfaces, corresponding to the 16 reflexive polygons [7, 69]. All possible

toric basic links between them are drawn in Figure 1. Any chain of toric basic links from P2 to the toric

cubic, plus an appendix with the quadric, gives us the classification of del Pezzo surfaces in the sense

discussed above.

2.2. Threefold case. The situation described in §2.1 changes dramatically when moving to three di-

mensions. Iskovskih [43, 44] and Mori–Mukai [58, 59] classified the smooth Fano threefolds around 1980,

a century after del Pezzo’s work in 2-dimensions. It had already observed by Iskovskih–Manin [45] that,

unlike the 2-dimensional case, not all of the smooth Fano threefolds are rational. Thus, if the basic links

considered are required to be birational, there is no hope of producing a direct analogue of Figure 1 for

smooth 3-dimensional Fano varieties. This can be rectified by considering not the smooth Fano variety

X itself, but the toric degenerations of X (and corresponding basic links). When X is very ample, these

degenerations are toric Fano threefolds with Gorenstein singularities. Reid has shown [71, Corollary 3.6]

that Gorenstein toric varieties have at worst canonical singularities, and Batyrev has shown [6] that

the Gorenstein toric Fano varieties of dimension n are equivalent, in a precise sense arising from the

combinatorics of toric geometry, to the n-dimensional reflexive polytopes.

Definition 2.4. Let N ∼= Zn be a lattice of rank n, and let P ⊂ NQ := N ⊗Z Q be a convex lattice

polytope of maximum dimension. That is, the vertices vert(P ) of P are points in N , and the dimension

of the smallest affine subspace containing P is equal to the rank of N . We say that P is reflexive if the

dual (or polar) polyhedron

P ∗ := {u ∈MQ | u(v) ≥ −1 for all v ∈ P}, where M := Hom(N,Z),

is a lattice polytope in M .

The 3-dimensional reflexive polytopes were classified by Kreuzer–Skarke [54]; up to GL3(Z)-equivalence

there are 4319 cases. As noted in §1.1 we will blur the distinction between a reflexive polytope P ⊂ NQ
and the corresponding toric Fano threefold XP , and both will often be referred to by their Reflexive

ID [14].

We now need to produce a generalisation of the 2-dimensional basic links in Definition 2.3 that would

naturally connect the Gorenstein toric Fano threefolds. Let X be such a threefold. Following [15, §2.5],

let Z be one of:

(i) a smooth point of X;

(ii) a terminal cDV point of X;

(iii) a line on X not passing through any non-cDV points.

Let α : X̃ → X be the blow-up of the ideal sheaf of the subvariety Z ⊂ X, and let β : X̃ → X ′ be the

morphism defined by |−KX̃ |, making β an embedding. Then (see [15, Lemma 2.2]):

Proposition 2.5. The morphism β is birational and X ′ is a Fano threefold with Gorenstein singularities.
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P2

��

��

$$zz

��

{{

��

**tt

##

��

##

��

**

��

tt

{{

��

$$

��

zz

��

S3

Figure 1. The toric del Pezzo directed graph, starting with P2 at the top of the diagram,
and working down through basic links to the toric cubic S3 at the bottom of the diagram.

Definition 2.6. Using the morphisms α and β as defined above, consider the commutative diagram:

X̃

α

��

β

  
X

π
// X ′

We call π : X 99K X ′ a basic link between the threefolds X and X ′. We denote individual types of basic

links as:

(i) Πp if Z is a smooth point;

(ii) Πdp (or Πo, or ΠcDV) if Z is a double point (or, respectively, an ordinary double point, or a

non-ordinary double point);
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(iii) Πl if Z is a line.

If all the varieties in question are toric, we call π a toric basic link.

In all of these cases, π can be naturally seen as a projection of X: if Z is a smooth point, then π is the

projection from the projective tangent space of X at Z, and in all other cases it is the projection of X

from Z itself. We call X the root of the projection π. Under certain additional assumptions, it is possible

to similarly define basic links for Z being a higher-degree curve. For example, we let Πc denote the

basic link in the case when Z ⊂ X is a conic curve; see [15] for the definition. Since these more-general

basic links are less natural, we deliberately try to avoid them in our main calculation. We will refer to

projections from points and lines as the allowed projections.

Example 2.7 ([15, §2.6]). Similarly to the 2-dimensional case, we can begin with P3 (or Q3) and start

applying toric basic links to it and to the varieties we get as a result. We would expect to obtain, up to

degeneration, all (or almost all) the very ample smooth Fano threefolds. Since the basic links can be seen

as projections, we can formulate this as a directed graph with vertices corresponding to smooth Fano

threefolds, up to degeneration, and arrows corresponding to the projections from a degeneration of one

variety to that of another. For example, one can see a small piece of such a graph in Figure 2.

Q3

Πp

��
P3

Πp

��

X2–30

Πl

��
X2–35

Πp

��

X3–23

Πo

��
X2–32

Πp

��

Πc // X3–24
Πo // X4–10

Πc // X4–7
Πc // X3–12

Πo // X3–10
Πo // X4–1

Πo // V22
Πo // X2–13

Πo

��
B5

Πp

��

V18

ΠcDV

��
B4

Πp

��

V4 V6
ΠcDVoo V8

ΠcDVoo V10
ΠcDVoo V12

Πooo V14
Πooo V16

Πooo

B3

Πp

��
B2

Figure 2. The Fano snake

3. Toric Landau–Ginzburg models

In this section we define a toric Landau–Ginzburg model, the main object of our study. For details

and examples see [5, 8, 19,20,40,65,66,68] and references therein.

Let X be a smooth Fano variety of dimension n and Picard rank ρ. Fix a basis {H1, . . . ,Hρ} in H2(X)

so that for any i ∈ [ρ] and any curve β in the Kähler cone K of X one has Hi · β ≥ 0. Introduce formal

variables qi := qτi for each i ∈ [ρ], and for any β ∈ H2(X) define

qβ := q
∑
τi(Hi·β).

Consider the Novikov ring Cq, i.e. a group ring for H2(X). We treat it as a ring of polynomials over C
in formal variables qβ , with relations qβ1qβ2 = qβ1+β2 . Notice that for any β ∈ K the monomial qβ has

non-negative degrees in the qi.
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Let the number

〈τaγ〉β , where a ∈ Z≥0, γ ∈ H∗(X), β ∈ K,
be a one-pointed Gromov–Witten invariant with descendants for X; see [57, VI-2.1]. Let 1 be the

fundamental class of X. The series

IX0 (q1, . . . , qρ) = 1 +
∑
β∈K

〈τ−KX ·β−21〉−KX ·β · qβ

is called the constant term of I-series (or the constant term of Givental’s J-series) for X, and the series

ĨX0 (q1, . . . , qρ) = 1 +
∑
β∈K

(−KX · β)!〈τ−KX ·β−21〉−KX ·β · qβ

is called the constant term of regularised I-series for X. Given a divisor H =
∑
αiHi, one can restrict

these series to a direction corresponding to the given divisor by setting τi = αiτ and t = qτ . Thus one can

define the restriction of the constant term of regularised I-series to the anticanonical direction, referred

to as the regularised quantum period. This has the form

ĨX(t) = 1 + a1t+ a2t
2 + . . . .

Definition 3.1. A toric Landau–Ginzburg model is a Laurent polynomial f ∈ C[x±1
1 , . . . , x±n ] which

satisfies three conditions:

(i) (Period condition) The constant term of fk is ak, for each k ∈ Z>0;

(ii) (Calabi–Yau condition) Any fibre of f : (C×)n → C has trivial dualising sheaf;

(iii) (Toric condition) There exists an embedded degeneration X  T to a toric variety T whose fan

is equal to the spanning fan of Newt(f), the Newton polytope of f .

Given a Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

n ], the classical period of f is given by:

πf (t) =

(
1

2πi

)n ∫
|x1|=...=|xn|=1

1

1− tf(x1, . . . , xn)

dx1

x1
· · · dxn

xn
, for t ∈ C, |t| � ∞.

This gives rise to a solution of a GKZ hypergeometric differential system associated to the Newton

polytope of f . Expanding this integral by the formal variable t one obtains a generating series for the

constant terms of exponents of f , which we call the period sequence and also denote by πf :

πf (t) = 1 +
∑
k≥1

coeff1(fk)tk.

For details see [65, Proposition 2.3] and [19, Theorem 3.2]. The period condition in Definition 3.1 tells

us that we have an isomorphism between the Picard–Fuchs differential equation for a family of fibres of

the map f : (C×)n → C, and the regularised quantum differential equation for X.

The Calabi–Yau condition is motivated by the following (see, for example, [66, Principle 32]):

Principle 3.2 (Compactification principle). The relative compactification of the family of fibres of a

“good” toric Landau–Ginzburg model (defined up to flops) satisfies the (B-side of the) Homological

Mirror Symmetry conjecture.

From the point of view of Homological Mirror Symmetry, the fibres of the Landau–Ginzburg model for a

Fano variety are Calabi–Yau varieties. The Calabi–Yau condition is designed to remove any obstructions

for the compactification principle in this case. Finally, the toric condition is a generalisation of Batyrev’s

principle for small toric degenerations.

Claim 3.3. All toric Landau–Ginzburg models associated with the same toric degeneration of X have

the same support. In other words, given a toric degeneration X  T , by varying a symplectic form on

X one can vary the coefficients of the Laurent polynomial fX whilst keeping the Newton polytope fixed.

Conjecture 3.4 (Strong version of Mirror Symmetry for variation of Hodge structures). Any smooth

Fano variety has a toric Landau–Ginzburg model.

Some progress has been made towards proving Conjecture 3.4 in the case of threefolds; [66, Proposition

9 and Theorem 14] and [42, Theorem 2.2 and Theorem 3.1] tell us the following:

Theorem 3.5. Conjecture 3.4 holds for Picard rank 1 Fano threefolds and for complete intersections.
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Moreover, Period condition for all Fano threefolds holds by [19], and Calabi–Yau condition holds for

them by [67]. Thus, Theorem 5.1 implies the following.

Corollary 3.6. Conjecture 3.4 holds for smooth Fano threefolds.

The compactification principle requires that the fibres of a Calabi–Yau compactification of a toric

Landau–Ginzburg model for X are mirror dual to anticanonical sections of X. In the threefold case,

this duality is called the Dolgachev–Nikulin–Pinkham duality [27, 61], and can be formulated in terms

of orthogonal Picard lattices. In [29, 68] the uniqueness of compactified toric Landau–Ginzburg models

satisfying these conditions is proved for rank one Fano threefolds, and so the theorem holds for all

Dolgachev–Nikulin toric Landau–Ginzburg models.

4. Mutations

Mutations are a special class of birational transformations which act on Laurent polynomials and arise

naturally in the context of mirror symmetry for Fano manifolds. As discussed in §3, an n-dimensional

Fano manifold X is expected to correspond to a Laurent polynomial f ∈ C[x±1
1 , . . . , x±1

n ], with the

period sequence πf of f agreeing with the regularised quantum period of X. This correspondence is far

from unique: typically there will be infinitely many Laurent polynomials corresponding to a given Fano

manifold, and it is expected that these Laurent polynomials are related via mutation [2, 32,36,51].

We recall the definition of mutation as given in [2]. Write f in the form

f =

hmax∑
h=hmin

Ch(x1, . . . , xn−1)xhn, for some hmin < 0 and hmax > 0,

where each Ch is a Laurent polynomial in n − 1 variables, and let F ∈ C[x±1
1 , . . . , x±1

n−1] be a Laurent

polynomial such that Ch is divisible by F |h| for each h ∈ {hmin, hmin + 1, . . . ,−1}. We call F a factor.

Define a birational transformation ϕ : (C×)n 99K (C×)n by

(x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1, F (x1, . . . , xn−1)xn) .

The pullback of f by ϕ gives a Laurent polynomial

g := ϕ∗(f) =

hmax∑
h=hmin

F (x1, . . . , xn−1)hCh(x1, . . . , xn−1)xhn.

Notice that the requirement that F |h| divides Ch for each h ∈ {hmin, hmin + 1, . . . ,−1} is essential: it is

precisely this condition that ensures that g a Laurent polynomial.

Definition 4.1. A mutation (or symplectomorphism of cluster type) is the birational transformation ϕ,

possibly pre- and post-composed with a monomial change of basis. We say that f and g are related by

the mutation ϕ. If there exists a finite sequence of Laurent polynomials f = f0, f1, . . . , fk = g, where

each fi and fi+1 are related by mutation, then we call f and g mutation equivalent.

One important property is that mutations preserve the classical period:

Lemma 4.2 ([2, Lemma 1]). If the Laurent polynomials f and g are mutation equivalent then πf = πg.

Example 4.3 (cf. [51, Example 2.6]). Consider the Laurent polynomial

f1 :=
(1 + x1 + x2)3∏n

i=1 xi
+ x3 + . . .+ xn ∈ C[x±1

1 , . . . , x±1
n ],

where n ≥ 3. This is a weak Landau–Ginzburg model for the n-dimensional cubic as described in, for

example, [42, §2.1]. By, for example, [20, Corollary D.5] it has period sequence:

π(t) =

∞∑
k=0

(3k)!((n− 1)k)!

(k!)n+2
t(n−1)k.

Set F := 1 + x1 + x2 and define the map

ϕ1 : (x1, x2, x3, x4, . . . , xn) 7→ (x1, x2, Fx3, x4, . . . , xn).
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Then ϕ1 defines a mutation of f1 (in this case x3 is playing the role of xn in the definition above):

f2 := ϕ∗1(f1) =
(1 + x1 + x2)2∏n

i=1 xi
+ (1 + x1 + x2)x3 + x4 + . . .+ xn.

If n ≥ 4, we can define

ϕ2 : (x1, x2, x3, x4, x5, . . . , xn) 7→ (x1, x2, x3, Fx4, x5, . . . , xn),

giving us a second mutation:

f3 := ϕ∗2(f2) =
1 + x1 + x2∏n

i=1 xi
+ (1 + x2 + x2)(x3 + x4) + x5 + . . .+ xn.

We could attempt to continue this process. If n ≥ 5 we define the map

ϕ3 : (x1, . . . , x4, x5, x6, . . . , xn) 7→ (x1, . . . , x4, Fx5, x6, . . . , xn).

This gives a mutation

f4 := ϕ∗3(f3) =
1∏n
i=1 xi

+ (1 + x1 + x2)(x3 + x4 + x5) + x6 + . . .+ xn.

However, f3
∼= f4 via the obvious monomial change of basis, and so we regard these two weak Landau–

Ginzburg models as being essentially the same.

Suppose that f is mirror to an n-dimensional Fano manifold X, and consider the Newton polytope

P := Newt(f) ⊂ NQ of f . We may assume without loss of generality that P is of maximum dimension

and that it contains the origin strictly in its interior. The spanning fan of P – the fan whose cones in

NQ are generated by the faces of P – gives rise to a toric variety XP , which we call a toric model for

X. In general XP will be singular. However, it is expected to admit a smoothing with general fibre X.

Since a smooth Fano manifold can degenerate to many different singular toric varieties, we expect many

different mirrors for X. This is reflected in that fact that f is mutation equivalent to many different

Laurent polynomials, all of which have the same classical period by Lemma 4.2.

Example 4.4. The Laurent polynomial f = x + y + 1
xy ∈ C[x±1, y±1] has Newton polytope P =

conv{(1, 0), (0, 1), (−1,−1)} ⊂ NQ and corresponding toric variety XP = P2. Via mutation, we obtain

g = y + 2x2y2 + x4y3 + 1
xy , giving the toric model XQ = P(1, 1, 4). Notice that the singular point

1
4 (1, 1) is a T -singularity and hence admits a Q-Gorenstein (qG) one-parameter smoothing [53, 73]. We

can continue mutating, resulting in a directed graph of toric models of the form X(a,b,c) := P(a2, b2, c2),

where (a, b, c) ∈ Z3
>0 is a solution to the Markov equation 3abc = a2 + b2 + c2 [4, 37]. There are

infinitely many positive solutions to the Markov equation, obtainable via cluster-style mutations of the

form (a, b, c) 7→ (b, c, 3bc − a), and so we have infinitely many toric models X(a,b,c) for P2. In each case

the weighted projective space X(a,b,c) has only T -singularities and so admits a qG-smoothing.

A mutation between two Laurent polynomials induces a mutation of the corresponding Newton poly-

topes P and Q. The corresponding toric varieties XP and XQ are deformation equivalent in the following

precise sense:

Lemma 4.5 ([41, Theorem 1.3]). Let XP and XQ be related by mutation. Then there exists a flat family

X → P1 such that X0
∼= XP and X∞ ∼= XQ.

Very little is known about the behaviour of mutations in general. The two-dimensional setting has been

studied in [1, 3, 4, 32, 50, 62]. In particular, the toric surface XP is qG-smoothable to X [1, Theorem 3],

and, for each del Pezzo surface X, the set of all polygons P such that XP is qG-smoothable to X forms

a single mutation-equivalence class [50, Theorem 1.2].

In dimension three a special class of Laurent polynomials called Minkowski polynomials were introduced

in [2]. These are Laurent polynomials f in three variables whose Newton polytope is a reflexive polytope,

with f satisfying certain additional conditions. There are 3747 Minkowski polynomials (up to monomial

change of basis), and together they generate 165 periods. Furthermore, any two Minkowski polynomials

have the same period sequence if and only if they are mutation equivalent. Of these periods, 98 are of so-

called manifold type, with the remaining 67 being of orbifold type (these are properties of the associated

Picard–Fuchs differential equations; see [19, §7] for the definitions). In [20], the period sequences of
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manifold type were shown to correspond under mirror symmetry to the 98 deformation families of three-

dimensional Fano manifolds X with very ample anticanonical bundle −KX .

Proposition 4.6. Let P ⊂ NQ be a reflexive polytope, with associated Gorenstein toric Fano variety XP .

Assume that XP has a smooth deformation space, and is a degeneration of a generic smooth Fano variety

X. Let Q be any mutation of P , with associated toric variety XQ. Then XQ is also a degeneration of X.

Proof. By Lemma 4.5 there is a flat projective family over P1 with XP and XQ as special fibres. Since

[XP ] ∈ HX lies on a single irreducible component, [XQ] must also lie on this component. A general point

of this component is a smooth Fano threefold deformation equivalent to X, so X degenerates to XQ. �

By applying the above proposition, we may find many more toric degenerations of a given Fano

threefold. Indeed, suppose that we have a smooth Fano threefold X which degenerates to a Gorenstein

toric Fano variety XP having a smooth deformation space, as described in §§B.2, B.3, B.4, B.5, and B.6.

We can use mutation to construct other Gorenstein toric Fano varieties to which X degenerates. By

consulting the calculations of §B.1 and [49, Table B.2] we can determine which of these have smooth

deformation spaces, and then iterate using these new examples. We record the resulting degenerations

in §B.7.

5. Toric degenerations

Let X be a smooth Fano threefold with a very ample anticanonical divisor, and consider its anticanon-

ical embedding V ↪→ Pn. As explained in §2.2, we are interested in finding embedded degenerations of

X to Gorenstein toric Fano varieties. The main result of this section is the following:

Theorem 5.1. Let X be a generic smooth Fano threefold with a very ample anticanonical divisor. Then

X has an embedded degeneration to a Gorenstein toric Fano variety X ′ with smooth deformation space.

Our proof makes use of the classification of smooth Fano threefolds [43,44,58,59] and consists of several

steps:

(i) We use several techniques, described in §§5.1–5.5 below, to construct at least one degeneration

X ′ for each smooth Fano X. The vast majority of these come from the models constructed in [20]

of smooth Fano threefolds as complete intersections in toric varieties; see §5.4. Note that after

we constructed these degenerations the papers [22, 28, 29] appeared; they provide further tools

for systematically constructing toric degenerations, however we do not make use of them here.

(ii) For any Fano variety X with very ample anticanonical divisor, let HX denote the Hilbert scheme

parameterising projective schemes with the same Hilbert polynomial as X in its anticanonical

embedding. If X is smooth, then it corresponds to a smooth point on an irreducible component

of HX . For each smooth Fano X, we compute the dimension of this component using [18,

Proposition 3.1].

(iii) Using the comparison theorem of Kleppe [52, Theorem 3.6] we compute the tangent space di-

mensions for all Gorenstein toric Fano threefolds, viewed as points in relevant Hilbert schemes.

(iv) Using steps (ii) and (iii) we check that all special fibres X ′ of the degenerations in step (i) have

tangent space dimension equal to the dimension of the Hilbert scheme component of X, and

hence correspond to smooth points in the Hilbert scheme. Since the forgetful functor to the

deformation space of X ′ is smooth [18, §2.1], each such X ′ has smooth deformation space.

None of our results claim to be exhaustive; for example, it is certainly possible for there to exist degen-

erations which do not appear in our search at step (i).

5.1. Previously known degenerations. We make use of a number of known toric degenerations.

Galkin [31] classified all degenerations of smooth Fano threefolds to Gorenstein toric Fano varieties with

at worst terminal singularities, which are called small toric degenerations. These are recorded in §B.2.

Notice that these include the 18 smooth toric Fano threefolds classified by Batyrev [6] and Watanabe–

Watanabe [74]. The embedded degenerations of smooth Fano threefolds with a very ample anticanonical

divisor to Gorenstein toric Fano varieties of degree at most twelve were classified in [18]. These are

recorded in §B.3. Since writing this paper, the preprint [63] has appeared; here Prince uses the methods

of [22] to construct Gorenstein toric degenerations of Fano threefolds.
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5.2. Triangulations of the moment polytope. We use the techniques developed in [17] to construct

degenerations of rank one, index one Fano threefolds. Consider the two-dimensional simplicial complexes

Ti, i ∈ {4, 5, 6, 7, 8, 9, 10, 11}, defined as follows: when i = 4 we define T4 to be the boundary of the three-

simplex; when i = 5 we define T5 to be the bipyramid over the boundary complex of a two-simplex; when

6 ≤ i ≤ 10, let Ti be the unique triangulation of the sphere with i vertices having valencies four and five;

when i = 11, let T11 be the unique triangulation of the sphere having valencies 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6.

Theorem 5.2 ( [17, §3]). For 4 ≤ i ≤ 11, let d := 2i − 4 and let Xd be a general rank one, index

one, degree d smooth Fano threefold. Consider a three-dimensional reflexive polytope ∆ ⊂ MQ whose

boundary admits a regular unimodular triangulation of the form Ti, and let X ′ := X(∆) be the associated

Gorenstein toric Fano variety with fan normal to ∆. If i < 11, or if i = 11 and h0(X ′,NX′/Pi) = 153,

then Xd has an embedded degeneration to X ′. Furthermore, the point corresponding to X ′ in HXd
is

smooth.

The resulting degenerations are recorded in §B.4.

5.3. Products with del Pezzo surfaces. A number of Fano threefolds are products of del Pezzo

surfaces with P1: X5–3, X6–1, X7–1, X8–1, and X9–1, of which the first three have very ample anticanonical

divisor. Toric degenerations of these threefolds may be found by degenerating the corresponding del Pezzo

surfaces. In many cases these degenerations are well understood; see for example the work of Hacking–

Prokhorov [37]. The threefold degenerations constructed this way are recorded in §B.5.

(i) (ii)

Figure 3. The spanning polytope (i) P ⊂ NQ and the moment polytope (ii) P ∗ ⊂MQ
of a toric degeneration of the del Pezzo surface of degree four.

Example 5.3. Consider the del Pezzo surface S4 of degree four given by the blow-up of P2 in five

points. This degenerates to the toric variety whose spanning polytope is picture in Figure 3(i). The Fano

threefold X7–1 is S4×P1, and thus degenerates to the toric Fano threefold XP where, up to GL3(Z)-action,

P := conv{±(1, 1, 0),±(1,−1, 0),±(0, 0, 1)} ⊂ NQ. This has Reflexive ID 510.

5.4. Complete Intersections in toric varieties. It appears to be common for smooth Fano varieties

to arise as complete intersections in the homogeneous coordinate ring of a smooth toric Fano variety.

Eight of the del Pezzo surfaces can be realised this way; so can at least 78 of the 105 smooth Fano

threefolds [20], and at least 738 of the smooth Fano fourfolds [21]. This leads to the following natural

construction of degenerations.

Let W be a smooth complete toric variety, with I the set of invariant prime divisors. Its homogeneous

coordinate ring R = C[xi | i ∈ I] is a polynomial ring graded by Pic(W ). Then W is the quotient

of U = SpecR \ Z by the Picard torus T = SpecC[Pic(W )], where Z is the so-called irrelevant, or

exceptional, set. Suppose that X is a complete intersection in W of Cartier divisors D1, . . . , Dk; let Di

be the class of Di in Pic(W ). Each divisor Di may be encoded by a homogeneous degree Di polynomial

fi in R. Then X arises as the quotient

X = (U ∩ V (f1, . . . , fk))//T.

In order to degenerateX, we may degenerate the polynomials fi to polynomials gi of the same multidegree.

As long as the degenerate polynomials gi still form a regular sequence in R, we get a degeneration from X

to X ′ = (U ∩ V (g1, . . . , gk))//T . If V (g1, . . . , gk) ∩ U ↪→ U is an equivariant embedding of toric varieties,

then the resulting quotient X ′ is toric as well.

To construct a toric X ′, we may choose the gi to be binomials. If M is the character lattice of the

torus of W , we have an exact sequence

0 −−−−→ M −−−−→ ZI π−−−−→ Pic(W ) −−−−→ 0,
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and each binomial gi determines a rank-one sublattice Li of M . Let O be the positive orthant of

ZI ⊗ Q, and let O′ be its image in
(
ZI/

∑
Li
)
⊗ Q. If M ′ := ZI/

∑
Li is torsion free and the natural

map R → C[O′ ∩ M ′] is surjective with kernel generated by the gi, then V (g1, . . . , gk) is toric, with

U ∩ V (g1, . . . , gk) ↪→ U an equivariant embedding. In order to determine the quotient in this situation,

let A be any ample class in Pic(W ). Then the quotient X ′ of U ∩V (g1, . . . , gk) is the toric variety whose

moment polytope ∆ is the image of π−1(A) ∩O in M ′ ⊗Q.

Example 5.4. The smooth Fano threefold X = X2–7 is a codimension two complete intersection in

the toric variety W = P1 × P4. The homogeneous coordinate ring R = C[x0, x1, y0, . . . , y4] of W has a

Pic(W ) = Z2-grading given by the columns of the weight data

x0 x1 y0 y1 y2 y3 y4

1 1 0 0 0 0 0 A

0 0 1 1 1 1 1 B

with ample cone AmpW = 〈A,B〉. The threefold X is the intersection of divisors (A + 2B) ∩ (2B).

Consider the Z2-homogeneous polynomials

g1 = x0y0y1 − x1y2y3

g2 = y2
3 − y2y4.

Then V (g1, g2) is toric, and the resulting quotient by the Picard torus gives the Gorenstein toric Fano

variety X ′ with Reflexive ID 3813 given by the moment polytope

∆ = conv{(1, 0, 0), (1, 1, 0), (1, 0, 1), (1, 1, 1), (0, 0, 1), (0,−1, 1), (−1, 0,−1), (−1, 1,−1)}.

In the above construction, the resulting toric variety X ′ need not be Fano. However, in the case

when X ′ is a weak Fano with Gorenstein singularities we can construct a degeneration from X to the

anticanonical model X ′′ of X ′. Indeed, let π : X → S be the total space of the degeneration of X to X ′.

Since all fibres are Cohen-Macaulay, −KX/S |F ∼= −KF for any fibre F [23, Theorem 3.5.1]. Furthermore,

since −KX′ is Cartier and nef (and X ′ is toric), all higher cohomology of −KF vanishes for every fibre

F . By cohomology and base change, the restriction map H0(X ,−KX/S) → H0(F,−KF ) is surjective.

Hence, taking Proj of the section ring of −KX/S gives a flat family over S with X ′′ as the special fibre

and X as the general fibre.

We apply the above discussion to find toric degenerations of many of the smooth Fano threefolds, using

their descriptions in [20] as complete intersections in toric varieties. These degenerations are recorded

in §B.6. For each degeneration, we also record the corresponding regular sequence gi, using the same

ordering on the homogeneous coordinates as in [20]. For a similar approach to constructing degenerations,

see also [39].

5.5. The exceptional case: X2–14. The previous methods fail to construct toric degenerations for

the smooth Fano threefold X2–14. We now discuss a modification of §5.4 which does produce a toric

degeneration.

The smooth Fano threefold X = X2–14 may be realised as a divisor of bidegree (1, 1) in V5×P1, where

B5 is a codimension-three linear section of the Grassmannian Gr(2, 5) in its Plücker embedding [20]. The

anticanonical embedding places V5 in P6 as the intersection of five quadrics. The approach of §5.2 can

be applied to find degenerations of V5. In particular, it degenerates to the Gorenstein toric Fano with

Reflexive ID 68.

We can realize X as the intersection in the toric variety P6 × P1 of V5 × P1 and a divisor of bidegree

(1, 1), defined by a bihomogeneous polynomial f . Simultaneously degenerating the quadrics of V5 and

the polynomial f leads to a degeneration of X. More precisely, we may degenerate the quadrics to

x1x6 − x2x5, x1x6 − x3x4, x0x3 − x1x2,

x0x5 − x1x4, x0x6 − x2x4,
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and the polynomial f to g = x3x7 − x4x8. The resulting variety is the Gorenstein toric Fano threefold

with Reflexive ID 2353, generated by the polytope

P := conv{(1, 0, 0), (0, 1, 0),± (0, 0, 1),±(1,−1, 0),

±(1, 0,−1),± (0, 1,−1), (−1,−1, 0), (−1,−1, 1)} ⊂ NQ.

6. The graph of reflexive polytopes

In [72] Sato investigated the concept of F -equivalence classes of a smooth Fano polytope. Recall that

a smooth Fano polytope P ⊂ NQ corresponds to a smooth toric Fano variety XP via its spanning fan.

Smooth Fano polytopes are necessarily reflexive, and a reflexive polytope P ⊂ NQ is smooth if, for each

facet F of P , the vertices vert(F ) give a Z-basis for the underlying lattice N (and hence, in particular,

P needs be simplicial).

Definition 6.1 (F -equivalence of smooth Fano polytopes). Two smooth Fano polytopes P,Q ∈ NQ are

F -equivalent, and we write P
F∼ Q, if there exists a finite sequence P0, P1, . . . , Pk ⊂ NQ of smooth Fano

polytopes satisfying:

(i) P and Q are GLn(Z)-equivalent to P0 and Pk, respectively;

(ii) for each 1 ≤ i ≤ k we have either that vert(Pi) = vert(Pi−1) ∪ {w}, where w 6∈ vert(Pi−1), or

that vert(Pi−1) = vert(Pi) ∪ {w}, where w 6∈ vert(Pi);

(iii) if w ∈ vert(Pi) \ vert(Pi−1) then there exists a proper face F of Pi−1 such that

w =
∑

v∈vert(F )

v

and the set of facets of Pi containing w is equal to

{conv({w} ∪ vert(F ′) \ {v}) | F ′ is a facet of Pi1 , F ⊂ F ′, v ∈ vert(F )} .

In other words, Pi is obtained by taking a stellar subdivision of Pi−1 with w. Similarly, if

w ∈ vert(Pi−1) \ vert(Pi) then Pi−1 is given by a stellar subdivision of Pi with w.

Notice that condition (iii) means that if P
F∼ Q then the corresponding smooth toric Fano varieties

XP and XQ are related via a sequence of equivariant blow-ups or blow-downs. Little is known about F -

equivalence in general, although it is known that all smooth Fano polytopes are F -equivalent in dimensions

≤ 4, and that there exists non-F -equivalence polytopes in all dimensions ≥ 5.

We wish to generalise the notion of F -equivalence to encompass projections between reflexive poly-

topes. Our focus here is on three-dimensions, although what follows can readily be generalised to higher

dimensions. Fix a three-dimensional reflexive polytope P ⊂ NQ and consider the corresponding Goren-

stein toric Fano variety X = XP . Toric points and curves on X correspond to, respectively, facets and

edges of P . Projections from these points (or curves) correspond to blowing-up the cone generated by

the relevant facet (or edge). Since we are restricting ourselves to the class of reflexive polytopes, it is

clear that the original facet (or edge) only needs to be considered if it has no (relative) interior points:

any interior point of that face will become an interior point of the resulting polytope, preventing it from

being reflexive.

Proposition 6.2. Let P ⊂ NQ be a three-dimensional reflexive polytope, and let F be a facet or edge

of P such that F contains no (relative) interior points. Up to GL3(Z)-equivalence, F is one of the four

possibilities shown in Table 1.

Proof. First consider the case when F is a facet of P . Since P is reflexive, there exists some primitive

lattice point uF ∈ M such that uF (v) = 1 for each v ∈ F . In particular, by applying any change

of basis sending uF to e∗1 we can insist that F is contained in the two-dimensional affine subspace

Γ := {(1, a, b) | a, b ∈ Q}. Pick an edge E1 of F such that |E1 ∩N | is as large as possible. Let

v ∈ vert(E1) be a vertex of E1 (and hence of F ), and let E2 6= E1 be the second edge of F such

that E1 ∩ E2 = {v}. Let vi ∈ Ei ∩ N be such that vi − v is primitive. Since F ◦ = ∅ we have that

∆ := conv{v, v1, v2} is a lattice triangle with |∆ ∩N | = 3; that is, ∆ is an empty triangle. Up to

GL2(Z)-equivalence, the empty triangle is unique. Hence we can apply a change of basis to the affine

lattice Γ ∩ N such that v = (1, 0, 0), v1 = (1, 1, 0), and v2 = (1, 0, 1). By considering the possible
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Face Points added

1

(1, 0, 0)

(1, 0, 1)

(1, 1, 0)

(3, 1, 1)

2

(1, 0, 0)

(1, 0, 1)

(1, a, 0) (1, a+ b, 0)

(1, a, 1)

(2, 1, 1), (2, 2a+ b− 1, 1)

3

(1, 0, 0)

(1, 0, 1)

(1, 0, 2)

(1, 1, 0) (1, 2, 0)

(1, 1, 1)
(3, 2, 2)

4 (1, 0, 0) (1, 1, 0) (2, 1, 0)

Table 1. The possible choices of faces to be blown-up, and corresponding points to be
added, when considering projections between Gorenstein toric Fano threefolds.

lengths of the edges E1 and E2, and remembering that (1, 1, 1) cannot be an interior point, we find the

first three cases in Table 1. In the case when F is an edge, it must have length one and hence (up to

GL3(Z)-equivalence) F = conv{(1, 0, 0), (1, 1, 0)}, the fourth case in Table 1. �

Corollary 6.3. Let P,Q ⊂ NQ be two three-dimensional reflexive polytopes such that XQ is obtained

from XP via a projection. Then the corresponding blow-up of the face F of P introduces new vertices as

given in Table 1.

Proof. We prove this only in case 2 in Table 1. The remaining cases are similar. We refer to Dais’ survey

article [24] for background, and for the combinatorial interpretation. Let

C = cone{(1, 0, 0), (1, a+ b, 0), (1, a, 1), (1, 0, 1)} ⊂ NQ,

where a, b ∈ Z>0. This is defined by the intersection of four half-spaces of the form {v ∈ NQ | ui(v) ≥ 0},
where the ui are given by (0, 0, 1), (0, 1, 0), (1, 0,−1), (a+ b,−1,−b) ∈M . Moving these half-spaces in by

one, we obtain the polyhedron:

4⋂
i=1

{v ∈ NQ | ui(v) ≥ 1} = conv{(2, 1, 1), (2, 2a+ b− 1, 1)}+ C.

Hence the blow-up is given by the subdivision of C into four cones generated by inserting the rays (2, 1, 1)

and (2, 2a+ b− 1, 1). �

Of course case 1 in Table 1 is a specialisations of case 2. However, since the point added is what is

important, we list it separately. When a = 1, b = 0, or when a = 0, b = 2 in case 2, the coordinates of

the two points to be added coincide, so we add the single point (2, 1, 1).

Since the choice of the basic links we are using relies on distinguishing curves of small degrees on a

given toric variety, it is necessary to be able to easily calculate the anticanonical degree of a given curve.

This can be done as follows:

Lemma 6.4. Let T be a three-dimensional Q-factorial projective toric variety with simplicial fan ∆. Let

c1 and c2 be rays in ∆(1) generating a two-dimensional cone in ∆(2), with corresponding torus-invariant

curve C. Here ∆(n) denotes the set of n-dimensional cones in the fan ∆. Let a1 and a2 be rays such

that Fi = cone{c1, c2, ai} ∈ ∆(3), F1 6= F2, and let e1, . . . , er denote the remaining rays of ∆, so that
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∆(1) = {c1, c2, a1, a2, e1, . . . , er}. Let Vol(Fi) = |Γ : N | be the index of the sublattice Γi in N generated

by c1, c2, ai, where by a standard abuse of notation we confuse a ray with its primitive lattice generator

in N ; equivalently, Vol(Fi) is equal to the lattice-normalised volume of the tetrahedron conv{0, c1, c2, ai}.
Denote the boundary divisor corresponding to ci, ai, or ei by Ci, Ai, or Ei respectively. Let L1 and

L2 be linear forms such that L1 vanishes on c2 but not on c1, and L2 vanishes on c1 but not on c2. Then

the anticanonical degree of C is equal to

degC =

(
1− L1(a1)

L1(c1)
− L2(a1)

L2(c2)

)
1

Vol(F1)
+

(
1− L1(a2)

L1(c1)
− L2(a2)

L2(c2)

)
1

Vol(F2)
.

Proof. Recall that the anticanonical degree of C is the sum of its intersection with all boundary divisors

degC = C ·

(
C1 + C − 2 +A1 +A2 +

r∑
i=1

Ei

)
= C · C1 + C · C2 + C ·A1 + C ·A2,

with intersection numbers given by

C ·A1 = 1/Vol(F1), C ·A2 = 1/Vol(F2).

Given the linear forms L1, L2 as above, let Di be the principal divisor corresponding to the form Li.

Then:

0 ≡ Di ≡ Li(c1)C1 + Li(c2)C2 + Li(a1)A1 + Li(a2)A2 +

r∑
j=1

Li(ej)Ej .

This gives:

0 = C ·Di = Li(ci)C · Ci + Li(a1)C ·A1 + Li(a2)C ·A2.

Hence:

C · Ci = −Li(a1)

Li(ci)

1

Vol (F1)
− Li(a2)

Li(ci)

1

Vol (F2)
. �

Corollary 6.5. Let X be a toric Fano threefold and let P the corresponding three-dimensional Fano

polytope. Let E be an edge of P corresponding to a curve C on X, and let F1 and F2 be the two facets

of P meeting at E. Let c1 and c2 be the two vertices of P lying on E, and let a1 and a2 be vertices of P

lying on F1 \ E and F2 \ E, respectively. Then:

degC =
1

|a1 · (c1 × c2)|
+

(
1 +

(c1 − c2) · (a1 × a2)

a1 · (c1 × c2)

)
1

|a2 · (c1 × c2)|
.

Proof. If the point p1 ∈ X corresponding to the face F1 is singular, then one can take a small resolution

X ′ of X at this point and calculate the degree of C via that resolution. This is done by choosing a

triangulation of F1, with the result being independent of the choice. So, by picking a triangulation

containing the triangle (c1, c2, a1), one can assume that p1 is a smooth point of X.

Similarly, the point p2 ∈ X corresponding to the face F2 of P can also be assumed to be smooth.

Therefore, X satisfies the conditions of Lemma 6.4.

Take:

L1(x) = x · (c2 × a1) , L2(x) = x · (a1 × c1) .

Since Vol (Fi) = |ai · (c1 × c2)|, have:

degC =
1

|a1 · (c1 × c2)|
+

(
1− a2 · (c2 × a1)

c1 · (c2 × a1)
− a2 · (a1 × c1)

c2 · (a1 × c1)

)
1

|a2 · (c1 × c2)|
,

which simplifies to the form above. �

Definition 6.6 (F -equivalence of reflexive polytopes). Two three-dimensional reflexive polytopes P,Q ∈
NQ are F -equivalent, and we write P

F∼ Q, if there exists a finite sequence P0, P1, . . . , Pk ⊂ NQ of reflexive

polytopes satisfying:

(i) P and Q are GL3(Z)-equivalent to P0 and Pk, respectively;

(ii) For each 1 ≤ i ≤ k we have that either vert(Pi) ( vert(Pi−1) or vert(Pi−1) ( vert(Pi).

(iii) If vert(Pi) ( vert(Pi−1) then there exists a face F of Pi and ϕ ∈ GL3(Z) such that ϕ(F ) is

one of the seven faces in Table 1. Furthermore, the points ϕ(vert(Pi−1) \ vert(Pi)) are equal to

the corresponding points in Table 1, and ∂F ⊂ ∂Pi−1. The case when vert(Pi−1) ( vert(Pi) is

similar, but with the roles of Pi−1 and Pi exchanged.
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F

F'

v

0

(i) uF ′(v) < 1 (ii) uF ′(v) = 1

(iii) uF ′(v) > 1

Figure 4. The three possible ways a facet F ′ adjacent to F can be modified when
adding a new vertex v. See Remark 6.7 for an explanation.

If P
F∼ Q then the corresponding Gorenstein toric Fano threefolds XP and XQ are related via a

sequence of projections.

Remark 6.7. The requirement that ∂F ⊂ ∂Pi−1 in Definition 6.6(iii) perhaps needs a little explanation.

Consider the case when F is a facet. Adding the new vertices can affect a facet F ′ adjacent to F , with

common edge E, in one of three ways. Let uF ′ ∈ M be the primitive dual lattice vector defining the

hyperplane at height one containing F ′. Let v1, . . . , vs ∈ N be the points to be added according to

Table 1, so that Pi−1 = conv(Pi ∪ {v1, . . . , vs}).
(i) If uF ′(vi) < 1 for 1 ≤ i ≤ s then F ′ is unchanged by the addition of the new vertices, and hence

F ′ is also a facet of Pi−1.

(ii) Suppose that uF ′(vi) = 1 for 1 ≤ i ≤ m, and uF ′(vi) < 1 for m+ 1 ≤ i ≤ s, for some 1 ≤ m ≤ s.
Then the facet F ′ is transformed to the facet F ′′ := conv(F ′ ∪ {vi | 1 ≤ i ≤ m) in Pi−1. Notice

that F ′ ⊂ F ′′, but that E is no-longer an edge of F ′′. This is equivalent to a blowup, followed

by a contraction of the curve corresponding to E.

(iii) The final possibility is that there exists one (or more) of the vi such that uF ′(vi) > 1. When we

pass to Pi−1 we see that F ′ is no-longer contained in the boundary; in particular, E◦ ⊂ P ◦i−1 and

so ∂F 6⊂ ∂Pi−1. This case is excluded since it does not correspond to a projection between the

two toric varieties.

These three possibilities are illustrated in Figure 4.

Corollary 6.8 (Reflexive polytopes are F -connected).

(i) Let P,Q ⊂ NQ be any two three-dimensional reflexive polytopes. Then P
F∼ Q.

(ii) Let GF be the directed graph whose vertices are given by the three-dimensional reflexive polytopes,

with an edge P → Q if and only if there exists a projection from XP to XQ (that is, if and only

if vert(P ) ⊂ vert(Q), P
F∼ Q, and k = 1 in Definition 6.6). Then GF has 16 roots and 16 sinks,

and these are related via duality. The Reflexive IDs of the roots are

1, 2, 3, 4, 5, 8, 9, 10, 11, 16, 18, 31, 45, 89, 102, and 105.

The corresponding sinks have Reflexive IDs

4312, 4282, 4318, 4284, 4287, 4310, 3314, 4313, 4315, 4299, 4238, 4251, 4303, 4319, 4309, and 4317.

Proof. This is a simple computer calculation using the classification [54] and Table 1. �
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Corollary 6.8 is somewhat surprising. Although we know of no reason to expect the reflexive polytopes

to be F -connected, nor would we have expected the roots and sinks to be related via duality, we can make

a small observation. Let P,Q ⊂ NQ be two reflexive polytopes such that there exists a finite sequence

P0, P1, . . . , Pk ⊂ NQ of reflexive polytopes satisfying conditions (i) and (ii) in Definition 6.1 (that is,

Pi−1 and Pi are obtained via the addition or subtraction of a vertex). Then we say that P and Q are

I-equivalent. It is well-known that the three-dimensional reflexive polytopes are I-connected (although,

once more, this is an experimental rather than theoretical fact). Furthermore, if one constructs a directed

graph GI in an analogous way to GF in Corollary 6.8(ii), one finds the exact same list of 16 roots and

16 sinks (although the two graphs are different, clearly GF can be included in GI after possibly factoring

edges). Here this duality is less mysterious: if P is minimal with respect to the removal of vertices (that

is, if conv(vert(P ) \ {v}) is not a three-dimensional reflexive polytope for any v ∈ vert(P )) then Q = P ∗

is maximal with respect to the addition of vertices (that is, conv(vert(Q) ∪ {v}) is not a reflexive polytope

for any v /∈ Q).

7. Computing projections

In order to do the associated computations, it is in most cases better to represent the toric degenerations

of a smooth Fano variety by reflexive lattice polytopes. Given a toric degeneration, the associated reflexive

Newton polytope is computed via the standard methods. However, it is worth noting that given a smooth

Fano threefold F , it is sometimes possible to produce several different toric degenerations for F , resulting

is different Newton polytopes, which give rise to different basic links. However, it is usually possible to

connect these degenerations by a sequence of mutations (see [2]). One can choose to consider the set of

degenerations of F either as a whole (in order to concentrate on F itself, using mutations to move between

different degenerations) or as a collection of individual degenerations (to concentrate on the projections,

avoiding the use of mutations).

Given a reflexive polytope, it is usually harder to determine which smooth Fano threefold it originated

from. However, it is now possible due to [2,20], where all the 3-dimensional reflexive polytopes have been

listed and the possibilities for the corresponding smooth Fano threefolds have been given. It is worth

noting that some of the polytopes do not correspond to any smooth Fano threefold even on the level

of period sequences. In this paper such polytopes are disregarded, and the projections with them as

intermediate steps are avoided.

In this representation, it is also possible to compute the basic links (projections) by manipulating the

Newton polytopes directly.

We can take X = P3 and start applying the allowed toric basic links to it. This will give us birational

maps between 2868 toric Fano threefolds with canonical Gorenstein singularities (containing representa-

tives of 107 different period sequences and 74 different smooth Fano threefolds). Similarly, we can take

X to be any other suitable toric Fano threefold and apply the same process, getting maps between a

number of toric Fano varieties. Since there are only finitely many such Fano threefolds, there must be

some minimal set of projection roots that allows us to obtain all the other ones in this way. Clearly, this

minimal set of roots will contain all the varieties represented by the minimal polytopes (with respect to

the removal of vertices). However, it may (depending on what projections are used) include some further

toric varieties (for an example, see Remark 8.2).

We can also look at the situation in a different way: we can consider the toric Fano threefolds with

canonical Gorenstein singularities primarilly as degenerations of smooth Fano threefolds. From this point

of view, the mutations (see §4) give us a second set of basic links, connecting pairs of degenerations of the

same smooth Fano threefold. With this in mind, we can repeat the above process, aiming to represent

all the smooth Fano threefolds (via their degenerations). One can do this with or without allowing the

use of mutations. Since there are only finitely many toric Fano threefolds with canonical Gorenstein

singularities, it is possible to complete all the constructions described above.

Given a starting reflexive polytope (a toric Fano threefold with canonical Gorenstein singularities),

the program considers all its faces (torus-invariant points) and edges (torus-invariant curves). It selects

the relevant ones (according to the rules of the “allowed” projections) and projects from them, obtaining

a number of new polytopes (discarding those that turn out not to be reflexive). These polytopes are then

added to the processing queue, taking care to avoid duplicates to the polynomials that have been found
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previously (two explicitly given three-dimensional polytopes are considered to be the same if one can be

mapped to the other by an action of the orthogonal group on the underlying Z3 lattice). Such a pair of

duplicates is merely an indication that there are several projection paths between a pair of varieties.

For example, there is a pair of paths between polytope 232 (corresponding to variety B3) and polytope

1969 (corresp. to variety X2–8) – such a path can go either through polytope 428 (variety B2) or through

polytope 1599 (variety X2–15). These maps correspond to taking a pair of points (a smooth point and a

cDV point) on the degeneration of B3 and projectiong from them, the intermediate polytope is defined

by choosing the order of projections.

Aside from obtaining new polytopes via projections from previously known ones, the program (when

set to do so) also builds them by considering the possible antiprojections (i.e. inverses of projections) from

the known polytopes. This serves a dual purpose: on the one hand, it makes it easier to explore ways of

connecting several different polytopes (or the corresponding smooth Fano threefolds); on the other hand,

since the procedures for the projections and the antiprojections have been written independently, this

serves as an error-checking technique (if a projection P1  P2 is found, not finding an antiprojection

P2  P1 of the same type would indicate an error. This is checked automatically to make sure the

calculations are accurate).

Once the projection graph obtained this way is built, the program identifies all the obtained polytopes

according to their ID numbers from the Graded Ring Database [14]. This also makes it possible to read

off other information about the polytopes, including their period sequence (bucket) numbers, which (if

any) smooth Fano threefolds they are degenerations of and what mutations can be made from them.

The data gathered this way was fed into a second program for analysis. The program considered

projections between reflexive polytopes and calculated the pairs of smooth Fano threefolds that these

projections link (via toric degenerations). Having found such links, the program also determined the

“root” smooth Fano threefolds and built the corresponding graph. In order to help justify the graph, it

also produced examples of each of the links (trying to pick “good” degenerations for each threefold).

8. Projection directed graphs

We are interest in constructing a three-dimensional analogue of Figure 1. As such, we wish to restrict

our attention to those reflexive polytopes P whose corresponding Gorenstein Fano variety XP is a toric

degeneration of a smooth Fano threefold X. As a first approximation, it is reasonable to restrict our

attention to those P such that Hilb(XP ,−KXP
) = Hilb(X,−KX); this condition on the Hilbert series is

satisfied by 4310 of the reflexive polytopes. Even if we only allow projections passing through this subset,

the result is F -connected.

The calculations described above have been performed, yielding the following results. Given a toric

variety T let us call a projection in an anticanonical embedding from tangent space to invariant smooth

point, invariant cDV point, or an invariant smooth line (see Table 1) F-projection.

Theorem 8.1. Given any smooth Fano threefold X, there exists a Gorenstein toric degeneration of X

that can be obtained by a sequence of mutations and F-projections from a toric degeneration of one of

15 smooth Fano threefolds (from now on referred to as the projections roots, see Table 2). The directed

(sub)graph connecting all Fano varieties via the projections and mutations is presented in Table 3. Each

of toric degenerations we use can be equipped with a toric Landau–Ginzburg model.

Proof. The list of such paths that minimize the number of projections used form the graph that can be

seen in Appendix A. The vertices represent the Fano varieties (one vertex can represent several different

degenerations of the same variety), and the arrows represent projections between degenerations of different

varieties. The existence of all the arrows is shown in Appendix A, where for each arrow an example of

a relevant pair of explicit degenerations is given (according to their polytope ID from the Graded Ring

Database). �

Remark 8.2. Not all the projection roots correspond to polytopes that are minimal with respect to the

removal of vertices: for example, none of the polytopes corresponding to variety X2–33 are minimal. The

appearance of such roots depends on the choice of projections used – such roots can be eliminating by

allowing the use of additional projection types, like projections from curves of higher degree. In fact, a
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Variety Degree Eliminated by projections from:
P3 64

X2–36 62
Q3 54
X3–27 48
X2–33 54 quartics
X3–29 50 conics
X3–28 48 conics
X4–11 42 conics
X2–28 40 conics
X3–22 40 conics
X5–3 36 conics
X6–1 30 conics
X3–9 26 conics
X7–1 24 conics
X8–1 18 conics

Table 2. Projection roots

degeneration of X2–33 can be obtained by projecting P3 (polytope ID 1, minimal) from a curve of degree

4 (obtaining polytope ID 7). However, as discussed above, such projections do not represent natural

geometric operations on Fano varieties, and hence are not being considered.

One can note that the graph above is not connected – in fact, it has 3 connected components. This is

due to the choice of the types of projections used in the graph: using only projections from points and

lines (as discussed above), the graph splits into the main component and two one-variety components

(containing varieties X7–1 and X8–1). Variety X7–1 (polytope ID 506) can be reached from the main

component by a projection of X6–1 (polytope ID 357) from a conic, and X8–1 (polytope ID 769) can be

obtained by projecting X7–1 (polytope ID 506) from a conic.

Theorem 8.3. (i) For any smooth Fano threefold there is its toric degeneration such that all these

degenerations are connected by sequences of projections with toric centres which are either cDV

points or smooth lines. The directed graph of such projections containing toric degenerations

of all smooth Fano threefolds with very ample anticanonical class can be chosen as a union of

15 trees with roots shown in Table 2. The directed (sub)graph connecting all Fano varieties via

the projections and mutations is presented in Figure 5. Each of the toric degenerations can be

equipped with a toric Landau–Ginzburg model.

(ii) For any smooth Fano threefold with very ample anticanonical class there is its Gorenstein toric

degeneration such that all these degenerations are connected by sequences of projections with toric

centres which are either cDV points, smooth lines, or smooth conics. The directed (Sub)graph of

such projections can be chosen to have five roots which are: P3, X2–36, Q3, X3–27, and X2–33. The

directed graph connecting all Fano varieties with very ample anticanonical class via the projections

and mutations is presented in Figure 6. Each of the toric degenerations can be equipped with a

toric Landau–Ginzburg model.

Proof. The algorithm described in §7 was implemented to find all possible projections between degener-

ations of smooth Fano threefolds. After that, one can choose a toric degeneration for each of the Fano

varieties as described in the statement of the theorem. An example of a choice of toric degenerations that

create such graphs can be seen in Table 3. For each variety, it gives the corresponding Minkowski ID, as

well as the Reflexive ID of the chosen degenerations (for the graphs in part (i) and (ii) of the theorem).

If a variety has a terminal degeneration, its Minkowski ID is written in bold; if the degeneration used is

terminal, its Reflexive ID is also made bold.

Note that if the choice of polytopes from part (i) is used in a graph that includes projections with

centres in conics, one gets a directed graph with 6 roots (the additional one being X3–28). To rectify

that, a different choice of degeneration needed to be made for 4 varieties in part (ii). �



PROJECTING FANOS IN THE MIRROR 23

Table 3. Degeneration choice

Var. ID (i) (ii) Var. ID (i) (ii) Var. ID (i) (ii)
P3 1 1 X3–27 45 31 X4–2 110 668

X2–33 2 7 B5 46 68 X4–1 111 1530
Q3 3 4 X4–11 48 85 X3–8 112 1082
X2–30 4 23 X3–21 49 214 V22 113 1943
X2–28 5 69 X4–9 54 217 X3–6 117 1501
X2–36 6 8 X4–8 57 425 X2–12 118 2356
X2–35 7 6 X2–26 58 175? X2–13 119 1924
X3–29 8 27 X5–2 64 220 X2–11 120 1701
X2–34 10 24 X4–7 65 740 X2–14 122 2353
X3–30 11 29 X3–15 67 420 V18 124 2703
X3–26 12 26 X4–5 68 427 X3–3 135 2678
X3–22 13 76 X2–22 69 373? X7–1 136 506
X3–31 14 28 X3–13 70 737 X3–5 138 1367
X2–31 15 70 X3–11 72 732 X2–9 139 3136
X3–25 16 74 X2–18 74 1090 B2 140 428
X3–23 17 205 B4 75 154? X3–4 142 2222
X3–19 18 206 X5–3 76 219 V16 143 2482
X2–27 19 201 X2–23 78 411 X2–8 144 1969
X3–14 21 203 X4–6 81 426 X2–10 145 3036
X3–9 22 374 X4–4 83 741 V14 147 3283
X2–32 24 22 X2–21 84 731 X2–7 148 3239
X3–28 28 30 81 X3–12 85 723? X2–6 149 3319
X4–13 29 84 X2–19 86 1109 V12 150 3966
X3–24 31 78 X2–20 87 1110 X3–1 154 3350
X4–12 34 83 190? X4–3 88 735 X8–1 155 769
X2–29 35 72 204 X3–10 99 1113 X3–2 157 2791
X4–10 37 215 X5–1 100 673 X2–5 158 3453
X3–20 38 80 X2–17 101 1528 V10 160 4132
X3–17 39 210 X3–7 103 1529 X2–4 161 4031
X3–18 41 212 419 X2–16 104 1485 V8 163 4205
X3–16 42 418 B3 106 232 V6 164 4286
X2–25 43 410 X6–1 107 357 V4 165 4312
X2–24 44 412 X2–15 109 1599

Remark 8.4. These graphs are not the only ones that satisfy the statement of the theorem. For many

smooth Fano threefolds, a choice of degeneration needed to be made. In this case, the choice was made

according to the following priorities:

(i) to minimize the number of the graphs’ roots;

(ii) to minimize the number of the connected components of the graphs;

(iii) where possible, to use a terminal degeneration of the variety.

In the choices above, the numbers of roots and connected components are indeed minimal, and a ter-

minal degeneration was used where available except in 4 cases (5 cases if projections with centres in

smooth conics were used), marked by ?, where this would lead to getting additional roots or connected

components. The degenerations in question are those for varieties B4, X2–22, X2–26, X3–12 (and X4–12 if

projections with centres at conics were used).

Appendix A. Projection–minimizing graph

Table 4 contains a choice of degenerations (X1, X2) for every arrow in the graph of projections discussed

in Theorem 8.1. The “From” column gives the starting variety of the projection along with the variety’s

degree and Minkowski ID. The “To” column lists all the possible destination varieties, and, for each of

them, an example of the corresponding pair of degenerations (X1, X2) (in terms of their Reflexive ID’s).
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Table 4. Projection graph

From: To:
Level Var. P.S. Deg.
0 1.1 1 64 2.35: ( 1 6 )
0 2.36 6 62 2.34: ( 8 24 )
0 1.2 3 54 3.31: ( 2 20 ) 2.30: ( 2 14 )
0 2.33 2 54 3.30: ( 7 29 ) 3.26: ( 7 26 )
0 3.29 8 50 3.26: ( 27 73 ) 3.24: ( 27 78 )
0 3.27 45 48 1.7: ( 18 43 )
0 3.28 28 48 4.12: ( 52 181 ) 2.29: ( 52 106 )
0 4.11 48 42 3.21: ( 62 184 ) 4.9: ( 191 291 ) 2.26: ( 62 163 )
0 2.28 5 40 2.27: ( 34 305 ) 3.14: ( 34 143 )
0 3.22 13 40 3.19: ( 139 270 ) 3.17: ( 76 210 ) 3.15: ( 139 316 )
0 5.3 76 36 4.6: ( 195 409 ) 2.21: ( 114 238 )
0 6.1 107 30 4.2: ( 284 602 )
0 3.9 22 26 2.18: ( 447 1999)
0 7.1 136 24
0 8.1 155 18
1 2.35 7 56 2.32: ( 6 13 )
1 2.34 10 54 2.31: ( 5 21 )
1 3.31 14 52 3.25: ( 20 47 )
1 3.30 11 50 4.13: ( 29 60 )
1 2.30 4 46 3.25: ( 14 47 ) 3.23: ( 23 77 )
1 3.26 12 46 3.23: ( 26 77 ) 3.20: ( 26 44 )
1 4.12 34 44 4.10: ( 309 638 ) 3.18: ( 309 639 )
1 3.24 31 42 4.10: ( 169 390 ) 3.20: ( 169 259 )
1 1.7 46 40 1.6: ( 221 429 )
1 2.29 35 40 3.20: ( 106 259 ) 3.18: ( 19 63 ) 2.25: ( 106 251 )
1 2.27 19 38 3.18: ( 71 212 ) 3.16: ( 71 213 ) 2.24: ( 157 322 )
1 3.19 18 38 3.16: ( 75 213 ) 3.13: ( 35 93 )
1 3.21 49 38 4.8: ( 488 1350) 2.23: ( 488 765 )
1 4.9 54 38 4.8: ( 291 580 ) 4.7: ( 67 185 ) 2.22: ( 291 547 )
1 3.17 39 36 3.16: ( 130 323 )
1 2.26 58 34 2.22: (1263 1749) 2.23: ( 481 765 ) 2.19: ( 957 1230)
1 3.14 21 32 2.24: ( 143 631 ) 3.11: ( 308 656 ) 3.7: ( 143 263 )
1 3.15 67 32 2.22: (2125 2450) 3.13: ( 564 977 ) 4.4: ( 598 1355)

3.11: ( 564 985 ) 3.12: ( 954 1435) 2.17: ( 564 931 )
1 4.6 81 32 4.4: (1682 2179) 3.12: (1682 2110) 4.3: (1682 1976)

2.17: (1708 2182)
1 2.21 84 28 2.19: ( 123 338 ) 2.20: ( 238 1320) 3.10: ( 123 267 )

2.17: (1753 2252) 2.12: (2729 3077)
1 4.2 110 26 3.8: ( 602 1867) 1.17: ( 602 930 ) 3.6: (1048 1437)
1 2.18 74 24 2.16: ( 449 1998) 2.13: (1441 1824)
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From:
Level Var. Deg. P.S. Projection to
2 2.32 24 48
2 2.31 15 46
2 4.13 29 46
2 3.25 16 44
2 3.23 17 42
2 4.10 37 40 5.2: ( 180 408 )
2 3.20 38 38 5.2: ( 44 194 )
2 3.18 41 36 4.5: ( 63 151 )
2 4.8 57 36
2 3.16 42 34 4.5: ( 615 981 )
2 4.7 65 34
2 1.6 75 32 1.5: ( 433 742 )
2 2.25 43 32
2 2.22 69 30
2 2.23 78 30 2.15: (1165 1599)
2 2.24 44 30
2 3.13 70 30 5.1: ( 93 285 )
2 4.4 83 30
2 3.11 72 28
2 3.12 85 28
2 4.3 88 28
2 2.19 86 26 2.15: (2066 2397) 2.11: (1392 1701)
2 2.20 87 26 1.16: (1186 1559)
2 3.10 99 26 4.1: ( 267 489 ) 1.16: (3571 3764)
2 2.17 101 24 2.9: (2182 2462)
2 3.7 103 24 2.14: (1374 1721)
2 3.8 112 24 2.14: (2541 2958) 3.5: ( 984 1367)
2 1.17 113 22 2.14: (1141 1659) 3.5: ( 930 1367) 1.16: (4037 4085)

1.14: (3772 3891)
2 2.16 104 22 1.16: (2960 3233) 2.11: (1233 1701)
2 3.6 117 22 2.14: (3123 3921) 1.16: (2166 2494) 3.3: (3123 3445)

3.4: (2166 2394)
2 2.12 118 20 1.16: (1548 2500) 2.11: (1194 1701) 2.9: (2311 2606)

2.6: (3077 3319)
2 2.13 119 20 1.16: (3557 4085) 3.3: (1662 2070) 3.4: (2114 2544)

1.15: (1717 2024) 2.9: (2770 3136)
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From:
Level Var. Deg. P.S. Projection to
3 5.2 64 36
3 4.5 68 32
3 5.1 100 28
3 1.5 106 24 1.4: (1952 2364)
3 4.1 111 24
3 2.15 109 22 2.8: (1599 1969)
3 2.14 122 20 2.10: (3921 4002)
3 3.5 138 20
3 1.16 124 18 2.10: (3361 3617)
3 2.11 120 18 2.8: (1701 1969)
3 3.3 135 18 2.7: (3445 3592)
3 3.4 142 18 2.10: (2394 2746) 3.2: (2544 2791)
3 1.15 143 16 2.7: (3373 3592) 3.2: (2482 2791) 1.13: (4050 4119)
3 2.9 139 16
3 1.14 147 14 1.13: (3887 4119) 2.5: (3587 3736) 1.12: (4171 4200)
3 2.6 149 12 1.12: (3319 4007)
4 1.4 140 16
4 2.10 145 16
4 2.7 148 14 3.1: (3102 3329)
4 2.8 144 14
4 3.2 157 14
4 1.13 150 12 2.4: (3966 4031)
4 2.5 158 12 2.4: (3736 4031)
4 1.12 160 10 1.11: (3051 3314)
5 3.1 154 12
5 2.4 161 10
5 1.11 163 8
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Figure 5. Connecting varieties by projections from points and lines

The Fano threefolds are denoted by their Minkowski ID’s, each arrow signify a projection between
them. See Table 3, (i) for the explicit choice of degenerations for each of the varieties.
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Figure 6. Connecting varieties by projections from points, lines, and conics

The Fano threefolds are denoted by their Minkowski ID’s, each arrow signify a projection between
them. See Table 3, (ii) for the explicit choice of degenerations for each of the varieties.
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Appendix B. Tables for toric degenerations

B.1. Hilbert scheme component dimensions for smooth Fano threefolds. In the following table,

we compute h0(V,NV/Pn) for each smooth Fano threefold with very ample anticanonical divisor. Here

V ↪→ Pn denotes the anticanonical embedding. This value equals the dimension of the Hilbert scheme

component of HilbV corresponding to V .

We record the tangent space dimension h0(N ) of the Hilbert scheme points corresponding to antica-

nonically-embedded Gorenstein toric Fano threefolds in [49, Table B.2].

Name b2 b3/2 (−KV )3 h0(V,NV/Pn)

V4 1 30 4 69

V6 1 20 6 69

V8 1 14 8 75

V10 1 10 10 85

V12 1 7 12 98

V14 1 5 14 114

V16 1 3 16 132

V18 1 2 18 153

V22 1 0 22 201

B2 1 10 16 139

B3 1 5 24 234

B4 1 2 32 363

B5 1 0 40 525

Q3 1 0 54 889

P3 1 0 64 1209

2–4 2 10 10 84

2–5 2 6 12 96

2–6 2 9 12 99

2–7 2 5 14 113

2–8 2 9 14 117

2–9 2 5 16 133

2–10 2 3 16 131

2–11 2 5 18 155

2–12 2 3 20 177

2–13 2 2 20 176

2–14 2 1 20 175

2–15 2 4 22 204

2–16 2 2 22 202

2–17 2 1 24 229

2–18 2 2 24 230

2–19 2 2 26 260

2–20 2 0 26 258
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Name b2 b3/2 (−KV )3 h0(V,NV/Pn)

2–21 2 0 28 290

2–22 2 0 30 324

2–23 2 1 30 325

2–24 2 0 30 324

2–25 2 1 32 361

2–26 2 0 34 398

2–27 2 0 38 480

2–28 2 1 40 525

2–29 2 0 40 524

2–30 2 0 46 668

2–31 2 0 46 668

2–32 2 0 48 720

2–33 2 0 54 888

2–34 2 0 54 888

2–35 2 0 56 948

2–36 2 0 62 1140

3–1 3 8 12 97

3–2 3 3 14 110

3–3 3 3 18 152

3–4 3 2 18 151

3–5 3 0 20 173

3–6 3 1 22 200

3–7 3 1 24 228

3–8 3 0 24 227

3–9 3 3 26 260

3–10 3 0 26 257

3–11 3 1 28 290

3–12 3 0 28 289

3–13 3 0 30 323

3–14 3 1 32 360

3–15 3 0 32 359

3–16 3 0 34 397

3–17 3 0 36 437

3–18 3 0 36 437

3–19 3 0 38 479

3–20 3 0 38 479

3–21 3 0 38 479



PROJECTING FANOS IN THE MIRROR 31

Name b2 b3/2 (−KV )3 h0(V,NV/Pn)

3–22 3 0 40 523

3–23 3 0 42 569

3–24 3 0 42 569

3–25 3 0 44 617

3–26 3 0 46 667

3–27 3 0 48 719

3–28 3 0 48 719

3–29 3 0 50 773

3–30 3 0 50 773

3–31 3 0 52 829

4–1 4 1 24 227

4–2 4 0 26 256

4–3 4 1 28 289

4–4 4 0 30 322

4–5 4 0 32 358

4–6 4 0 32 358

4–7 4 0 34 396

4–8 4 0 36 436

4–9 4 0 38 478

4–10 4 0 40 522

4–11 4 0 42 568

4–12 4 0 44 616

4–13 4 0 46 666

5–1 5 0 28 287

5–2 5 0 36 435

5–3 5 0 36 435

6–1 6 0 30 320

7–1 7 0 24 223

8–1 8 0 18 144

B.2. Small toric degenerations for Fano threefolds. Below, we record all degenerations of smooth

Fano threefolds to Gorenstein toric Fano varieties with at most terminal singularities [31].

Name Reflexive IDs

V22 1943

B4 198

B5 68

Q3 4

P3 1

2–12 2356

2–17 1528

2–19 1109

2–20 1110, 1112

2–21 731, 733, 1111

2–22 414, 729

2–23 411

2–24 412

2–25 199, 410

2–26 202, 413, 734

2–27 71, 200, 201

2–28 69

2–29 72, 204

2–30 23
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2–31 21, 70

2–32 22

2–33 7

2–34 5, 24

2–35 6

2–36 8

3–7 1529

3–10 1113

3–11 730, 732

3–12 738, 1114

3–13 421, 737, 739

3–14 203

3–15 420, 422, 423, 736

3–16 213, 417, 418

3–17 209, 210, 415

3–18 212, 419

3–19 75, 206

3–20 80, 208, 211, 416

3–21 214

3–22 76

3–23 77, 205

3–24 78, 79, 207

3–25 25, 74

3–26 26, 73

3–27 31

3–28 30, 81

3–29 27

3–30 29

3–31 28

4–1 1530

4–3 735

4–4 741

4–5 427

4–6 426

4–7 424, 740

4–8 216, 218, 425

4–9 217

4–10 82, 215

4–11 85

4–12 83

4–13 84

5–2 220

5–3 219

B.3. Select toric degenerations for low degree Fano threefolds. Below we record degenerations

of products of low degree Fano threefolds as in [18]. We only list those degenerations with smooth

deformation space.

Name Reflexive IDs

V4 4312

V6 4282, 4284, 4286, 4287, 4297, 4310, 4318

V8 3314, 4005, 4167, 4194, 4203, 4205, 4217, 4231, 4238, 4244, 4250,

4251, 4267, 4269, 4275, 4280, 4290, 4298, 4299, 4304, 4313, 4314,

4315

V10 3051, 3792, 3903, 3922, 3928, 3965, 4007, 4023, 4032, 4044, 4074,

4118, 4131, 4132, 4135, 4143, 4161, 4168, 4181, 4186, 4190, 4200,

4202, 4214, 4216, 4219, 4225, 4228, 4245, 4252, 4255, 4258, 4261,

4268, 4281, 4291, 4292, 4295, 4301, 4303, 4307, 4311

V12 2756, 3406, 3625, 3626, 3667, 3683, 3702, 3796, 3848, 3853, 3869,

3937, 3938, 3946, 3962, 3966, 3981, 3984, 3985, 3991, 4059, 4060,

4070, 4080, 4102, 4104, 4119, 4122, 4124, 4133, 4134, 4144, 4145,

4179, 4180, 4184, 4218, 4220, 4247, 4254, 4263, 4270, 4272, 4273,

4293, 4294

2–4 4031

2–5 3453, 3736, 3777

2–6 3319, 3349, 3416

3–1 3329, 3350

B.4. Select toric degenerations for rank one index one Fano threefolds. Below we record select

degenerations of rank one index one Fano threefolds as described in §5.2.
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Name Reflexive IDs

V14 2464, 3214, 3229, 3268, 3298, 3461, 3506, 3535, 3536, 3633, 3670,

3675, 3676, 3712, 3719, 3724, 3794, 3837, 3849, 3852, 3870, 3876,

3887, 3891, 3944, 3968, 3970, 3982, 3986, 3992, 4046, 4066, 4069,

4077, 4078, 4139, 4140, 4171, 4185, 4223, 4226, 4253, 4271

V16 2024, 2498, 2650, 2894, 2899, 2903, 2987, 2990, 3026, 3027, 3034,

3112, 3162, 3210, 3277, 3280, 3294, 3300, 3310, 3373, 3374, 3396,

3464, 3513, 3515, 3519, 3546, 3642, 3648, 3674, 3685, 3700, 3709,

3710, 3711, 3721, 3725, 3742, 3797, 3798, 3816, 3858, 3864, 3872,

3954, 3975, 3990, 3993, 4050, 4063, 4065, 4109, 4121, 4146, 4150,

4172, 4227

V18 1559, 1827, 2116, 2187, 2223, 2289, 2302, 2337, 2480, 2494, 2500,

2520, 2539, 2605, 2646, 2648, 2658, 2683

B.5. Select toric degenerations for product Fano threefolds. Below we record degenerations of

products of del Pezzo surfaces with P1.

Name Reflexive ID

5–3 219

6–1 357

7–1 510

B.6. Select toric degenerations for complete intersections in toric varieties. We list degenera-

tions constructed as in §5.4.

Name Reflexive ID Regular Sequence

1978 x2
2x

2
4 − x1x3x5

2364 x3
2x4 − x1x3x5B2

3313 x4
2 − x1x3x5

232 x1x2x4 − x3x
2
5B3

742 x1x2x3 − x3
5

2–7 3813 x1x3x4 − x2x5x6, x2
6 − x5x7

2–8 1969 x1x2x3x4x5 − x2
6

2606 x2x5 − x4x7, x2
1x5 − x2x3x6

3014 x2x5 − x4x7, x2
2x5 − x1x3x6

3242 x2x5 − x4x7, x2x3x5 − x2
1x6

3479 x2x5 − x4x7, x2
4x5 − x1x3x6

2–9

3480 x2x5 − x4x7, x1x3x5 − x2
2x6

1972 x5x6 − x2
7, x2x3x7 − x2

4

2131 x2
2x

2
3 − x6x7, x2

1x
2
3 − x4x5

2447 x2x3x6 − x2
7, x1x3x6 − x4x5

2746 x2x3x6 − x2
7, x2

1x
2
3 − x4x5

2808 x2x3x6 − x2
7, x4x5 − x6x7

2924 x5x6 − x2
7, x1x2x

2
3 − x4x7

2928 x2x3x5 − x6x7, x2
1x

2
3 − x4x5

2984 x2
2x

2
3 − x6x7, x1x2x

2
3 − x4x5

3019 x2x3x5 − x6x7, x1x2x
2
3 − x4x5

3036 x4x5 − x6x7, x1x2x
2
3 − x6x7
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Name Reflexive ID Regular Sequence

3153 x2x3x6 − x2
7, x1x3x7 − x4x5

3362 x5x6 − x2
7, x2

2x
2
3 − x4x7

3387 x5x6 − x2
7, x2x3x4 − x2

7

3481 x2x3x5 − x6x7, x2
2x

2
3 − x4x5

3487 x2
2x

2
3 − x6x7, x4x5 − x6x7

3615 x2x3x6 − x2
7, x1x2x

2
3 − x4x5

3617 x5x6 − x2
7, x2x3x4 − x6x7

3789 x2x3x6 − x2
7, x2x3x7 − x4x5

4002 x5x6 − x2
7, x2x3x4 − x2

6

2–10

4021 x2x3x6 − x2
7, x2

2x
2
3 − x4x5

1701 x1x3x4x5 − x2x
2
6

2203 x1x
2
3x

2
4 − x2x5x62–11

2815 x3
3x

2
4 − x2x5x6

1497 x2x6 − x4x8, x1x5 − x2x8, x4x6 − x3x7

2311 x2x6 − x4x8, x1x5 − x2x8, x4x5 − x3x7

2350 x2x6 − x4x8, x1x5 − x2x6, x3x7 − x2x8

2356 x2x6 − x4x8, x1x5 − x2x6, x2x6 − x3x7

2996 x2x6 − x4x8, x1x5 − x2x8, x2x5 − x3x7

2–12

3029 x2x6 − x4x8, x1x5 − x2x6, x3x6 − x2x7

1254 x3x6 − x1x8, x2x4 − x1x5, x2
7 − x5x8

1419 x3x6 − x1x8, x2x5 − x1x6, x4x7 − x2
8

1662 x3x6 − x1x8, x2x5 − x1x6, x2
7 − x4x8

2236 x3x6 − x1x8, x2x4 − x1x5, x5x7 − x2
8

2332 x3x6 − x1x8, x2x5 − x1x8, x4x7 − x2
8

2343 x3x6 − x1x8, x2x5 − x1x6, x4x7 − x5x8

2354 x3x6 − x1x8, x2x5 − x1x8, x4x7 − x6x8

2448 x3x6 − x1x8, x2x4 − x1x5, x5x6 − x2
7

2882 x3x6 − x1x8, x2x5 − x1x8, x2
7 − x4x8

2931 x3x6 − x1x8, x2x4 − x1x5, x2
6 − x5x7

2940 x3x6 − x1x8, x2x5 − x1x6, x2
5 − x4x7

2995 x3x6 − x1x8, x2x5 − x1x6, x2
6 − x4x7

3031 x3x6 − x1x8, x2x5 − x1x6, x5x6 − x4x7

3197 x3x6 − x1x8, x2x4 − x1x5, x4x7 − x2
8

2–13

3616 x3x6 − x1x8, x2x5 − x1x6, x4x6 − x2
7

911 x2
2x4x5 − x1x3x6

1573 x3
3x5 − x1x2x62–15

1599 x1x2x4x5 − x2
3x6

810 x3x6 − x2x7, x1x4x7 − x2
5

994 x2
3x4 − x2x7, x2

1x
2
4 − x5x6

1016 x1x3x4 − x2x7, x5x6 − x2
7

1174 x2
3x4 − x2x7, x1x4x5 − x2

6

1233 x1x3x4 − x2x7, x2
5 − x6x7

1464 x2
3x4 − x2x7, x1x4x7 − x5x6

1485 x3x6 − x2x7, x1x4x5 − x6x7

1520 x1x3x4 − x2x7, x3x4x7 − x5x6

1669 x2
3x4 − x2x7, x5x6 − x2

7

1712 x3x6 − x2x7, x1x4x5 − x2
7

1764 x3x6 − x2x7, x2
1x

2
4 − x5x7

1883 x1x3x4 − x2x7, x2
3x

2
4 − x5x6
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Name Reflexive ID Regular Sequence

1904 x2
3x4 − x2x7, x1x3x

2
4 − x5x6

1908 x3x6 − x2x7, x1x2x
2
4 − x5x7

1940 x1x3x4 − x2x7, x2x4x7 − x5x6

1998 x3x6 − x2x7, x2x4x7 − x2
5

2259 x2
3x4 − x2x7, x3x4x7 − x5x6

2264 x2
3x4 − x2x7, x1x2x

2
4 − x5x6

2346 x1x3x4 − x2x7, x2x3x
2
4 − x5x6

2446 x1x3x4 − x2x7, x3x4x5 − x2
6

2546 x3x6 − x2x7, x2
2x

2
4 − x5x7

2629 x2
3x4 − x2x7, x2x4x7 − x5x6

2671 x1x3x4 − x2x7, x2
2x

2
4 − x5x6

2809 x3x6 − x2x7, x2x4x5 − x2
7

2960 x2
3x4 − x2x7, x2x3x

2
4 − x5x6

3196 x2
3x4 − x2x7, x2

2x
2
4 − x5x6

2–16

3347 x2
3x4 − x2x7, x3x4x5 − x2

6

449 x1x2x4x5 − x2
6

1033 x1x3x
2
5 − x2x4x62–18

1250 x2
2x

2
4 − x1x5x6

2570 x1x2x
3
4x

2
5 − x3x6x7

3–2
2791 xx2

2x
3
3x

2
5 − x4x6x7

3− 3 2678 x2x4x
2
5 − x1x3x6x7

2005 x2x3x4x5x6 − x2
7

2314 x1x2x
2
3x

2
5 − x4x6x7

2544 x2
2x

2
3x

2
5 − x4x6x7

3–4

2807 x2
4x

2
6 − x2x3x5x7

1326 x2x
2
4x6 − x5x8, x1x

2
4x6 − x3x7

1367 x2x
2
4x6 − x5x8, x3x7 − x4x8

1820 x2x
2
4x6 − x5x8, x1x4x5x6 − x3x7

1837 x2x
2
4x6 − x5x8, x3x7 − x5x8

2128 x2x
2
4x6 − x5x8, x1x

2
5x6 − x3x7

2218 x2x
2
4x6 − x5x8, x2x4x5x6 − x3x7

3–5

2492 x2x
2
4x6 − x5x8, x2x

2
5x6 − x3x7

1773 x2x3x5x7 − x2
4x6

1938 x1x2x
2
3x7 − x4x5x63–6

2269 x2
2x

2
3x7 − x4x5x6

1082 x1x3x
2
6 − x4x5x7

3–8
1776 x1x3x6x7 − x4x

2
5

289 x4
1x

2
4 − x5x6

344 x3
1x3x

2
4 − x5x6

354 x2
1x

2
3x

2
4 − x5x6

374 x2
1x2x3x

2
4 − x5x6

3–9

447 x1x3x4x5 − x2
6

4− 2 1081 x1x
2
4x5x7 − x3x6x8

5− 1 1083 x3x5x6x7x8 − x1x2x9

B.7. Further toric degenerations for smooth Fano threefolds. In the following table, we list

degenerations of smooth Fano threefolds to Gorenstein toric Fano threefolds obtained from those of §B.2,
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B.3, B.4, B.5, B.6 by (possibly repeated) mutations. Those toric varieties corresponding to a smooth

point of HV appear in the column “Interior Points”; those corresponding to singular points of HV appear

in the column “Boundary Points”.

Name Interior Points Boundary Points

V4 4312

V6 4282, 4284, 4286, 4287,

4297, 4310, 4318

V8 3314, 4005, 4167, 4194,

4203, 4205, 4217, 4231,

4238, 4244, 4250, 4251,

4267, 4269, 4275, 4280,

4290, 4298, 4299, 4304,

4313, 4314, 4315

V10 3051, 3792, 3903, 3922,

3928, 3965, 4007, 4023,

4032, 4044, 4074, 4118,

4131, 4132, 4135, 4143,

4161, 4168, 4181, 4186,

4190, 4200, 4202, 4214,

4216, 4219, 4225, 4228,

4245, 4252, 4255, 4258,

4261, 4268, 4281, 4291,

4292, 4295, 4301, 4303,

4307, 4311

3879, 3927, 3964, 4006, 4024, 4042

V12 2756, 3406, 3625, 3626,

3667, 3683, 3702, 3796,

3848, 3853, 3869, 3937,

3938, 3946, 3962, 3966,

3981, 3984, 3985, 3991,

4059, 4060, 4070, 4080,

4102, 4104, 4119, 4122,

4124, 4133, 4134, 4144,

4145, 4179, 4180, 4184,

4218, 4220, 4247, 4254,

4263, 4270, 4272, 4273,

4293, 4294

3452, 3756, 3760, 3795, 3846, 3857,

3875, 3933, 3936, 3967, 3983, 4004,

4027, 4041, 4043, 4075, 4117, 4241,

4249

V14 2464, 3082, 3214, 3219,

3229, 3268, 3283, 3298,

3461, 3471, 3506, 3535,

3536, 3587, 3633, 3637,

3640, 3670, 3675, 3676,

3712, 3719, 3724, 3794,

3837, 3849, 3852, 3870,

3876, 3887, 3891, 3932,

3944, 3968, 3970, 3982,

3986, 3992, 4046, 4066,

4069, 4077, 4078, 4139,

4140, 4171, 4185, 4198,

4223, 4226, 4253, 4271

2472, 2553, 2725, 2966, 3056, 3202,

3266, 3397, 3399, 3509, 3511, 3530,

3537, 3543, 3544, 3559, 3574, 3578,

3624, 3636, 3666, 3698, 3704, 3718,

3766, 3799, 3800, 3824, 3825, 3832,

3847, 3855, 3867, 3871, 3892, 3896,

3900, 3925, 3929, 3935, 3950, 3963,

3973, 3977, 4026, 4049, 4057, 4062,

4079, 4126, 4136, 4138, 4187, 4195,

4196, 4201, 4207, 4209, 4221
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Name Interior Points Boundary Points

V16 2024, 2291, 2437, 2482,

2498, 2650, 2894, 2899,

2903, 2987, 2990, 3026,

3027, 3034, 3112, 3162,

3210, 3277, 3280, 3294,

3300, 3310, 3373, 3374,

3396, 3464, 3513, 3515,

3519, 3546, 3642, 3648,

3674, 3685, 3700, 3709,

3710, 3711, 3721, 3725,

3742, 3797, 3798, 3816,

3858, 3864, 3872, 3954,

3975, 3990, 3993, 4050,

4063, 4065, 4109, 4121,

4146, 4150, 4172, 4227

2093, 2414, 2567, 2724, 2773, 2888,

2891, 2896, 2901, 2967, 2969, 2988,

3008, 3012, 3013, 3032, 3129, 3131,

3132, 3209, 3227, 3265, 3312, 3333,

3336, 3339, 3352, 3375, 3376, 3401,

3404, 3409, 3450, 3455, 3462, 3477,

3507, 3512, 3518, 3529, 3531, 3532,

3533, 3538, 3542, 3664, 3672, 3680,

3686, 3687, 3703, 3720, 3759, 3761,

3802, 3803, 3826, 3828, 3830, 3850,

3851, 3854, 3865, 3873, 3880, 3894,

3898, 3904, 3914, 3934, 3939, 3943,

3972, 3974, 3989, 4030, 4064, 4072,

4125, 4137, 4147, 4152, 4153, 4164,

4165, 4175, 4264, 4302

V18 1559, 1827, 2116, 2187,

2223, 2289, 2302, 2337,

2480, 2494, 2500, 2520,

2539, 2605, 2646, 2648,

2658, 2683, 2684, 2699,

2701, 2703, 2832, 2840,

2858, 2902, 2911, 2982,

2985, 2989, 3015, 3023,

3025, 3035, 3061, 3099,

3160, 3180, 3221, 3230,

3233, 3235, 3269, 3274,

3287, 3290, 3291, 3297,

3299, 3305, 3307, 3361,

3415, 3457, 3470, 3486,

3496, 3514, 3516, 3522,

3526, 3541, 3545, 3596,

3603, 3605, 3681, 3682,

3692, 3699, 3714, 3717,

3764, 3823, 3831, 3859,

3862, 3866, 3912, 3940,

3951, 3958, 3959, 3988,

4068, 4073, 4085, 4114,

4123, 4174, 4178, 4265

1616, 1695, 1792, 2044, 2049, 2180,

2188, 2189, 2271, 2453, 2463, 2469,

2565, 2571, 2578, 2595, 2633, 2680,

2691, 2763, 2816, 2847, 2885, 2898,

2963, 2980, 3011, 3020, 3024, 3037,

3038, 3041, 3042, 3055, 3081, 3086,

3096, 3142, 3144, 3155, 3161, 3203,

3226, 3237, 3278, 3279, 3281, 3293,

3308, 3389, 3394, 3395, 3405, 3423,

3456, 3463, 3466, 3508, 3517, 3520,

3534, 3558, 3586, 3588, 3627, 3635,

3671, 3678, 3693, 3707, 3716, 3722,

3723, 3757, 3767, 3768, 3769, 3770,

3804, 3812, 3829, 3834, 3899, 3930,

3942, 3969, 3971, 3987, 4096, 4106,

4110, 4142, 4242
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Name Interior Points Boundary Points

V22 839, 842, 843, 930, 1022,

1028, 1141, 1428, 1482,

1484, 1700, 1722, 1816,

1855, 1886, 1887, 1889,

1898, 1899, 1901, 1929,

1930, 1937, 1942, 1943,

2115, 2212, 2214, 2235,

2248, 2309, 2495, 2503,

2523, 2585, 2592, 2655,

2657, 2661, 2662, 2664,

2665, 2694, 2696, 2702,

2761, 2842, 2852, 2934,

2937, 2953, 2999, 3004,

3030, 3094, 3247, 3248,

3249, 3306, 3366, 3431,

3483, 3488, 3494, 3499,

3527, 3589, 3695, 3772,

3843, 3960, 4037, 4054

1143, 1272, 1313, 1604, 1716, 1786,

1880, 2089, 2121, 2181, 2228, 2229,

2273, 2274, 2284, 2288, 2330, 2335,

2349, 2351, 2368, 2373, 2400, 2459,

2467, 2597, 2600, 2618, 2632, 2643,

2692, 2697, 2772, 2822, 2826, 2844,

2906, 2914, 2919, 2920, 2933, 2936,

2974, 2992, 3016, 3017, 3018, 3022,

3078, 3093, 3128, 3149, 3157, 3206,

3222, 3225, 3236, 3238, 3240, 3250,

3255, 3270, 3272, 3284, 3285, 3302,

3332, 3354, 3363, 3365, 3420, 3432,

3459, 3465, 3493, 3500, 3630, 3638,

3643, 3647, 3656, 3688, 3715, 3805,

3841, 3877, 3883, 3888, 3910, 4052,

4055, 4129, 4155

B2 428, 1978, 2078, 2364,

3313, 3316, 3317

B3 87, 232, 459, 742, 773,

906, 1128, 1583, 1952,

1953, 2006, 2712, 3040,

3726

B4 9, 92, 120, 154, 198, 234,

429, 433, 434, 437, 472,

524, 607, 825, 1138, 1558,

1596, 2709

B5 43, 68, 221, 245, 246, 296 444, 460, 476, 514, 1123, 1152, 1159,

1162, 2362

Q3 2, 4, 95 746

P3 1, 10, 11

2–4 4031 4024, 4056

2–5 3453, 3736, 3777 3731, 3735, 3762

2–6 3319, 3349, 3416 3756, 3790, 3846, 3857, 3875, 3933,

4004, 4043, 4229, 4236, 4241, 4249

2–7 3102, 3133, 3215, 3239,

3484, 3592, 3641, 3813,

4101

2366, 2401, 3130, 3202, 3266, 3448,

3530, 3544, 3559, 3574, 3624, 3629,

3636, 3666, 3698, 3701, 3704, 3718,

3799, 3800, 3824, 3832, 3847, 3855,

3871, 3900, 3925, 3929, 3931, 3935,

3963, 3973, 3977, 4049, 4062, 4098,

4111, 4126, 4127, 4136, 4192, 4201,

4207, 4221

2–8 1969 3137, 3263, 3351, 3996, 4009
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Name Interior Points Boundary Points

2–9 2462, 2606, 2922, 3014,

3100, 3136, 3217, 3242,

3479, 3480, 3782

1560, 2097, 2197, 2567, 2635, 2830,

2831, 2838, 2889, 2907, 2965, 2968,

2988, 3013, 3131, 3265, 3275, 3296,

3312, 3333, 3404, 3413, 3450, 3451,

3455, 3507, 3533, 3538, 3579, 3583,

3621, 3623, 3631, 3680, 3686, 3687,

3720, 3801, 3809, 3826, 3830, 3865,

3915, 3934, 3943, 3989, 4030, 4033,

4067, 4125, 4137, 4151, 4208

2–10 1972, 2131, 2447, 2746,

2808, 2924, 2928, 2984,

3019, 3036, 3153, 3362,

3387, 3481, 3487, 3615,

3617, 3789, 4002, 4021

1954, 2093, 2367, 2410, 2414, 2773,

2897, 2967, 2969, 3032, 3129, 3209,

3275, 3339, 3357, 3375, 3376, 3409,

3473, 3477, 3532, 3542, 3601, 3614,

3645, 3703, 3783, 3802, 3803, 3854,

3873, 3914, 3934, 3939, 3972, 3998,

4016, 4072, 4152, 4164, 4165, 4175,

4264, 4302

2–11 1701, 2203, 2815 1212, 2191, 2327, 2561, 2679, 2900,

2910, 2963, 3101, 3148, 3205, 3224,

3394, 3425, 3671, 3774, 3942

2–12 1194, 1197, 1281, 1284,

1497, 1548, 1684, 1885,

2311, 2350, 2356, 2540,

2580, 2743, 2996, 3029,

3077

858, 1181, 1348, 1546, 1552, 1787, 1888,

2011, 2082, 2092, 2225, 2278, 2279,

2300, 2328, 2412, 2549, 2555, 2644,

2654, 2682, 2689, 2698, 2726, 2748,

2749, 2762, 2820, 2890, 2909, 2975,

2976, 3010, 3090, 3134, 3154, 3201,

3271, 3303, 3403, 3495, 3501, 3525,

3540, 3552, 3553, 3554, 3669, 3705,

3758, 3861, 3893, 3980, 4010, 4177,

4188
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Name Interior Points Boundary Points

2–13 1254, 1393, 1415, 1419,

1430, 1662, 1680, 1717,

1757, 1824, 1834, 1874,

1884, 1924, 1932, 2113,

2114, 2213, 2236, 2253,

2295, 2304, 2332, 2333,

2341, 2343, 2347, 2354,

2434, 2448, 2489, 2564,

2604, 2636, 2642, 2649,

2667, 2670, 2672, 2770,

2855, 2859, 2882, 2893,

2931, 2938, 2939, 2940,

2954, 2994, 2995, 3002,

3031, 3158, 3164, 3197,

3256, 3444, 3485, 3557,

3616, 3649, 3654

1136, 1180, 1584, 1694, 1821, 2082,

2092, 2152, 2221, 2278, 2290, 2292,

2297, 2300, 2336, 2411, 2412, 2478,

2483, 2484, 2485, 2519, 2549, 2569,

2645, 2653, 2656, 2681, 2688, 2690,

2698, 2700, 2704, 2721, 2744, 2760,

2762, 2774, 2781, 2821, 2886, 2904,

2916, 2932, 2955, 2972, 2975, 2977,

2979, 2981, 2986, 3010, 3021, 3033,

3090, 3092, 3134, 3135, 3139, 3159,

3176, 3201, 3207, 3208, 3251, 3271,

3286, 3288, 3289, 3295, 3301, 3303,

3311, 3325, 3337, 3353, 3368, 3414,

3422, 3454, 3458, 3468, 3469, 3495,

3501, 3510, 3521, 3524, 3528, 3539,

3540, 3552, 3591, 3600, 3604, 3634,

3650, 3658, 3662, 3669, 3673, 3677,

3690, 3706, 3773, 3807, 3810, 3821,

3838, 3842, 3861, 3893, 3952, 3978,

4011, 4035, 4051, 4108, 4113, 4128,

4212

2–14 1193, 1322, 1416, 1659,

1721, 1835, 1878, 2151,

2233, 2234, 2263, 2312,

2342, 2353, 2524, 2598,

2626, 2693, 2930, 2958,

2978, 3028, 3124, 3252,

3261, 3273, 3388, 3417,

3503, 3663, 3817, 3921

1282, 1323, 1790, 1794, 1821, 2183,

2221, 2292, 2297, 2336, 2484, 2485,

2593, 2631, 2645, 2656, 2681, 2690,

2700, 2704, 2774, 2829, 2904, 2912,

2932, 2972, 2976, 2977, 2979, 2981,

2986, 3021, 3033, 3159, 3174, 3176,

3207, 3208, 3211, 3251, 3253, 3286,

3288, 3289, 3295, 3301, 3311, 3421,

3422, 3454, 3468, 3472, 3482, 3510,

3521, 3528, 3639, 3650, 3658, 3662,

3673, 3677, 3694, 3705, 3706, 3708,

3821, 3838, 3842, 3941, 3957, 3978,

4035, 4051, 4108, 4212

2–15 229, 837, 911, 1240, 1394,

1573, 1599, 1617, 2397

475, 1279, 1386, 1698, 1871, 2083, 2272,

2557, 2560, 2771, 2780, 2908, 3128,

3398, 3597, 4008

2–16 810, 994, 1016, 1174, 1233,

1464, 1485, 1520, 1669,

1712, 1764, 1883, 1904,

1908, 1940, 1998, 2259,

2264, 2346, 2446, 2546,

2629, 2671, 2809, 2960,

3196, 3347

782, 1135, 1272, 1420, 1427, 1603, 1785,

1818, 1832, 1907, 1926, 2219, 2273,

2274, 2275, 2284, 2313, 2331, 2349,

2373, 2374, 2375, 2419, 2426, 2459,

2486, 2590, 2647, 2686, 2853, 2892,

2914, 2918, 2926, 2974, 2992, 3017,

3204, 3225, 3234, 3245, 3270, 3334,

3363, 3365, 3426, 3594, 3630, 3907,

3910, 4155
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Name Interior Points Boundary Points

2–17 527, 666, 836, 931, 942,

989, 1037, 1097, 1301,

1315, 1406, 1455, 1473,

1483, 1496, 1499, 1516,

1521, 1523, 1528, 1746,

1778, 1808, 1836, 1856,

1868, 1869, 1939, 2048,

2140, 2146, 2164, 2182,

2202, 2220, 2251, 2252,

2286, 2303, 2325, 2339,

2344, 2490, 2497, 2517,

2628, 2652, 2873, 2879,

2881, 2915, 3120, 3165,

3212, 3438, 3909

941, 1294, 1303, 1304, 1424, 1426, 1488,

1710, 1813, 1815, 1819, 1826, 1892,

1906, 1927, 2025, 2034, 2036, 2037,

2099, 2216, 2217, 2247, 2277, 2281,

2294, 2316, 2318, 2319, 2345, 2352,

2460, 2501, 2506, 2558, 2563, 2587,

2589, 2596, 2619, 2677, 2685, 2687,

2764, 2827, 2841, 2843, 2856, 2895,

2925, 2946, 2950, 2951, 2993, 2998,

3098, 3146, 3194, 3223, 3231, 3246,

3260, 3292, 3304, 3369, 3435, 3490,

3644, 3691, 3741, 3780, 3840, 3905,

3913, 3956

2–18 449, 451, 628, 702, 808,

1033, 1073, 1090, 1250,

1373, 1441, 1466, 1999

833, 909, 1288, 1478, 1779, 1783, 1876,

1923, 1955, 1987, 1988, 2020, 2085,

2111, 2112, 2280, 2433, 2511, 2574,

2641, 2828, 2857, 3095, 3097, 3108,

3367, 3743, 3779, 4100

2–19 338, 568, 572, 691, 882,

993, 1014, 1024, 1109,

1230, 1312, 1369, 1392,

1490, 1762, 1796, 2066,

2173, 2445

928, 934, 1306, 1345, 1414, 1476, 1590,

1740, 1782, 1817, 1875, 1877, 2104,

2109, 2141, 2195, 2475, 2515, 2562,

2651, 2867, 3145, 3169, 3358

2–20 619, 655, 701, 921, 1023,

1030, 1064, 1089, 1098,

1099, 1110, 1112, 1186,

1320, 1364, 1409, 1423,

1438, 1453, 1458, 1470,

1479, 1502, 1511, 1513,

1525, 1705, 1724, 1755,

1807, 1811, 1891, 1910,

1917, 2139, 2142, 2178,

2209, 2238, 2261, 2267,

2308, 2323, 2496, 2507,

2543, 2586, 2614, 2624,

2630, 3125, 3183, 3199

922, 940, 1018, 1298, 1310, 1487, 1495,

1634, 1703, 1795, 1800, 1804, 1831,

1872, 1881, 1895, 1896, 1897, 1905,

1928, 1936, 1941, 2122, 2133, 2215,

2227, 2276, 2306, 2421, 2435, 2518,

2581, 2582, 2584, 2588, 2612, 2616,

2651, 2668, 2673, 2674, 2676, 2695,

2846, 2850, 2851, 2854, 2869, 2913,

2943, 2945, 2957, 3005, 3103, 3106,

3145, 3173, 3185, 3188, 3259, 3377,

3491, 3492, 3502, 3590, 3653, 3655,

3661, 3776, 3822, 3885, 4040

2–21 123, 238, 295, 479, 626,

700, 703, 731, 733, 910,

918, 964, 1095, 1096, 1102,

1103, 1111, 1184, 1188,

1228, 1361, 1375, 1436,

1446, 1510, 1753, 1915,

1920, 2039, 2067, 2165,

2254, 2729

464, 513, 829, 1120, 1133, 1134, 1147,

1150, 1190, 1219, 1389, 1400, 1405,

1518, 1654, 1706, 1723, 1847, 1873,

1893, 1894, 1935, 1985, 2087, 2106,

2144, 2147, 2194, 2245, 2320, 2334,

2370, 2415, 2432, 2474, 2491, 2599,

2675, 2730, 2784, 2785, 2868, 2949,

2956, 3003, 3006, 3104, 3152, 3181,

3327, 3340, 3378, 3429, 3659, 3745,

3747, 3886
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Name Interior Points Boundary Points

2–22 373, 389, 414, 547, 574,

662, 697, 714, 729, 870,

955, 1046, 1054, 1065,

1094, 1101, 1372, 1440,

1447, 1672, 1749, 1857,

2172, 2450

233, 785, 831, 886, 915, 926, 938, 1087,

1187, 1270, 1291, 1388, 1401, 1493,

1601, 1655, 1670, 1696, 1802, 1812,

1852, 1853, 1854, 1934, 2030, 2031,

2032, 2053, 2136, 2158, 2317, 2430,

2529, 2611, 2878, 3189, 3788

2–23 40, 266, 300, 304, 372,

411, 560, 690, 765, 806,

807, 933, 1165, 1229, 1581

521, 789, 857, 917, 927, 1036, 1341,

1346, 1413, 1475, 1621, 1625, 1781,

1849, 2057, 2123, 2162, 2510, 2572,

2782, 3070, 3372

2–24 322, 368, 412, 631, 642,

706, 973

618, 1015, 1035, 1085, 1086, 1206, 1296,

1343, 1410, 1411, 1492, 1814, 1846,

2161, 2239, 2242, 2243, 2505, 2531,

2848, 3191

2–25 108, 176, 199, 251, 384,

410, 483, 517, 549, 565,

627, 652, 685, 689, 879,

1163, 1170

461, 520, 830, 916, 1027, 1285, 1339,

1432, 1474, 1626, 1632, 1645, 2054,

2797

2–26 163, 175, 202, 387, 388,

413, 481, 554, 646, 711,

734, 957, 996, 1076, 1263,

1434, 1758

542, 616, 855, 913, 1031, 1034, 1336,

1387, 1407, 1570, 1643, 1649, 1738,

2138, 2231, 2526, 2740, 2804

2–27 71, 157, 165, 200, 201,

305, 321, 328, 375, 385,

814, 899

948, 1334, 2063

2–28 34, 55, 69 537, 1567

2–29 19, 56, 72, 106, 131, 171,

204, 253, 307, 367, 381,

503

1146, 2389

2–30 14, 23, 37, 160, 225, 273 241, 1125

2–31 21, 46, 70 535

2–32 13, 22 90, 104, 122, 156, 249

2–33 7, 50, 140

2–34 5, 24

2–35 6, 118 33, 42

2–36 8

3–1 3329, 3350 3795, 3846, 3875, 3967, 4027, 4236,

4241, 4249

3–2 2570, 2791
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Name Interior Points Boundary Points

3–3 1307, 1726, 1805, 1833,

2070, 2120, 2299, 2594,

2602, 2638, 2678, 2941,

3001, 3166, 3178, 3445

1616, 1692, 2003, 2108, 2270, 2301,

2565, 2566, 2571, 2579, 2595, 2680,

2691, 2763, 2964, 2980, 3037, 3038,

3141, 3144, 3161, 3205, 3226, 3237,

3267, 3276, 3278, 3281, 3293, 3308,

3423, 3456, 3460, 3467, 3517, 3520,

3534, 3646, 3678, 3684, 3716, 3722,

3768, 3769, 3829, 3834, 3835, 3839,

3948, 3969, 3987, 4053, 4142

3–4 1619, 1725, 1823, 2005,

2222, 2224, 2298, 2314,

2394, 2493, 2544, 2603,

2640, 2807, 2927, 2942,

3179, 3348

1692, 1975, 2003, 2270, 2377, 2525,

2566, 2579, 2803, 2898, 2964, 3011,

3141, 3267, 3342, 3460, 3466, 3467,

3508, 3588, 3608, 3627, 3684, 3768,

3770, 3835, 3930, 3948, 4096, 4097,

4110, 4242

3–5 1326, 1367, 1820, 1837,

2128, 2218, 2492

2183, 2631, 2829, 2912, 3211, 3472,

3639

3–6 932, 997, 1318, 1357, 1429,

1437, 1501, 1720, 1773,

1829, 1861, 1900, 1911,

1931, 1938, 2166, 2167,

2269, 2296, 2321, 2326,

2479, 2542, 2620, 2622,

2625, 2627, 2929, 3123,

3195, 3241, 3424

1313, 1604, 1677, 1788, 1880, 1909,

2121, 2171, 2196, 2228, 2229, 2330,

2335, 2351, 2466, 2559, 2590, 2597,

2600, 2618, 2686, 2692, 2905, 2917,

2933, 2936, 3016, 3018, 3022, 3091,

3147, 3157, 3204, 3234, 3238, 3240,

3250, 3255, 3272, 3370, 3381, 3426,

3432, 3459, 3500, 3656, 3657, 3715,

3841, 3907, 3918, 4055, 4129

3–7 263, 630, 959, 1025, 1047,

1055, 1075, 1237, 1247,

1321, 1374, 1417, 1448,

1462, 1522, 1526, 1529,

1912, 1919, 1922, 2021,

2069, 2226, 2256, 2262,

2310, 2340, 2512, 2959

767, 1236, 1303, 1395, 1461, 1660, 1710,

1718, 1772, 1813, 1815, 1879, 1892,

1925, 1933, 1971, 2028, 2034, 2036,

2085, 2119, 2148, 2153, 2207, 2210,

2211, 2216, 2217, 2258, 2265, 2277,

2280, 2293, 2315, 2329, 2338, 2345,

2348, 2352, 2355, 2444, 2488, 2506,

2563, 2589, 2615, 2621, 2639, 2660,

2677, 2687, 2734, 2828, 2841, 2843,

2946, 2961, 2971, 2983, 2991, 2993,

2997, 2998, 3007, 3050, 3076, 3095,

3107, 3108, 3156, 3171, 3172, 3175,

3220, 3223, 3244, 3257, 3304, 3430,

3435, 3436, 3498, 3606, 3691, 3743,

3771, 3779, 3814, 3818, 4036

3–8 984, 1049, 1082, 1456,

1505, 1506, 1776, 1866,

1867, 1913, 2257, 2541

1395, 1425, 1772, 1830, 1925, 1933,

2105, 2119, 2149, 2150, 2207, 2265,

2315, 2583, 2587, 2621, 2639, 2660,

2685, 2845, 2997, 3171, 3186, 3244,

3246, 3369, 3430, 3490, 3956

3–9 289, 344, 354, 374, 447 1385, 1535, 1582, 2720, 2727, 3556,

3997
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Name Interior Points Boundary Points

3–10 267, 336, 342, 632, 821,

890, 969, 976, 983, 1050,

1078, 1100, 1113, 1266,

1463, 1469, 1500, 1512,

1515, 1527, 1577, 1674,

1678, 1745, 1774, 1862,

1882, 1921, 2169, 2266,

2324, 2395, 2452, 2545,

2591, 2811, 2884, 3571

835, 922, 1298, 1486, 1542, 1555, 1608,

1634, 1771, 1795, 1804, 1881, 1895,

1896, 1897, 1902, 1903, 1928, 1936,

1941, 2088, 2122, 2170, 2206, 2215,

2420, 2435, 2552, 2568, 2584, 2588,

2616, 2659, 2668, 2673, 2674, 2676,

2695, 2767, 2776, 2851, 2869, 2944,

2945, 2957, 3005, 3109, 3150, 3169,

3173, 3185, 3259, 3491, 3492, 3497,

3502, 3561, 3562, 3590, 3661, 3787,

3822, 4040

3–11 401, 653, 656, 657, 724,

730, 732, 980, 985, 1005,

1009, 1079, 1088, 1452,

1465, 1489, 1754, 1761,

1769

567, 880, 925, 1069, 1295, 1297, 1391,

1402, 1404, 1459, 1477, 1480, 1517,

1519, 1602, 1624, 1675, 1733, 1752,

1803, 1848, 1850, 1865, 1918, 2143,

2168, 2193, 2230, 2285, 2491, 2513,

2536, 2547, 2623, 2877, 2947, 3170,

3380

3–12 592, 654, 665, 704, 723,

738, 1052, 1070, 1071,

1104, 1107, 1114, 1381,

1435, 1442, 1457, 1472,

1514, 1770, 1806, 1870,

1916, 2110, 2255, 2260,

2514, 2814

829, 925, 1017, 1074, 1147, 1405, 1421,

1422, 1477, 1480, 1481, 1494, 1517,

1706, 1714, 1723, 1733, 1756, 1799,

1801, 1825, 1850, 1865, 1893, 1894,

1935, 2029, 2118, 2144, 2147, 2193,

2208, 2230, 2244, 2283, 2285, 2305,

2320, 2522, 2532, 2576, 2599, 2607,

2609, 2623, 2675, 2766, 2784, 2785,

2786, 2836, 2861, 2866, 2868, 2870,

2874, 2877, 2947, 2948, 3006, 3170,

3232, 3384, 3429, 3584, 3607, 3747

3–13 93, 129, 370, 421, 556,

636, 737, 739, 977, 982,

1063, 1105, 1765

749, 757, 777, 802, 831, 937, 974, 1043,

1085, 1235, 1296, 1396, 1498, 1508,

1524, 1578, 1630, 1673, 1767, 1768,

1812, 1852, 1859, 1914, 1934, 1951,

2031, 2176, 2192, 2241, 2322, 2505,

2530, 2798, 2812, 2860, 3039, 3177,

3441

3–14 143, 186, 203, 308 522, 686, 881, 949, 1013, 1201, 1340,

1342, 1719, 2156, 2416, 2439

3–15 182, 316, 371, 402, 420,

422, 423, 561, 564, 598,

677, 698, 699, 712, 713,

717, 719, 736, 954, 1061,

1066, 1068, 1077, 1108,

1259, 1356, 1378, 1382,

1439, 1744, 1759, 1843,

2125

924, 1032, 1057, 1091, 1249, 1289, 1408,

1433, 1444, 1468, 1491, 1507, 1509,

1627, 1732, 1766, 1809, 1810, 1838,

1844, 1890, 2137, 2159, 2232, 2240,

2449, 2516, 2527, 2601, 2608, 2610,

2613, 2775, 2802, 2805, 2865, 2876,

3116, 3187, 3437, 3439, 3609, 3751
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Name Interior Points Boundary Points

3–16 213, 323, 369, 392, 417,

418, 615, 640, 648, 708,

716, 783, 950, 1000, 1058,

1316, 1376, 1742, 2062

478, 573, 624, 643, 649, 696, 972, 1042,

1062, 1092, 1093, 1338, 1358, 1359,

1380, 1443, 1451, 1664, 1734, 1840,

1863, 2175, 2177, 2438, 2521, 2528,

2747, 2790, 2875, 3382

3–17 130, 161, 209, 210, 405,

415, 587

297, 470, 692, 707, 794, 828, 832, 853,

920, 946, 1056, 1222, 1403, 1737, 1990,

2038, 2064, 2806

3–18 63, 212, 326, 341, 383,

393, 419, 597, 639, 709,

970, 1053, 1245

552, 613, 641, 710, 1029, 1332, 1344,

1736, 1839, 2043, 2155, 2440

3–19 35, 57, 75, 164, 206, 270,

283, 339

303, 364, 471, 485, 536, 695, 967, 1041,

1258, 1532, 1566, 1702, 2391

3–20 44, 80, 174, 208, 211, 259,

404, 416, 667, 715, 888

255, 313, 548, 693, 818, 998, 1040, 1164,

1349, 1431, 1566, 1641, 2004, 2793

3–21 173, 184, 214, 382, 488,

558, 897

612, 647, 847, 947, 951, 1026, 1278,

1319, 1562, 1640, 2061, 2127, 2135,

3111

3–22 64, 76, 139 363, 611, 635, 943, 1210, 1743, 2065

3–23 77, 178, 205 127, 365, 585, 694, 850, 876

3–24 78, 79, 169, 207, 379 315, 377, 538, 584, 634, 919, 995, 1242

3–25 25, 47, 74, 136, 187 366, 462, 469, 486, 533, 589, 1563

3–26 26, 73 167, 306, 376, 621

3–27 18, 31, 133 104, 122, 156

3–28 30, 52, 81, 166

3–29 27 132, 177

3–30 29 168, 276, 314

3–31 20, 28 240, 1118

4–1 489, 495, 578, 610, 1503,

1530, 1775, 2201, 2810

1191, 1236, 1276, 1461, 1660, 1987,

1991, 2023, 2041, 2153, 2211, 2258,

2338, 2348, 2355, 2619, 2734, 2880,

3007, 3257, 3490, 3814

4–2 602, 668, 1048, 1081, 1365,

1454, 1504, 1864

885, 936, 1486, 1574, 1663, 1668, 1771,

1800, 1902, 2206, 2306, 2537, 2581,

2659, 2944, 3106

4–3 109, 153, 603, 664, 684,

728, 735, 822, 1179, 1268,

1269, 1976

464, 513, 1120, 1133, 1134, 1149, 1172,

1213, 1389, 1400, 1460, 1518, 1654,

1658, 2087, 2132, 2396, 2415, 3340

4–4 350, 398, 622, 680, 722,

726, 741, 901, 1039, 1080,

1084, 1106, 1267, 1355,

1449, 1471, 1858, 1860,

2075, 2174, 2179

659, 802, 974, 1043, 1072, 1231, 1235,

1343, 1353, 1498, 1508, 1524, 1767,

1768, 1797, 1846, 1859, 1914, 2158,

2161, 2176, 2204, 2241, 2317, 2322,

2451, 2782, 2798, 2848, 2878, 2883,

3073, 3177, 3189, 3788
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Name Interior Points Boundary Points

4–5 151, 196, 329, 427, 500,

591, 683, 720, 727, 820,

981, 1576

872, 924, 961, 988, 1044, 1249, 1377,

1450, 1491, 1509, 1627, 1648, 1766,

1838, 2159, 2449, 2794, 2797, 2876,

3564, 3565

4–6 406, 409, 426, 651, 661,

681, 721, 904, 1002, 1008,

1067, 1292, 1379, 1682,

1708

968, 1032, 1057, 1091, 1360, 1399, 1408,

1444, 1468, 1507, 1611, 1732, 1798,

1844, 2232, 2240, 2409, 2516, 2527,

2802, 3187

4–7 185, 352, 424, 669, 740,

1010

624, 871, 962, 972, 1060, 1092, 1264,

1358, 1359, 1443, 2175, 2231, 2521

4–8 216, 218, 391, 396, 397,

425, 580, 718, 953, 1350

675, 692, 725, 819, 828, 1056, 1059,

1243, 1445, 1467, 1629, 1667, 1841,

2064, 2154, 2399, 2538

4–9 67, 217, 291, 346, 395 255, 313, 548, 551, 693, 817, 945, 998,

1040, 1164, 1349, 1653

4–10 82, 180, 215, 320, 390,

394, 638

403, 623, 644, 958, 1001, 1331, 1362,

1607, 1731, 2422

4–11 62, 85, 191 315, 319, 377, 584, 634, 637, 995

4–12 83, 181, 190, 309 944, 1330

4–13 60, 84 269, 311, 504, 588

5–1 285, 359, 673, 903, 1007,

1083, 1354

1166, 1248, 1676, 1799, 2305, 2609,

3115

5–2 194, 220, 348, 408, 678,

898

596, 676, 1059, 1178, 1243, 1332, 1445,

1839, 2042, 2155

5–3 114, 150, 195, 219 484, 559, 675, 725, 794, 819, 853, 1966

6–1 284, 357 1231, 1353

7–1 454, 506, 510 1991, 2023, 2041

8–1 769
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