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ABSTRACT

Let L be a simple finite-dimensional Lie algebra of characteristic distinct from 2 and from 3. Suppose

that L contains an extremal element that is not a sandwich, that is, an element x such that [x, [x, L]] is

equal to the linear span of x in L. In this paper we prove that, with a single exception, L is generated by

extremal elements. The result is known, at least for most characteristics, but the proofs in the literature

are involved. The current proofcloses a gap in a geometric proof that every simple Lie algebra containing

no sandwiches (that is, ad-nilpotent elements oforder 2) is in fact of classical type.

1. INTRODUCTION

Let L be a Lie algebra over a field JF ofcharacteristic distinct from 2. An element x E

L is said to be extremal if [x, [x, L]] S; JFx. If [x, [x, L]] = 0 we say x is a sandwich.

By Premet [8,9], every finite-dimensional simple Lie algebra over an algebraically
closed field of characteristic distinct from 2 and 3 is known to have an extremal
element; see [13] for a self-contained proof in case p > 5. If a simple Lie algebra is
finite-dimensional and generated by extremal elements, then it is of classical type.
This fact follows from the classification of finite-dimensional simple Lie algebras
as described in [10-12], but can also be derived from geometric arguments using
the theory of buildings, cf. [4,5], up to small rank cases and the verification that
the building determines a unique Lie algebra generated by extremal elements up

E-mails:amc@win.tue.nl(A.Cohen).gabor.ivanyos@sztaki.hu (G. Ivanyos),
d.a.roozemond@tue.nl (D. Roozemond).
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to isomorphism - a subject of ongoing work. None of these extremal elements are

sandwiches; see [6, Remark 9.9].
In order to use these two results for a revision of the classification of simple Lie

algebras of classical type, the gap between the two has to be filled. In other words,
an elementary proof would be needed of the fact that a simple Lie algebra over an
algebraically closed field ofcharacteristic distinct from 2 and 3 having an extremal
element that is not a sandwich is generated by extremal elements.

Using powerful methods, Benkart [1, Theorem 3.2] shows that if a simple Lie
algebra over an algebraically closed field of characteristic p ?: 7 or p = 0 contains

a nilpotent element of order at most p - 1 and no sandwiches, then it is of classical

type. Together with the abovementioned results of Premet, this gives that any
simple Lie algebra over an algebraically closed field of characteristic 0 or greater

than 5 without sandwiches is of classical type. Since Benkart's methods are rather
involved, this paper is devoted to a self-contained proof of the observed gap and
an extension to the case of characteristic 5. The field need not be algebraically
closed. Our extension allows for one more example of a simple Lie algebra having
a non-sandwich extremal element, namely the 5-dimensional Witt algebra WI, I (5)
over a field of characteristic 5 (see Example 3.1 for an explicit description of this
Lie algebra). It is a counterexample in that it only contains one such element up to

scalar multiples.

Theorem 1.1. Let IF be a field ofcharacteristic distinct from 2 and 3, and let L be
a simple Lie algebra over IF. Suppose that L contains an extremal element that is
not a sandwich. Then either JF has characteristic 5 and L is isomorphic to WI, 1(5)

or L is generated by extremal elements.

The counterexample was known to Alexander Premet. We are grateful for fruitful
discussions with him about our work. We would also like to thank Helmut Strade
for the insight he provided us into the classification of modular Lie algebras.

We briefly outline the paper. In Section 2 we find that a Lie algebra containing
an extremal element that is not a sandwich either has more extremal elements
or is defined over a field of characteristic 5 and has a particular Lie subalgebra.
Elementary proofs for most of the statements in Section 2 were known before
1977; see [1] and references therein. We include proofs here for the sake of

completeness. We gratefully acknowledge David Wales' contribution in the guise of
Proposition 2.1. In Section 3, we pin down the exceptional case in characteristic 5,
and in Section 4 we show that, in the absence ofthe exceptional case, there are many
more extremal elements and finish the proof of the main theorem. The proofs of
Lemma 2.2 and Proposition 3.2 were found by experiments with the GAP computer
system package GBNP; see [3].

To finish the introduction, we fix some notation of use throughout the paper.

Notation 1.2. Throughout this paper, IF will be a field whose characteristic is

denoted by p, and L will be a Lie algebra over IF.
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An element x E L is said to be extremal on M if [x, [x, M]] ~ JFx. Ifx is extremal

on L and no confusion is imminent, we call x extremal. We write £L(M) for the set

of elements extremal on M and abbreviate £dL) to £L. Furthermore, we write

£dy) for Edlyn.
Similarly, if [x, [x, M]] = 0 we say x is a sandwich on M, and if [x, [x, L]] = 0

we simply call x a sandwich. We write SdM) for the set of sandwiches on M.

Again, we write SL(y) for SL({Y}).

By linearity of the expression [x, [x, m]] in m, we have £dM) =£L«M), where

(M) denotes the linear subspace of L spanned by M. Hence, when writing £dM),

we may assume that M is a linear subspace of L, and similarly for SdM). For

x E EdM) and mE M, we define fx(m) E JF to be such that [x, [x, m]] = fx(m)x.

2. JACOBSON-MOROZOV TYPE RESULTS

For extremal elements we present a slightly better version of the well-known

theorem by Jacobson and Morozov. The original result, ascribed to Morozov in [7,

p. 98], is adapted by David Wales to extremal elements and works for characteristic

at least 5.

Proposition 2.1. Suppose that p is distinct from 2 and 3 and that L contains an
extremal element x. Ifw is an elementfor which fx (w) = - 2, then, with h = [x, w],

there is y E L for which

(1) [x,y]=h, [h, x] = 2x and [h, y] = -2y.

The three elements x, y, h are the usual generators of the Lie algebra s [2(JF) of

2 x 2 matrices of trace 0 over JF. A triple satisfying the relations (1) is called an
s[2-triple.

Proof of Proposition 2.1. Let X = ad.. Let h = [x, w] and H = ads. The hypoth­

esis fx(w) = -2 means [x, [x, w]] = -2x. In particular [h, x] = -[x, [x, w]] = 2x
as required.

We know X is nilpotent as [x, [x, [x, y]]] = [x, fx(Y)x] = 0 and so X3 = O.
Let Cdx) = {u ELI [u, x] = O} = Ker X. The following computation shows that

[w, h) - 2w E Cdx):

[[w, h] - 2w, x] = [[w, h], x] - 2[w, x] = [[w, xL h] + [w, [h, xl] - 2(-h)

= [-h, h] + [w, 2x] + 2h =2(-h) + 2h

=0.

Consequently, [w, h] = 2w + Xl where Xl E Cdx). We claim Cdx) is H­
invariant. To see this notice [X, H] = -2X and so XH - HX = -2X. Suppose

u E Cdx). Then XHu = HXu - 2Xu = 0 and so X(Hu) = 0, proving Hu E Cdx)
as claimed.
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Next we consider the action of H on CLCx). Let U E CLCx). Now, with W = adw,

Hu = [X, W]u = XWu - WXu = XWu E XL

and

[X2, W] = X2W - WX2= X[X, W] + [X, W]X

= XH + HX = HX - 2X + HX = 2(H -l)X,

so

2(H - I)Hu = 2(H - I)XWu = (X 2W - WX2)Wu.

But XW = [X, W] + WX = H + WX and so x2Wu = XHu + XWXu = O. In
particular, 2(H - I)Hu = X2W2u. As x is extremal, for any z E L we have X2z =
!x(z)x, and so (H - 2)X2z = (H - 2)!x(z)x = 0 as Hx = 2x. Now

2(H - 2)(H -l)Hu = (H - 2)X2W2u = O.

This means the eigenvalues of H acting on CL (x) are 0, 1,2 and as the characteristic
is at least 5 we see -2 is not an eigenvalue. In particular H + 2 is nonsingular on
CL(X). Pick WI E CLCx) for which (H + 2)wI = XI and so [h, wd = XI - 2wI. Set
y = W+WI. Now [x, y] = [x, W+Wd = h +0 = h and so [x, y] = h. Also [h, y] =
[h, W+ wd = (-2w - xd + (XI - 2wd = -2(w + wd = -2y. This completes the
proof of the proposition. D

In the remainder of this section we suppose that x, y, hE L are an s[2-triple. In
fact, the triple is determined by the pair x, y and the relations

(2) [[x,y],x]=2x and [[x,y],y]=-2y,

as h = [x, y]. Such a pair will be called an s[2-pair. Note that, if x is extremal, this
implies !x(Y) = -2.

Lemma 2.2. Suppose that IF is ofcharacteristic P =1= 2, 3 and that x and yare an
s[2-pair in L. Set S = (x, y, [x, y]). Ifx EEL, then y acts quadratically on L/S, i.e.,
ad;(L/S) =0.

Proof. S is a Lie subalgebraof L isomorphic to s[2(lF). Consider L as a module on
which S acts. Obviously S is an invariant subspace, so L/S is an S-module. Write
X, Y for the action of ad,; ady, respectively, on L/S. As ad;(L) S; lFx S; S, we have
X2 = O. Welist the relations (2) in terms of X and Y, and the quadraticity of X that
we just found.

(Rl) X2y - 2XYX + YX2+ 2X = 0,

(R2) -Xy2+2YXy-y2X-2Y=0,

(R3) X2 =0.
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The relations (Rl) and (R3) immediately imply

(R4) XYX-X=O.

Multiplying (R2) from the left by X gives

which, after application of (R3) and (R4), gives

Denote by R2 the left-hand side of (R2). Then, by (R3),

0= Y R2YX - YXY R2+ 2y2XR2 - R2YXY + XY R2Y - 3YR2
- 2YXR2Y + 3R2Y - 2YXR2Y - 6R2Y + 2XR2y2

= 12y 2 - 3Xy3 +7Y XY 2 - 5y2XY + y 3X + 3XYXy 3

-7YXYXy2+5y2XYXY - y 3XYX.

Replacing XY X by X and X2 by 0, using (R4) and (R3), we find

0= 12y 2 - 3Xy3 +7Y XY2 - 5y2XY + y 3X + 3XY3

-7YXY 2+ 5y2XY - y 3X
= 12y 2.

As p =I- 2, 3, we conclude that y 2 = O. 0

For a E End(L) and AE IF, we denote by L)..(a) the A-eigenspace ofa in L.

Theorem 2.3. Suppose that IF is a field ofcharacteristic p =I- 2, 3, that L is a Lie
algebra over IF, and that x is an extremal element ofL that is not a sandwich. Then
there are y, h E L such that x, y, h is an 5[2-triple. Moreover, for each such a triple,

ad, is diagonizable with eigenvalues 0, ±l, ±2 and satisfies L-2(-adh) = lFx and
L2(-adh) = lFy.

Proof. As x is not a sandwich and the characteristic of IF is not 2, there is w E L

with !x(w) = -2. By Proposition 2.1 with h = [x, w], there is y E L such that
x, y, h are an 5[2-triple. They generate a Lie subalgebra S of L isomorphic to
5[2 (IF). Viewing L as an S-module as in the proof of Lemma 2.2, we see that S
itself is an invariant submodule. Denote by X, Y, and H the actions of ad,; ad.,
and ads, respectively, on the quotient module LIS. As x EEL, we have X2 = O.
By Lemma 2.2, also y 2 = O. It readily follows that the subalgebra of End(LIS)
generated by X, Y, and H is linearly spanned by I, X, Y, H, XY, XH, and Y H, and
that the relation H3 = H is satisfied. In particular, H is diagonizab1e on LIS with
eigenvalues 0, I, and -I only. Consequently, there are subspaces U and V of L such
that L = S +U + V is a direct sum of subspaces such that (S +U)/ S = Ker(H 2 -1)
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and (5 + V)/5 = Ker H. Notice that ad, has eigenvalues -2,0,2 on 5, each with
multiplicity 1. A small computation shows that actually Kerad~ = Ker ads, so that

-adh is diagonizable with eigenspaces L, (-adh) (i = -2, -1,0, 1,2) satisfying
L_2(-adh) =lFx and L2(-adh) =IFy. 0

To end this section, we exploit the ad, -grading with five components. The
following result is a slight variation of [4, Proposition 22].

Proposition 2.4. Suppose x E £L and y E L are an s(2-pair in a Lie algebra L
ofcharacteristic p > 3. Let L, = L; (-adh) (i = - 2, -1,0, 1,2) be the components
of the Zp-grading by h = [x, y]. Then either p = 5 and [y, [y, v]] = x for some
vEL_I, or y is extremal in L, the components L, (i = -2, -1,0,1,2) actually
give a Z-grading ofL, with L-2 = IFx, L2 = IFy, [x, L-d = L1, and [y, Ld = L_I.

Proof. Set 5 = IFx + IFy + IFh. By assumption, 5 ~ s(2(IF). The identifications

of L-2 and L2 with IFx and IFy, respectively, were established in Theorem 2.3.
Suppose that y is not an extremal element. As ad;L; S; IFy for i =I=- ±1 and
adyL_I S; LI, this can only happen if [y, Ld =I=- 0. Then, by the grading properties,
[y, Ld S; L3(-adh) and so 3 is equal to a member i of {-2, -1,0, 1,2} modulo
p. As p ? 5, this implies p = 5 and i = -2. Thus [y, Ld = IFx. It follows
that, for every u ELI, ad.ad,« = 0, whence ad.ad,« = (ad.ad, - adh)u = -u.
Therefore [y, [y, L-d ;2 [y, [y, [x, Ld]] = [y, Ld = IFx, and, by homogeneity,

[y, [y, L-dl S; L-2 = IFx, so the first case holds. To complete the proof, as­
sume that both x and yare extremal. The argument above also shows that if

[y, Ld =I=- °then p = 5 and [y, Ld = IFx. It follows then that [y, [y, Ld] =
IFh ClIFy, a contradiction to extremality of y. Thus [y, Ld = °and, similarly,
[x, L-d = O. It follows that for every pair i, j from the interval [-2,2], we have
[L;, Lj] = 0 whenever the ordinary sum i + j falls outside the interval [-2,2].
Thus the grading is indeed a Z-grading. To see the very last two equalities of
the proposition just notice that for every u E L1 we have ad.ad,« = -u for
every u E L1 as observed above and, similarly, ad.ad,» = -v for every v E

L_I. 0

3. THE CHARACTERISTIC 5 CASE

Suppose that p = 5, and that x is an extremal element of L that is not a sandwich.
By Proposition 2.1 there are y, h E L such that x and yare an s(2-triple. By
Theorem 2.3, ad, is diagonizable and there exists a grading of L by -adh
eigenspaces L; (i = -2, -1, 0, 1, 2). In this section we consider the case where
y is not an extremal element. By Proposition 2.4 there exists an element v E L-1
such that [y, [y, v]] = x.

Example 3.1. Before we proceed, we show that this case actually occurs. The
5-dimensional Witt algebra WI,1 (5) can be defined as follows. Let IF be a field
of characteristic p = 5 and take the vector space over IF with basis Ziaz, for i =
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0, . . . ,4. The Lie bracket is defined on two of these elements by

with the convention that

(3) Zi := ° whenever i f/. {O, ... , 4}.

The Lie bracket extends bilinearly to a multiplication on Wl,l (5) . It is antisyrn­
metric and satisfies the Jacobi identity, so that Wl,l (5) is indeed a Lie algebra of
dimension 5 over IF.

Now we construct an extension WI,I (5) of Wl,I (5) : Add one basis element ,
namely z6az, and adapt (3):

(4) Zi :=° whenever if/. {O, 1,2,3,4, 6}.

The only entry of the multiplication table that differs between Wl,I (5) and

WI,I(5) is [z3az, z4az]: This is 0 in Wl,I(5) and z6az in ~). Furthermore, z6az
~

commutes with all other elements. So Wl,l (5) is indeed an extension of Wl,l (5) by
a one-dimensional center. This extension was constructed in [2]. The analog over

~

the complex numbers of Wl,l (5) is also known as the Virasoro algebra.

Now let W be either Wl,l (5) or~) . Then x = - z2az is readily seen to be
extremal in W. Together with y = az and h = 2zaz it forms an slz-triple in W.
Moreover, setting v = 2z4az, we find [v , y ] = 2z3az and [v, [v, y ]] = z6 az, so W is
generated by x, y, v. But [y , [y , v]] = x, so y is not extremal in W.

The following result characterizes the simple Lie algebra of this example.

Proposition 3.2. Suppose that L is a simple Lie algebra over the fi eld JF of
characteristic p = 5 with an Sl2-triple x, y, h such that x is extremal, - adh is
diagonizable with eigenspaces t., (i = -2, -1 ,0, I , 2) and [y, [y , L _I]] :j:. {O}. Then
L is isomorphic to the Witt algebra WI,I(5).

Proof. As [y, [y, L -il ] S;; L3 = L -2, we have [y, [L_ I , y ]] = IFx. Let vEL _I be
such that [y, [v, y]] = x . Consider the linear span W in L of x, y, h, v, [v, y], and
[v, [v , y ]]. The multiplication on these elements is fully determined:

[x , y]=h ,

[x ,h] = - 2x ,

[x , v] = 0 (for [x , [x , vJ] E IFx n Lo = (O}) ,

[x , [v, yJ] = [v , [x , y] ] + [y , [v, x ]] = [v , h] = - v,

[x , [v, [v , yl]] = [v, [x , [v, yl]] = -[v, v] =0,

[Yoh] = 2y ,
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[y, v] = - [v, y],

[y, [v, y]] = -[y, [y, v]] = -x (by definition),

[y, [v, [v, yJ]] = [v, [y, [v, y]]] +°= [v, x] = 0,

[h, v] = v (implied by the grading),

[h, [v, y]] = -[v, y] (implied by the grading),

[h, [v, [v, y]]] =° (implied by the grading),

[v, [v, y]] = [v, [v, yJ],

[v, [v, [v,y]]] =0,

[[v,y], [v, [v,y]]] =0.

Observe that [v, [v, y]] is central and that the quotient with respect to the ideal
it generates is simple of dimension 5. We claim that if [v, [v, y]] = °the~~.)s

isomorphic to the Witt algebra Wl,l (5), and otherwise W is isomorphic to Wl,1 (5),
as defined in Example 3.1.

By comparison of the above multiplication rules for the spanning set x, y, h,
v, [v, y], [v, [v, y]] of Wand the basis -z2a

z, az, 2zaz, 2z4a
z, 2z3a

z, and iaz of
----------- -----------WI, I (5) there is a surject~momorphism cP : WI, I (5) -+ W of Lie algebras. By

assumption W =f 0. As Wl,1 (5) only has one nontrivial proper ideal, which maps
-----------onto ([v, [v, y]]) under cp, it follows that cp is an isomorphism Wl,1 (5) -+ W if

[v, [v, y]] =f°and induces an isomorphism Wl,1 (5) -+ W otherwise.
-----------It remains to prove that L coincides with W, for then L ~ Wl,1 (5) as Wl,1 (5)

is not simple. To this end, suppose that L strictly contains W, and consider L

as a module on which W acts. As in the proof of Lemma 2.2, we compute in
the subalgebra End(L/W) generated by adw. Applying Lemma 2.2, we find that
ad, and ad, act quadratically on L / (x, y, [x, y]) and hence on L / W, so we have
relations (Rl ), ... ,(R5) in End(L/W). Write X, Y, V for the action of ad.,
ad., ad., respectively, on L / W. Due to Lemma 2.2, and the multiplication rules
[y, [v, y]] = -x and [x, [v, y]] = - v listed above, we have the following relations.

(R6) y 2 = 0,

(R7) y 2V - 2YVY + Vy 2
- X = 0,

(R8) XVY - XYV - VYX + YVX + V =0.

Applying (R6) to (R7) and to (R2), respectively, gives the following two relations.

(R9) X + 2YVY = 0,

(RIO) Y - YXY =0.

Now with R9, RIO denoting the left-hand sides of (R9), (RIO), respectively,

0= R9(l- XY) - 2YV RIO,

= (X +2YVY)(l- XY) - 2YV(Y - YXY),
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= x +2YVY - XZy - 2YVYXY - 2YVY +2YVYXY,

=X.

(RIO) immediately implies Y = 0, and then (R8) implies V = 0.
So the images of adw, for wE W, in End(L/ W) are trivial. This means that W is

an ideal of L. Since L is simple and W is nontrivial, we find L ~ W, as required. D

4. THE GENERAL CASE

Having dealt with the exceptional case in the previous section, we can now proceed
with the general case of Proposition 2.4.

Proposition 4.1. Assume that L is a simple Lie algebra over the field IF' of
characteristic P i= 2,3, having an s[z-pair x, Y ofextremal elements. If L is not
isomorphic to WI, 1(5), then L is generated by extremal elements.

Proof. Note that [y, [y, L-l]] = °as y is extremal and so Proposition 2.4 gives that
h = [x, y] is diagonizable and the components L, = Li(-adh) (i = -2, -1,0,1,2)
of the grading by h satisfy L-z = IF'x, L-l = [x, Ld, Lz = IF'y, and L, =

[y, L-d.
Consider the subalgebra I of L generated by x, y, and LI. As L_I = [x, Ld,

the subalgebra I contains the linear subspace i = L-z + L-l + LI + Lz of L. As
[i, La] S; i and i generates I, we have [I, La] S; I. This implies [I, L] = I. In other
words, I is an ideal of L, and so, by simplicity of L, it coincides with L. Therefore,
it suffices to show that for each z ELI there exists an extremal element u E L such

that z is in the subalgebra generated by x, y, and u.
To this end, let z ELI. Put h = [x, y]. The following relations hold in L, for some

a ElF'.

(5) [h, x] = 2x,

(6) [h, y] = -2y,

(7) lz. h] = z.
(8) [y, zl = 0,

(9) [x, [x,z]] =0,

(10) [y,[x,z]]=z,

(11) [y, [z,[z,xJ]] =0,

(12) [x, [z,[z,x]]] =0,

(13) [y, [z, [z,[z,x]]]] =0,

(14) [x, [x, [z, [z,[z,x]]]]] =0,

(15) [y, [x, [z, [z, [z,x]]]]] = [z, [z, [z,xJ]],

(16) [z, [z, [z, [z,x]]]] =ay.

We claim that the Lie subalgebra L' of L generated by x, y, and z is linearly
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spanned by the following set B of eight elements, where h 1 = [[x, Z], zl:

X E L-2; [x, Z], [[hi, Z], x] E L_I;

Z, [hi, zl ELI; y E L2·

h, [[x, Z], z] E La;

To see that this is true, we verify that the images of the elements of B under ad.,
ad., and adz are scalar multiples of these. For ad, and ad, this is straightforward.
As for adz, the statement is trivially verified for all elements of B but [[h I, Z],x].

As [hl,x] = 0, we have

adz([[hi, zl.x]) = [adz([hl' z]), x] + [[hi, zl.adz(x) ]

= a[y, x] + [[hi, adz(x)], z] + [hi, [z, adz(x)J]

= -ah - adz([hl' adz(x)]) + [hi, hiJ

= -ah - adz([[hl, z], x]),

so adz([[hl,z],x]) = -~h. This establishes the claim that L' is linearly spanned
by B.

We exhibit an element U E L' as specified. Because of the grading induced by ad,
on L, the endomorphism adz on L is nilpotent of order at most 5 and exp(ad.) is a
linear transformation of L (it is well defined as p #- 2, 3). Put

A straightforward computation in L' shows that y and u are an s(2-pair in L. By
(11), (13), (16), and (10) we find

(17) [y, ul = [y, x] + [y, [z, x J] + ~ [y, ad; (x )]

1 1
+ 6[y,ad~(x)] + 24[y,ad~(x)]

= [y, x] + [y, [z, xl] + 0 + 0 + [y, ay]

=-h-z

so, by (6), (8),

(18) [[y,u],y]=-[h,y]-[z,y]=2y.

For [[y, u], u] we compute, using (17), (5) and Proposition 2.4,

[[y, u], x] = -[h, x] - lz,x] = -2x - [z, x],

[[y, u], adz(x) ] =-adz(x) - ad;(x),

[[y, u], ad; (x) ] = 0 - ad~(x),

[[y,u],ad~(x)] =ad~(x) -ad~(x),

[[y, u], ad~(x)] = +2ad~(x) - ad~(x) = 2ad~(x),
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so

(19)
1

[[y, u], u] = -2x - [z, x] - adzex) - ad;ex) - 2ad~ex)

1 1
+ 6(ad; ex) - adiex»)+ 24 (2adiex»)

=-2u.

Now (18) and (19) show that y and u are an s(2-pair in L.
By Propositions 2.4 and 3.2, and the assumption that L is not isomorphic to

WI, I (5), this implies that u is extremal in L.
We verify that z lies in the subalgebra L" of L generated by the three extremal

elements x, y, and u. Observe that

Acting by ad, and using (10), (11), (13), we find

This proves that z belongs to L" and so we are done. D

Proof of Theorem 1.1. Let L be as in the assumption. By Theorem 2.3, there is an
s(2-pair x, y in L with x extremal in L. Proposition 4.1 finishes the proof. D
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