Automated Proofs using Bracket Algebra

with

Cinderella and OpenMath

Dan Roozemond BSc
Eindhoven University of Technology
Department of Mathematics and Computer Science

Abstract

This paper describes the results of a project intended to make it possible to put
forward geometrical theorems by pointing and clicking, and then obtain a proof for that
theorem automatically. This goal was achieved by adding various options to Cinderella
[1], a computer program with which one can create geometrical configurations. Its internal
‘Randomized prover’ is able to discover theorems automatically.

In the project the functionality was added to find proofs for these theorems with
the aid of the computer algebra package GAP [9]. Communication between these two
programs and the various steps in generating the proof is done by means of OpenMath
[5, 7]. The proofs are represented by bracket calculations as proposed in [8].

1 Introduction

Proof is the idol before whom the pure
mathematician tortures himself.
Sir Arthur Eddington (1882 - 1944)

Cinderella is a computer program, with which one can create geometrical configurations.
Cinderella has a built in ‘Randomized prover’, that is able to discover geometrical theorems
and return a probabilistic proof [2]. However, these proofs are not verifiable.

The main goal of the project covered here was to make it possible to put forward a theorem
by pointing and clicking (in Cinderella), and then obtain a mathematically sound proof of
that theorem. Moreover, this proof should be verifiable. This goal was achieved by using the
following three packages:

Cinderella “Software for doing geometry on the computer, designed to be both mathemat-
ically robust and easy to use” [1].

OpenMath “A new, extensible standard for representing the semantics of mathematical
objects” [5] - The communication between Cinderella and GAP was implemented with
OpenMath. This was done using the Riaca OpenMath library for Java [7].

GAP “GAP - Groups, Algorithms, and Programming” [9].

2 Automated Proofs using Bracket Algebra

In this paper we first introduce the OpenMath standard in Section 2. Sections 3 and 4
explain how bracket calculations are used for the representation of geometrical configurations
and theorems. Section 5 addresses the structure of the prover. Section 6 gives some notes on
the translation from a geometric configuration in Cinderella into bracket equations as well as
the implementation using GAP. A few examples of the theorem prover in action can be found
in Section 7.

2 The OpenMath Standard

The OpenMath standard is made for the representation of mathematics in such a way that
mathematical objects can easily be exchanged between computer programs.

OpenMath is an emerging standard for representing mathematical objects
with their semantics, allowing them to be exchanged between computer programs,
stored in databases, or published on the worldwide web. While the original de-
signers were mainly developers of computer algebra systems, it is now attracting
interest from other areas of scientific computation and from many publishers of
electronic documents with a significant mathematical content. [5, Overview]

A rough overview of the standard can be found in Figure 1. The 3 layers are explained as
follows:

Language The OpenMath language defines the ‘grammar’. It defines notions like Variables,
Constants, Errors, and Functions.

Content Dictionary A Content Dictionary (CD) is (or can be) defined for each area of
Mathematics. For example the ‘arithl’ CD describes the notions of ‘minus’, ‘plus’,
‘power’, etc.

Phrasebooks A Phrasebook provides communication between OpenMath and another pro-
gram. Phrasebooks exist for, for example, Mathematica, GAP and SINGULAR. A
specific Phrasebook consists of three parts:

e An encoder to encode OpenMath objects into commands that the program under-
stands,

e A decoder to translate program output into OpenMath objects,

e The physical communication between the program and the Java (or C, or C++)
program containing the OpenMath objects.

The interested reader is encouraged to have a look at http://www.openmath.org for an
extensive overview of the OpenMath standard. In this project the (experimental) plangeo
codec [6] is used, since it contains elements for representing planar geometry.

3 Brackets and Projective (Geometry

When we restrict ourselves to geometric theorems that are invariant under projective trans-
formations, we can prove geometric theorems much faster than when we would have used
Grobner bases. The method we use is based on a paper by Jiirgen Richter-Gebert in 1995
[8]. For now, we only consider configurations and theses of the form:

Automated Proofs using Bracket Algebra 3

GAP Singular Mathematica

-] -
s |- |-

Phrasebooks

Algebra Integer

Content Dictionaries

‘ Language ‘

Figure 1: The OpenMath framework

e The three points A, B, and C lie on one line (the points A, B, and C are collinear),
denoted by ‘h(A, B,C)’,

e The three lines through A and B, C and D, and E and F', respectively, go through one
point, denoted by ‘m((A, B), (C, D), (E, F))’,

e The six points A, B, C, D, E, and F lie on one conic, denoted by
‘e(A,B,C,D,E,F)’.

We again observe the homogeneous coordinates in the plane, elements of P3. This means
the coordinates are in (R3\{0})/R\{0}, in words: all scalar multiples of a vector denote the
same point. We will denote the determinant

A TB XCO
Ya YB Yc
ZA ZB ZC

corresponding to the points A, B, and C by [ABC]. This notation is referred to as the bracket
notation, a determinant [ABC] as a bracket. In the mathematical foundation in this section
parts from the masters thesis by one of Jiirgen Richter-Gebert’s students, Andreas Umbach,
were consulted [10].

3.1 Collinearity

First, we focus on the collinearity conditions, described by h(A, B,C). It is commonly known
that three points A, B, and C' are collinear if and only if [ABC] = 0.

To create a proof (as shown in the next section) we need to make a connection between
several conditions. This can be done using the following theorem. In order to make reading
easier, we write k for the point defined by coordinates (xx, yx, zx)” .

Theorem 3.1. Let 1,2,3,4, and 5 be 5 points in the plane, such that 1,4, and 5 are not
collinear. Then the following equivalence holds:

[123] = 0 < [124][135] = [125][134]
Proof The bracket is a 3-linear alternating form: Observe

a = [123][145] — [124][135] + [125][134].

4 Automated Proofs using Bracket Algebra

Fix 1 in a. Then a is a 4-linear alternating form on {2, 3,4, 5}. However, there is no such
thing as a non degenerate 4-linear alternating form in a 3-dimensional space, so a = 0. Since
this implies

[123][145] = [124][135] — [125][134]

the theorem is proved. O

Using this theorem, we can translate a set of conditions of the form h(A, B,C) to bi-
quadratic equations:

[ABD|[ACE] = [ABE][ACD)]

for any D and E such that A, D, and E are not collinear.

This method of describing a geometry theorem implicitly introduces a number of non-
degeneracy conditions. For example, the fact that 1, 4, and 5 are not collinear. On the
one hand, this is an advantage, as we do not have to express this kind of non-degeneracy
conditions explicitly. On the other hand, this is a disadvantage, as we might add some non-
degeneracy conditions we are not aware of and which might be unnecessary. However, in
this specific situation the disadvantage seems less important, since the user will construct a
certain theorem in Cinderella, thus (in general) avoiding degenerated cases himself.

3.2 Concurrency and Conics

In this section we show how to translate the assertions m((A, B), (C, D), (E, F)) and
c¢(A,B,C,D, E, F) to bracket equations.

Theorem 3.2. Observe the assertion m((A, B),(C, D), (E,F)). This means that the lines
through A and B, C and D, and E and F go through one point. This assertion implies
that all these 6 points and 3 lines are distinct, and that the point of concurrency is not one
of A,B,C,D, E,F, thus implicitly adding non-degeneracy conditions every time we use this
assertion.

This assertion is equivalent to,

[ABC|[CDE||EFA] = —|ABE|[CDA][EFC],

and to

[ABF|[CDE] = [ABE|[CDF].

Proof Observe the assertion m((A, B), (C, D), (E,F)), i.e. the lines through A and B, C
and D, and E and F' go through one point, say Z. This is equivalent to the combination of
the three assertions

h(A,B,Z), h(C,D,Z) and h(E, F, Z).

Using Theorem 3.1 we find the following three equations. Notice how we have to use the fact
that all 6 points are distinct and none of them is the point of concurrency.

[ABC|[AZE] = [ABEJ[AZC),
[CDE|[CZA] = [CDA]|[CZE],
[EFA|[EZC] = |[EFC||EZA. (1)

Automated Proofs using Bracket Algebra 5

We multiply the left- and right-hand sides and cancel terms that occur on both sides, and
obtain
[ABC|[CDE|[EFA] = —[ABE|[CDA]EFC], (2)

thus proving the first equation.
As m((A, B),(C,D),(E, F)) is equivalent to (for example) the assertion
m((A4, B),(C,D),(F, E)) we obtain from Equation 2:

—[ABF|[CDA|[FEC] = [ABC|[CDF|[FEA]. (3)

Again, we multiply the left- and right-hand sides from Equations 2 and 3 and cancel terms
that occur on both sides, and we obtain

[ABF|[CDE)] = [ABE|[CDF), (4)

which proves the second equation of the theorem.]

We just showed two possible encodings of the m(..)-assertion. However, it appears that
using only the second one suffices in practice. An assertion m(..) gives us only three different
instances of Equation 4, all other permutations are equivalent to one of those three.

Remark 3.3. Because of the implicit degeneration conditions introduced, we have to be
careful when using m(..) as an assertion representing the thesis. Additionally, in practice
it appears a proof using m(..) as configuration assertions is harder to understand than a
proof using h(..) as configuration assertions. However, the m(..)-assertion still has the huge
advantage that it represents three h(..)-assertions, thus considerably reducing the amount of
configuration assertions and configuration equations.

As this shows that using the m(..)-assertion has both advantages we do not want to
loose and disadvantages we do not want to have, we chose to leave the choice to the user
of Cinderella. When trying to obtain a proof, he can decide whether he wants to use m(..)-
assertions in the configuration, and whether he wants to use m(..)-assertions in the thesis.
This enables the user to find the ‘golden mean’ between the shortness and the clarity of the
proof. A

The next theorem describes how to encode six points on a conic into bracket expressions.

Theorem 3.4. Observe the assertion ¢(A, B,C, D, E, F'), meaning that the six points A,B,C,D,
E, and F are on one conic. This assertion implies that all these six points are distinct and
no three of the points are collinear, thus implicitly adding non-degeneracy conditions every
time we use this assertion.

This assertion is equivalent to the following bracket equation:

[ACE|[BDE|[ABF|[CDF] = [ABE||CDE|[ACF)[BDF).

Proof First, observe four distinct points, A, B, C', and D, and the two degenerate conics ¢;
and cy. The conic ¢; is given by the line through A and B and the line through C' and D,
the conic co is given by the line through A and C and the line through B and D. For an
arbitrary point x we have

x €c; ifand only if z on AB or z on CD, so [ABz|[CDz] =0

6 Automated Proofs using Bracket Algebra

|[ABC|[ADE][BDF|[CEF] = [ABD|[ACE][BCF|DEF)],
|[ABE||ACD|[BDF|[CEF] = |ABD|[ACE|[BEF|[CDF),
|ABE||BCD||ADF|[CEF] = [ABD|[BCE||AEF]|CDF)],
|[ABD||AEF|[BCF|[CDE] = [ABF|[ADE][BCDI|[CEF)],
|ABE|[ACF||[BDF|[CDE] = [ABF||ACE|BDE||CDF)]. (9)

Table 1: A basis for ¢(..)-assertions in the configuration

x € cg if and only if z on AC or x on BD, so [AC«z|[BDz] = 0. (5)
Now, for all A\, u € R, the equation
MABz|[CDx] + p[ACz|[BDxz]

describes a conic through A, B, C, and D. Now let

A = [ACE|[BDE]
p = —[ABEJ[CDE], (6)
and observe the expression
[ACE][BDE]|[ABz|[CDx] — [ABE]|[CDE][ACx][BDzx]. (7)

Since this is a bi-quadratic expression of degree two, which evaluates to zero for z € {A, B,C, D, E},
this defines a conic on the points A,B,C,D, and E. This means F' is on that conic if and only
if

[ACE|[BDE]|[ABF|[CDF) = [ABE|[CDE]|[ACF|[BDF], (8)

which concludes the proof.]

In general, a single ¢(..)-assertion gives us 6! = 720 possible equations. However, in the
configuration a basis of the subspace spanned by these 720 equations will suffice. Such a basis
is a set of equations such that the other equations can be obtained by multiplying sides and
removing pairs that occur on both sides. With basic linear algebra we can obtain a basis
for this [10, p. 36]. The basis can be found in Table 1. So, every c(..)-assertion only adds
five equations to the set of configuration equations. However, if the thesis is a ¢(..)-assertion,
we have to include all 720 possible equations, as each of those equations is equivalent to the
thesis.

4 Non-Projective Geometry

In this section we present some theory that enables us to represent assertions in non-projective
geometry in brackets. Someone might think that calculating with expressions that are invari-
ant with respect to linear transformations, as described in the previous chapter, automatically
makes it impossible to prove any theorems containing for example circles. This is not such
a strange thought, since circles might become conics (and lose their circularity) under linear
transformations. However, by adding two special points to the configuration, we can prove
such theorems.

Automated Proofs using Bracket Algebra 7

4.1 Complex Numbers

With the following procedure we can use complex numbers to express conditions involving
distances, angles, etc. Given a point P = (z,y) € R? in the plane, we define z, € C := z +1iy.
Moreover, z, = r - e'? for certain r,o € R. We know z € R< 2 =7, and z € iR & 2z = —%2.

We go back to homogeneous coordinates and introduce two new ‘points’: I = (i, —1,0) and
J = (—i,—1,0). Now observe the bracket [ABI], where A = (x4,Ya,1) and B = (zp,yp, 1):

Tq Tp 10
[ABI|=| Yo W —1 |=2q+ Yo —Tp —iYp = 24 — 2b- (10)
1 1 0

Likewise, the bracket [ABJ] evaluates to

Ty Tp —1
[ABJ] = | ya W —1 |=2q¢— 1Yy — Tp+iYp = 24 — 2p- (11)
1 1 0

Example (Collinearity) Now suppose A, B, and C are collinear. Observe the complex
numbers z; = 71€"1 of the vector (B — A), and 23 = €2 of (C — A). The points A, B,
and C are collinear if and only if the two angles ¢1 and @9 are either the same or opposed to
each other. This means p; = @2 or 1 = 7 + 92, which means z1 /29 € R, or equivalently

o= (=) ™

Using Equations 10 and 11 this is equal to

[BAI| B [BAJ] (13)
[CAI - [CAJ]
which evaluates to
[ABI|[ACJ] = [ACI|[ABJ], (14)
which indeed fulfills the claim at Theorem 3.1. AN

4.2 Circles

We will now show how to encode the fact that four points are on one circle in brackets.

Theorem 4.1. Suppose the four points A, B, C, and D are on one circle, then the following
bracket equation holds:

[ACI|[BDI|[AD.J||BC.J] = [BCI|[ADI||AC.J|[BD.J).

This assertion will be denoted by ci(A, B,C, D).

Note that this matches the bracket equation for a conic through the points A, B, C, D,
I, and J (See Theorem 3.4).

8 Automated Proofs using Bracket Algebra

Proof It is a well known theorem that four points A, B, C, and D are on one circle if and
only if the angle between AC' and BC' is equal to the angle between AD and BD. We now
switch to complex numbers as described in the start of this section, and find that this is

equivalent to
ZA— % ZA— 2
C / D R,

ZB —2C [/ ZB — %D

with arguing as in the example on collinearity above. This equation can be rewritten to

zA— 20 [ZAa—zZp ZA—zZc [ZA—ZD
2p—zc/ z28—2p 2p—z2c/ 2B —2p

Using Equations 10 and 11 this transforms to

[ACI||BDI|[BCJ||ADJ] = [BCI|[ADI||ACJ|[BD.J],

which concludes the proof. O

5 The Prover

Suppose we are given a certain theorem in planar geometry, containing points and some
collinearity conditions. This means we know that certain brackets (i.e. expressions of the
form [ABCY) are equal to zero. We define B to be the set of all brackets, i.e. all combinations
of three points from the geometry theorem, so |B| = (g), where p denotes the number of
points in the configuration.

Example Suppose we have a configuration with the points A, B, C, and D. Then
B :={[ABC],[ABD],[ACD],[BCD]},
and \B]:él:(g). A

Suppose we have a geometry statement, and by Theorems 3.1, 3.2 and 3.4 we obtained a
set of n equations following from the configuration:

i = Cir,
Cy = Cop,
Cnl = Cnps (15)

where ‘I’ denotes the left hand side of the equation, and ‘r’ the right hand side. Each of the
factors of the ¢;; and ¢; denotes a determinant of three points in the geometry statement, so
each ¢;;/, is a product of elements of B. Note that we use the equivalence sign ‘=" rather than
the normal equation sign ‘=’ to make it clear that we are calculating with brackets, elements
of B, rather than with the elements in R or QQ they evaluate to. From Theorem 3.1 it follows
directly that each of the factors of the ¢;; and ¢; is not equal to zero.

Moreover, we have an (at least one) equation that implies the thesis we want to test:

ty = i, (16)

Note that all factors in ¢, should be a factor of at least one ¢;;/.. This means that the
brackets in the thesis equation should occur somewhere in the configuration equations.

Automated Proofs using Bracket Algebra 9

Remark 5.1. Note that it is almost always possible to express the thesis in various different
equations. For the remainder of the section we will just pick one, for ease of reading. In
practice we will test all of them, checking which gives us the shortest proof, if any. A

Now suppose we have a certain oracle that gives us a vector g € Q", g # 0 such that
1 ¢ 1~
_ Y Y
4 lel (ca)? = i ZIll(cw) . (17)

By multiplying both sides by the greatest common divisor ¢ of the denominators in

g1, - -, 9n, thus clearing the denominators, we obtain the following equation:
1\? L 1\¢ n
<tl> H(Cil)vi = <t> H(Ci’r)m7 Where v; = q - gi, SO V; c 7. (18)
=1 "=l

Remark 5.2. In words: For each of the n equations we multiply a certain power of the left
sides with each other, and the same power of the right sides. Then all terms cancel, except
for (£;)9 on the left side, and (¢,)? on the right side. A

By the definition of the ¢;; /. we know
(ci)® = (¢ir)* V1<i<n,Vac€Z, (19)

and since ¢ # 0 we obtain from Equation 18:

G - e

This means such a vector g € Q™ gives us a verifiable proof that the thesis logically follows
from the configuration. In the next section it will be shown how we can obtain such a g.

5.1 Obtaining the Proof

It will be shown that a vector g as in 17 can be found by solving linear equations. We recall
that B is the set of all brackets, and define b = |B| and x; such that {z1,..., 23} = B.

Suppose we have a configuration given by ¢y, ¢ir, . - ., Cnl, Cnr and a thesis given by ¢; and
ty. Recall that c;;/, and ¢/, are products of elements of B. Introduce the b X n matrix X
with coeflicients in Z, defined as follows:

1 if xy is a factor of ¢y,
forall 1<k <b1<i<n: Xg:={ —1 ifaxyisa factor of ¢, (21)
0 otherwise.

The vector Y € Z’ is defined in the same way from our thesis.

1 if zy, is a factor of #;,
foralll1<k<b:Y,:=<¢ —1 ifx. is a factor of t,, (22)
0 otherwise.

Now observe the following system of linear equations

10 Automated Proofs using Bracket Algebra

1 A := FreePoint; 10. F := Meet(a,c);
2. B := FreePoint; 11. e := Join(E,F);
3. a := Join(A,B); 12. G := Meet(b,d);
4 C := FreePoint; 13. f := Join(A,G);
5. b := Join(B,C); 14. g := Join(A,D);
6 D := FreePoint; 15. h := Join(B,E);
7. ¢ := Join(C,D); 16. H := Meet(e,f);
8 E := FreePoint; 17. k := Join(H,C);
9. d := Join(D,E);

Figure 2: Pappos’ Theorem as a Cinderella Algorithm
(Capital characters denote points, small characters denote lines)

with a solution vector g. Since X and Y have integer values, we know that g € Q™. It is
straightforward to see that g satisfies Equation 17. Thus, we have a procedure that enables
us to obtain a proof by solving linear equations, which is much faster than having to use
Grobner bases.

Remark 5.3. In general, the problem whether a geometric theorem is true or false is still
equal to the decision if ¢; — ¢, is in the ideal I generated by ¢;; — ¢; (i = 1,...,n). This ideal
membership problem is normally decided by means of Grobner bases, but experimenting
with Grobner bases in this context thought us that they are too slow to be practical in our
situation. However, a g as in Equation 23 shows that

n
t— 1t = Zgi(cil — Cir). (24)
i=1

which proves the ideal membership. If such a vector g does not exist however, we have no
information on the ideal membership. This is why we lose the possibility to prove a theorem
to be false, as a theorem is called ‘false’ only when t; — t,. & V/I. A

6 On the Implementation

In this section some notes are given on the implementation of the prover described in Sections
3 and 4. It is meant to give an overview of how the transition from a geometric theorem in
Cinderella to a proof of that theorem can be realized.

6.1 Translating the Assertion

The translation from a geometric theorem in Cinderella into a set of assertions of the forms
described in Sections 3 and 4, takes place in two steps.

Firstly, an algorithm in Cinderella (see for example Figure 2) is translated into an Open-
Math plangeo.assertion-object. This can be done rather straightforward, as every step of
the algorithm corresponds to a single OpenMath Application. For example,

Automated Proofs using Bracket Algebra 11

a := Join(A,B)
can directly be translated into the OpenMath object below.

<0OMA>
<OMS name="line" cd="plangeol"/>
<OMV name="a"/>
<OMA>
<0MS name="incident" cd="plangeol"/>
<OMV name="a"/>
<OMV name="A"/>
</0MA>
<0MA>
<0MS name="incident" cd="plangeol"/>
<OMV name="a"/>
<OMV name="B"/>
</0MA>
</0MA>

Thus, walking through Cinderella’s algorithm step by step, we obtain an OpenMath plangeol.assertion
representing the configuration. The thesis added to this object is the last non-trivial incidence
the randomized prover concluded.

Cinderella is able to convert the following Cinderella algorithms into OpenMath elements:
Join, Meet, Mid, PointOnLine!, Through?, Orthogonal, Parallel, CircleMP?, ConicByS5,
IntersectionConicline, IntersectionConicConic, CircleBy3, PointOnCircle,
OtherIntersectionCC?, and OtherIntersectionCL’. Note that not all of these algorithms
can be encoded to bracket equations. However, it is useful to translate as much objects as
possible to OpenMath, as this OpenMath object can be used by other applications.

In this step we will restrict ourselves to elements we can translate to the assertions given
in Sections 3 and 4. This means that if the OpenMath object from the previous step has
elements such as Mid, an error will be raised and the translation will be broken off at this
point. However, the OpenMath object is still valid, and might be used by an application
that can handle more statements. Moreover, this two-phased design makes it possible for the
prover to handle any theorem in projective geometry that can be expressed in OpenMath,
not just the ones that can be constructed in Cinderella!

The plangeol.assertion from the previous step is processed in the following way:

1. Find all elements (point, lines, conics) in the configuration, say {E1, ..., Ep},

2. Find all incidences, and link them to the elements, thus finding a set of incidences
F; ¢ {E\,...,Ep}, where 1 < i < p. This means that element E; is incident to all
elements in the set Fj,

3. We set G:={1,...,p},

1A new point on an existing line

2A new line through an existing point

3MP stands for MidPoint

4The two intersections between two conics

5The two intersections between a conic and a line

12 Automated Proofs using Bracket Algebra

4. While G # 0):

(a) Get an index k € G, where first indices corresponding to conics are processed, then
circles, then points, and finally lines,

(b) Encode the element identified by k. For example: If Fj is a conic, and Fj, contains
6 points, an element of the form ¢(..) is added to the configuration,

(c) Set G := G\{k}
(d) Set F; := F;\{E}}, for all i € G,
(e) Set G := G\{i} for all i € G for which F; = ().
5. Find the incidence the thesis describes. Depending on if this is an incidence between a

point and a line, a point and a conic or a point and a circle, the type of the thesis will
differ.

Notice that the element ‘points’ in Item 4a may be ignored if the user stated that he does
not want mf(..) assertions in the configuration (See Remark 3.3). Using the above procedure,
a configuration from Cinderella is translated automatically to a configuration consisting of
assertions, ready to be converted into brackets.

6.2 The Prover

The procedure explained in the previous sections was implemented in Cinderella [1], with the
aid of OpenMath [5, 6, 7] and GAP [9]. A geometric theorem in Cinderella is translated into
a proof in bracket algebra according to the following steps:

1. Cinderella: A configuration described by points and lines, some objects may have
coordinates,

2. OpenMath: A configuration described by points and lines, as in plangeo, some objects
may have coordinates,

3. OpenMath: A matrix X and a vector Y as in Equations 21 and 22, respectively,
4. GAP: A matrix X and a vector Y as in Equations 21 and 22, respectively,

5. GAP: A vector g as in Equation 17,

6. OpenMath: A vector g as in Equation 17,

7. Cinderella: A vector g as in Equation 17,

8. Cinderella: A string representing the proof, where the coordinates of the vector g have
been translated back into their equivalents in bracket expressions.

These translations were implemented using Java, the Riaca OpenMath Library [7] and
GAP [9]. The result was integrated within Cinderella and will be a part of Cinderella 2, which
will be ready someday in the future with more exciting new options!

Automated Proofs using Bracket Algebra 13

7 Examples

In this section we give some examples of geometric theorems proved using Cinderella and
GAP. These theorems were created in Cinderella, ‘discovered’ by the internal Randomized
Prover, and then, via OpenMath, given to the prover. Thus, there has been no optimization
whatsoever by the user.

7.1 Pappos

Figure 3: Pappos’ Theorem

We consider Pappos’ Theorem, see Figure 3. The thesis is that the lines through B and
C, through A and D, and through G and H go through one point (K). The full output of
the prover is as follows:

Conditions:

{h(C, F, G)} On line
{h(D, F, H)} On line
{h(B, E, H)} On line
{h(4, E, G)} On line
{h(C, D, E)} On line
{h(A, B, F)} On line

M O O FHhOo B

Assertion:
{m((B, C), (4, D), (G, H))} Through point K

Number of configuration equations: 200
Number of possible theses: 3

Found a proof for thesis 1. Length: 11.
Found a proof for thesis 2. Length: 11.
Found a proof for thesis 3. Length: 10.

(1) [A.C.F][B.C.G] == [B.C.F]J[A.C.G] <== {h(C, F, &}
(1) [B.D.F]J[A.D.H] == [A.D.F][B.D.H] <== {h(D, F, H)}
(1) [B.C.E]J[A.B.H] == [A.B.E][B.C.H] <== {h(B, E, H)}
(1) [A.B.E][B.D.H] == [B.D.E][A.B.H] <== {h(B, E, H)}
(1) [A.B.EJ[A.C.G] == [A.C.E]J[A.B.G] <== {h(A, E, @)}
(1) [A.D.E][A.B.G] == [A.B.E][A.D.G] <== {h(A, E, G)}
(1) [B.C.D]J[A.C.E] == [A.C.D]J[B.C.E] <== {n(C, D, E)}

14 Automated Proofs using Bracket Algebra

(1) [A.C.D][B.D.E] == [B.C.D]J[A.D.E] <== {h(C, D, E)}

(1) [A.B.C][A.D.F] == [A.B.D]J[A.C.F] <== {h(A, B, F)}

(1) [A.B.D][B.C.F] == [A.B.C][B.D.F] <== {h(A, B, F)}

(1) [B.C.GI[A.D.H] == [B.C.H]J[A.D.G] <== {m((B, C), (A, D), (G, H))}
Checking proof... done.

Result: [B.C.G]J[A.D.H] == [A.D.G][B.C.H]

Found first proof in 2.08 seconds, final proof in 3.27 seconds.

In the remainder of the section only the proofs are given, the rest of the prover output is
omitted.

7.2 Pascal

Figure 4: Pascal’s Theorem

We consider Pascal’s Theorem, as shown in the picture above. The thesis is that the six
points A, B, C, D, E and K are on one common conic. The proof is as follows:

1) [A.C.G][B.C.K] == [B.C.GI[A.C.K] <== {h(C, G, K)}
1) [B.D.H][A.D.K] == [A.D.H][B.D.K] <== {h(D, H, K)}
1) [B.F.GI[A.F.H] == [A.F.G][B.F.H] <== {h(F, G, I}
(1) [B.C.G][A.B.F] == [A.B.C][B.F.G] <== {h(B, C, F)}
(1) [A.B.C][B.F.H] == [B.C.H][A.B.F] <== {h(B, C, F)}
(¢D) [A.B.DI[A.F.G] == [A.D.G][A.B.F] <== {h(A, D, F)}
(1) [A.D.H][A.B.F] == [A.B.D]J[A.F.H] <== {h(A, D, F)}
1) [A.B.E][B.C.H] == [B.C.E][A.B.H] <== {h(B, E, B}
1) [B.D.EJ[A.B.H] == [A.B.E][B.D.H] <== {h(B, E, H)}
(1) [A.C.E][A.B.G] == [A.B.E][A.C.G] <== {h(A, E, G)}
1) [A.B.EJ[A.D.G] == [A.D.E][A.B.G] <== {h(A, E, &}
(1) [A.C.E][A.D.K][B.C.K][B.D.E] == [B.D.K][B.C.E]J[A.D.EJ[A.C.K] <== {co(A, B, C, D, E, K)}

7.3 Miguel

Miguel states that if ABCF, BCDE, CEFG, AFGH and ABDH form five circles, then the
four points D, E, G and H are on one circle, see Figure 5. This is proved as follows:

Automated Proofs using Bracket Algebra 15

Figure 5: Miguel’s six circle theorem Figure 6: Another six circle theorem
(1) [A.F.IJ[F.G.HI[A.H.J1[G.I.J] == [A.F.HI[F.G.IJ[A.I.JJ[G.H.J] <== {ci(A, F, G, H)}
(1) [A.F.HI[A.I.J1[F.G.J][G.H.I] == [A.F.JI[A.H.I][F.G.HI[G.I.J] <== {ci(A, F, G, H)}
(1) [C.E.IJ[C.F.J1[E.G.J][F.G.I] == [C.E.J][C.F.I]1[E.G.I][F.G.J] <== {ci(C, E, F, @}
(1) [B.C.IJ[B.D.JI[C.E.J][D.E.I] == [B.C.J1[B.D.IJ[C.E.IJ[D.E.J] <== {ci(B, C, D, E)}
(1) [A.B.HI[B.D.I][A.I.J]1[D.H.J] == [A.B.I][B.D.HI[A.H.JI[D.I.J] <== {ci(A, B, D, H)}
(1) [A.B.JI[A.H.IJ[B.D.H]J[D.I.J] == [A.B.HI[A.I.J][B.D.JI[D.H.I] <== {ci(A, B, D, H)}
(1) [A.B.I][B.C.F1[A.F.J][C.I.J] == [A.B.F1[B.C.I][A.I.JI[C.F.J] <== {ci(4, B, C, F)}
(1) [A.B.FI[A.I.J]1[B.C.JJ[C.F.I] == [A.B.JI[A.F.I]J[B.C.FI[C.I.J] <== {ci(A, B, C, F)}
(1) [D.E.I1[D.H.JI[E.G.J][G.H.I] == [G.H.JI[E.G.I][D.H.I][D.E.J] <== {ci(D, E, G, H)}

7.4 Six circles

Observe the geometric configuration in Figure 6. The thesis is that the points A, B, G and
H are on one circle. Although this theorem is a lot like Miguel’s theorem about six circles,
thisone can not be proved to be true by our prover. In [10] Umbach gives a proof in 4 steps,
using human reasoning about this configuration. He too, however, is unable to prove this
theorem automatically.

8 Conclusion

We made it possible to obtain proofs for theorems put together in Cinderella by any user.
However, we must be careful not to forget that we do not have the possibility to prove
theorems false, as we did when using Grobner bases. Sure, the prover can handle some
theorems in projective and non-projective geometry, but often fails, as for example in Section
7.4. However, in exchange for these disadvantages, we gained the possibility to proof geometric
theorems considerably faster than before. Moreover, these proofs are short and, unlike proofs
made by Grobner bases, easy to check by hand.

In the course of the project the power of OpenMath became clear. Because of the ex-
isting link between OpenMath and GAP [7] it was extremely easy to use GAP for solving
linear equations without any additional programming. Although that is not such a difficult
algorithm, there is no need to implement it yourself. The added advantage is that GAP will
perform a lot better than our own home-made algorithm. Other advantages of the extensive

16 Automated Proofs using Bracket Algebra

use of OpenMath include the possibility to reuse intermediate results, import geometric the-
orems made by hand, and in the future, use other computer algebra packages than GAP, or
import geometric theorems made by other geometry programs. All this can be done rather
easily, because of the clarity of the OpenMath standard.

A few questions remain open on proving geometry theorems using bracket algebra. For
example, we again consider the fact that, when proving a geometric theorem, we are actually
testing ideal membership (see Remark 5.3). In practice however, we are able to find a proof
for a fairly large number of geometric theorems, using only linear combinations. The question
why we ‘get lucky’ so often remains open. The power of the prover may be extended in the
future, for example using methods proposed recently in the Journal of Symbolic Computation
by Li and Wu [3, 4].

Cinderella and its randomized prover have been out there for a few years already, the
invariant theory used exists since the twenties, and solving linear equations is not the most
recent discovery either. However, the combination of these three items into a single program
gives us a rather interesting result. OpenMath made it possible to do this in a structured and
extendable manner, helping to achieve the goal of this project. It is now possible to create
geometric theorems by pointing and clicking, and then automatically obtain a proof for that
theorem. Not only can this proof be obtained very quickly, it is short and easy to check!

References

[1] The Interactive Geometry Software Cinderella. http://www.cinderella.de.

[2] Ulrich Kortenkamp. Foundations of Dynamic Geometry. PhD thesis, Swiss Federal
Institute of Technology, Zurich, 1999. http://www.cinderella.de/papers/diss.pdf.

[3] Hongbo Li and Yihong Wu. Automated short proof generation for projective geometric
theorems with Cayley and bracket algebras: I. Incidence geometry. Journal of Symbolic
Computation, 36(5):717-762, 2003.

[4] Hongbo Li and Yihong Wu. Automated short proof generation for projective geometric
theorems with Cayley and bracket algebras: II. Conic geometry. Journal of Symbolic
Computation, 36(5):763-809, 2003.

[5] OpenMath. http://www.openmath.org.

[6] OpenMath Content Dictionary: plangeol..5. This CD defines symbols for planar Eu-
clidean geometry. http://www.win.tue.nl/~amc/o0z/om/cds/geometry.html.

[7] The Riaca OpenMath Library. http://www.riaca.win.tue.nl.

[8] Jiirgen Richter-Gebert. Mechanical theorem proving in projective geometry. Annals of
Mathematics and Artificial Intelligence, 13:139-172, 1995.

[9] Martin Schonert et al. GAP — Groups, Algorithms, and Programming. Lehrstuhl D
flir Mathematik, Rheinisch Westfalische Technische Hochschule, Aachen, Germany, fifth
edition, 1995.

Automated Proofs using Bracket Algebra 17

[10] Andreas Umbach. Automatisches erzeugen geometrischer beweise. Master’s thesis, In-
stitut fiir Theoretische Informatik ETH Ziirich, 2000.

