
Construction of Ordinary

Irreducible Representations

of Finite Groups

Allan Kenneth Steel

A thesis submitted in fulfillment of
the requirements for the degree of

Doctor of Philosophy

Pure Mathematics

University of Sydney

January 2012

Abstract

Efficient algorithms are presented for the construction of ordinary irreducible represen-
tations of a finite group. The algorithms are generic in the sense that they are applicable
to any kind of group and they allow the construction in practice of many representations of
very high degree and for very large groups which were not possible by previous methods.
The constructed representations are always realized over a minimal-degree number field
and the matrices defining the representations have very small entries in general.

A key algorithm is presented for automatic fixed-point condensation in characteristic
zero which can be used to extract an irreducible representation as a constituent of a large-
degree representation of the group G. Another key algorithm is presented for extending
a generally reducible representation of a subgroup up to G; this involves solving a system
of non-linear equations in characteristic zero via tools from Algebraic Geometry based on
Gröbner bases. A new heuristic algorithm is also presented which reduces the entries of
the matrices defining a representation and is very effective for high degree representations
defined over a number field. Asymptotically-fast modular techniques for matrix operations
over rings of characteristic zero are also exploited as much as possible.

All of the algorithms have been implemented by the author within the Magma Com-
puter Algebra System and perform very effectively, as is shown by extensive tables de-
scribing constructed representations. A database has been constructed of more than 1000
absolutely irreducible ordinary representations of quasi-simple groups. The database in-
cludes representations for all entries of the Hiss/Malle classification to degree 250 and
also all representations of every sporadic simple group to degree 10000 and its covers to
degree 1000 at least. For the first time, minimal-degree faithful ordinary representations
have been constructed for every sporadic simple group and its covers, excepting only the
Monster and the double cover of the Baby Monster.

iii

Contents

Abstract . iii

Acknowledgements . vii

Index of Algorithms . viii

Introduction . 1
Previous Work . 1
The Fundamental Goal and Strategy . 2
The Splitting Approach . 3
The Extension Approach . 5
The Hybrid Approach . 6
The Implementation and Database of Representations . 7
Outline of the Thesis . 8

Part 1. Constructing Irreducible Representations . 11

Chapter 1. Representation Theory and Basic Tools . 12
1.1. Introduction . 12
1.2. Splitting Fields and the Schur Index . 13
1.3. Irreducible F -representations. 14
1.4. Division Algebras and Central Simple Algebras. 15
1.5. Decomposing over an Extension Field . 16
1.6. Rewriting over a Subfield . 17
1.7. Algorithms for Integral Matrices . 18
1.8. Lattice Basis Reduction Tools . 21
1.9. Computing Homomorphisms and Endomorphisms . 22
1.10. Entry Reduction of a Rational Representation. 25

Chapter 2. A Rational Meataxe . 27
2.1. Introduction . 27
2.2. Decomposing into Homogeneous Components . 28
2.3. Splitting Homogeneous Modules. 29
2.4. The Rational Meataxe . 37
2.5. A Simplicity Test . 40

Chapter 3. Constructing Irreducible Representations Via Condensation . . 42
3.1. Introduction . 42
3.2. Non-negative Solutions to Integral Linear Systems . 42
3.3. Computing Characters . 47

iv

3.4. The Integral Spin Algorithm . 49
3.5. Condensation . 51
3.6. Generic Condensation Environments . 53
3.7. Automatic Condensation over the Rational Field . 60
3.8. Constructing Irreducible Rational Representations . 65
3.9. Constructing Absolutely Irreducible Representations . 73
3.10. Constructing Irreducible Representations over a Given Field. 77
3.11. Rewriting a Representation over a Minimal Field . 80
3.12. Conclusion . 81

Chapter 4. Irreducible Extension . 82
4.1. Introduction . 82
4.2. Existing Methods . 82
4.3. Using a Normalized Subgroup . 83
4.4. The Irreducible Extension Algorithm. 84
4.5. Examples . 89

Chapter 5. General Extension . 91
5.1. Introduction . 91
5.2. Theory . 92
5.3. The Heuristic Algorithm . 96
5.4. Major Improvements to the Basic Algorithm . 103
5.5. Examples . 110
5.6. General Extension Without Explicit Use Of The Character 112
5.7. The degree-248 and -4123 representations of the Thompson Group 115
5.8. The degree-1333 representation of the Janko Group J4 . 116
5.9. The degree-2480 representation of the Lyons Group . 116
5.10. The degree-782, -3588 and -5083 representations of the Fischer Group Fi23 . . 118
5.11. The degree-4371 representation of the Baby Monster Group 119
5.12. The degree-8671 representation of the Fischer Group Fi′24 121
5.13. Representations of the Harada-Norton Group . 122
5.14. Conclusion . 123

Chapter 6. Entry Reduction and the Hybrid Algorithm .125
6.1. Introduction . 125
6.2. The Entry Reduction Algorithm . 125
6.3. The Hybrid Black-box/Entry Reduction Algorithm. 130
6.4. Examples . 138
6.5. Comparison with General Extension . 142
6.6. The degree-10944 representation of the O’Nan Group . 144
6.7. Conclusion . 146

Chapter 7. A General Strategy .147
7.1. Outline . 147
7.2. Examples . 148

Part 2. A Database of Irreducible Representations .151

v

Chapter 8. Information about the Tables. .152

Chapter 9. Representations of Quasi-simple Groups .158
9.1. The Hiss/Malle Classification to degree 250 . 158
9.2. Representations of Higher Degree . 177

Chapter 10. Representations of L2(q) and 2.L2(q) .188
10.1. Introduction . 188
10.2. Representations of L2(q) . 189
10.3. Representations of 2.L2(q) . 196

Chapter 11. Representations of Other Kinds of Groups .201
11.1. Almost Simple Groups . 201
11.2. Maximal Subgroups of the Monster . 202
11.3. Representations of some Perfect Groups . 203

Bibliography .205

vi

Acknowledgements

First and foremost, I thank my supervisor John Cannon for so much guidance and
support over several years, and especially for providing such a wonderful environment in
the Computation Algebra Group at the University of Sydney which has enabled me to
develop all the algorithms of this thesis within the Magma Computer Algebra System.

Special thanks are also given to Claus Fieker and Bill Unger for their help and encour-
agement. I thank Gavin Brown, Nils Bruin, Jon Carlson, Brendan Creutz, Steve Donnelly,
Markus Grassl, Derek Holt, Gabi Nebe, Bernd Souvignier, Don Taylor and Rob Wilson for
helpful discussions (some going back many years) on various topics related to this thesis.

I thank Derek Holt also for providing definitions of some quasi-simple groups with
standard generators which were not in the online ATLAS.

Declaration

To the best of my knowledge, this thesis contains no material previously published by
any other person except where due acknowledgement has been made.

vii

Index of Algorithms

AbsolutelyIrreducibleRepresentation (3.9) 74

AutomaticCondensation (3.7) 61

BBCondensationSetup (6.3.3) 133

BBRationalModuleSetup (6.3.2) 131

BBReductionRepresentation (6.3.4) 134

CentreOfEndomorphismRing (1.9.4) 25

Character (3.3) 47

ElementOfVariety (5.3) 96

ElementaryDivisors (1.7.2) 19

EndomorphismRing (1.9.4) 25

EntryReductionBySubgroup (6.2) 126

ExtendRelations [Advanced] (5.4.6) 108

ExtendRelations (5.3) 97

ExtensionImageSetup (4.3) 83

GeneralExtension (5.3) 97

HermiteForm (1.7.1) 18

HomogeneousComponents (2.2) 28

Hom (1.9.2) 23

InductionCondensationSetup (3.6.3) 55

IntegralSpin (3.4) 49

IrreducibleExtension (4.4) 86

IrreducibleRationalRepresentations (3.8) 66

IrreducibleRepresentationsOverField (3.10) 77

IsSimple (2.5) 40

LLL (1.8.1) 21

viii

LinearTraceReduction (4.4) 85

MaximalOrderBasisSearch (2.3.2) 31

MaximalOrder (2.3.1) 30

NonNegativeSolutions (3.2) 45

PermutationCondensationSetup (3.6.2) 53

RationalMeataxe (2.4) 38

ReducedBasisForAction (3.9) 73

ReducedHomBasis (6.2) 126

RewriteOverMinimalField (3.11) 80

Saturation (1.7.3) 20

Seysen (1.8.2) 22

SplitAlgebraByConic (2.3.3) 33

SplitByEigenspace (3.9) 74

SplitHomogeneousByMinimalField (2.3.4) 36

SplitHomogeneous (2.3.5) 37

TensorCondensationSetup (3.6.4) 57

ix

Introduction

This thesis presents practical algorithms for the construction of irreducible ordinary
representations of finite groups. Even though the theory of ordinary representations is well
understood and elegant, several major practical challenges arise when attempting to con-
struct them on a computer which do not arise when constructing modular representations.
One main issue is that the representations may have to be realized over non-trivial number
fields, and algorithms for basic operations with matrices over rings of characteristic zero
are generally much more difficult than for matrices over finite fields, particularly when the
entries of the matrices become very large. But even ignoring the issue of the time and
memory needed to construct a representation, there is a very great challenge in controlling
the size of the entries in the matrices defining the output representation, for the simple
reason that any representation written over a field F can be conjugated by an invertible
transformation to an equivalent representation, so there is a vast amount of freedom when
F is a field of characteristic zero and the entries can be arbitrarily large.

The algorithms presented here overcome these major challenges in practice and enable
the construction of many representations of very high degree and for very large groups
which were not possible by previous methods. The representations are realized over a
minimal-degree number field and the matrices defining the representations generally have
small entries, even when the representation must be realized over a non-trivial number
field.

Previous Work

Earlier work on the classification of representations of small degree was done by Jordan,
Klein, Schur [Sch04, Sch11], Blichfeldt [Bli05, Bli07], Brauer [Bra67], Lindsey [Lin71],
Huffman and Wales [HW76, HW78, Wal68, Wal69]. More recently, the primitive finite
linear groups of prime degree have been classified by Dixon and Zalesskii [DZ98, DZ08].

There has been much work on constructing ordinary representations of particular classes
of groups. For soluble groups, there is a basic induction/extension method, going back to
Schur. Brückner [Brü98] described an algorithm based on this for computing all irre-
ducible representations of a soluble group. Janusz [Jan66] described a method applicable
to soluble groups and certain insoluble groups. Püschel [Püs02] presented an algorithm for
decomposing monomial representations of soluble groups. Baum & Clausen [Bau91, BC94]
presented algorithms for constructing irreducible representations of supersoluble groups.
Methods for decomposing representations of nilpotent groups over infinite fields have been
described by Rossmann [Ros10]. For classical linear groups of degree 2, methods to con-
struct representations have been described by Piatetski-Shapiro [PS83] and Pergler [Per95]
for GL2(p), by Tanaka [Tan67] for SL2(p), and by Böge [Bög93], Dixon and Gollan [DG93]

1

and Plesken & Souvignier [PS98] for PSL2(p). Szechtman [Sze99] has described methods
for construction of Weil representations of unitary groups.

For a general finite group G, other methods have been proposed. One major approach
is based on decomposing reducible representations via some analogy to Parker’s ‘Meataxe’
algorithm [Par84] in characteristic zero, and has been presented in various forms by Plesken
& Souvignier [PS96, Sou09], Parker [Par98], Holt [Hol98], Schulz [Sch02]; this will be
discussed in detail below. Methods for extending a representation defined on a subgroup
have been presented by Minkwitz [Min96], Plesken & Souvignier [PS98], Wilson [Wil99],
Schulz [Sch02] and Dabbaghian-Abdoly [DA05]. Dixon [Dix93] presented a novel method
which involves extracting a degree-n irreducible representation of G directly from a degree-
n2 representation of G. Dabbaghian and Dixon [DA03, DA05, DD10] described methods for
a general group by reducing to the case that the group is perfect (which they could handle
by some case analysis), and then using an extension method. Schulz [Sch02] described a
method based on lifting modular representations. Theoretical methods have been given by
Babai & Rónyai [BR90].

Methods for computing approximate complex representations have been given by Dixon
[Dix70] and Babai & Friedl [BF91].

The Fundamental Goal and Strategy

The fundamental goal of the thesis is to develop efficient methods to solve the following
problem: given an absolutely irreducible character χ of a finite group G, construct an
ordinary representation ρ : G→ GLn(F) which affords χ, where F is Q or a number field
Q(α) and such that:

1. The field F has minimal degree for χ (i.e., there is no number field of smaller degree
over which a representation affording χ can be realized).

2. The entries of the matrices defining ρ are reasonably small.

While the minimal-degree condition on the field is of interest in itself and has applications,
it has the practical advantage that for any operations done with the representation, the
arithmetic of the elements of the matrices will in general be faster than otherwise, since the
field degree is as small as possible. Having small entries in the matrices also means of course
that subsequent operations with the representation will be faster and the space needed to
store and work with such a representation will be less than otherwise. Many algorithms
to construct representations use recursion (e.g., by first constructing a representation of a
subgroup) and so the field degree and the size of the entries will grow with each new level
of recursion unless it is controlled in some way.

If a desired representation can only be realized over a non-trivial number field, then
constructing a suitable representation with small entries can be a huge challenge. Most
of the existing methods referred to in the previous section do not attempt to write their
results over a field of minimal degree and they do not control the size of the entries in
the result. In particular, it is easy to list several examples with degree less than 100
where the existing methods fail to produce representations written over minimal fields
with reasonably small entries (e.g., the representation 35a of Sz(8) over a degree-3 number
field, or the representation 85a of J3 over a quadratic field).

2

The thesis is structured around three major approaches for the construction of an
ordinary representation ρ : G → GLn(F) which affords a given absolutely irreducible
character χ of a finite group G, for a minimal field F :

1. The splitting approach: ρ is extracted as an irreducible constituent of some rep-
resentation σ of G. Usually σ will be relatively easy to construct, typically arising
from a permutation representation of G, the induction to G of a representation of
some subgroup of H or the tensor product of existing representations of G.

2. The extension approach: ρ is extended from a representation ρH : H → GLn(F)
which affords the restricted character χ ↓ H (for some proper subgroup H of G) so
that ρ ↓ H = ρH .

3. The hybrid approach: this combines aspects of both the splitting and extension
approaches in the one algorithm.

The following sections outline these approaches.

The Splitting Approach

The key operation in the splitting approach is the extraction of an irreducible con-
stituent ρ affording χ from a representation σ of G whose degree is often much larger than
that of χ. To do this efficiently we construct an absolutely irreducible representation ρ
over a minimal field F by first constructing an irreducible rational representation ρQ and
then extracting ρ : G → GLn(F) as a constituent of ρQ, where F is derived from the
endomorphism ring of ρQ. The bulk of the effort in this approach is spent on constructing
irreducible rational representations.

We thus focus first on constructing irreducible rational representations by the splitting
approach. Now for splitting modular representations, there are very effective methods: the
basic computational tool is Parker’s ‘Meataxe’ algorithm [Par84], which was later improved
by Holt & Rees [HR94]. In the attempt to extend the Meataxe algorithm to characteristic
zero, there are major difficulties, particularly because the Schur index of an irreducible
ordinary representation may be non-trivial; in such a case, the endomorphism ring of
the representation is a noncommutative division ring. These difficulties have been well-
known for some time and various techniques to overcome these were proposed by Plesken
& Souvignier [PS96], Holt [Hol98] and Parker [Par98] in the mid 1990s.

The first major challenge is to determine whether a homogeneous rational represen-
tation is irreducible or not. Plesken & Souvignier [PS96] presented methods for solving
this problem based on analyzing the structure of the endomorphism ring; they presented
heuristics for non-trivial cases based on solving norm equations which can be applied in
many but not all cases. Determining the structure of a homogeneous rational representa-
tion can now be achieved by an algorithm of Unger [Ung09] to compute the Schur index of
a given absolutely irreducible character or by an algorithm by Nebe and the present author
[NS09a] which computes a maximal order of a central simple algebra and recognizes the
associated Schur index and multiplicity. For explicitly splitting reducible homogeneous
rational representations, Souvignier [Sou09] recently suggested searching for singular el-
ements in a reduced basis of a maximal order of the endomorphism ring, based on the
algorithm in [NS09a]. We present a variant of this method, but also present alternative

3

methods based on finding a rational point on a conic and using Fieker’s algorithm [Fie09]
for rewriting a representation over a field of minimal degree.

The second major challenge with a rational Meataxe is that as the degree grows, the
entry growth in the matrices can make the computations very expensive, and the resulting
representations may have very large entries and so be unusable. Plesken & Souvignier
[PS96] and Parker [Par98] proposed that when computing with QG-modules, one should
always work with saturated lattices (Z-modules) with bases which are reduced by the LLL
algorithm [LLL82]. We give a detailed description of efficient algorithms and approaches
for performing the relevant computations with integer matrices. Combining this with the
tools for homogeneous representations above, we present a complete ‘rational Meataxe’ to
decompose a semisimple A-module, where A is a finite-dimensional algebra over Q.

Hitherto, the rational Meataxe has mostly been applied directly to group representa-
tions when attempting to constructing an irreducible rational representation. This ap-
proach is greatly limited as the degree grows, since computing the endomorphism ring or
the minimal polynomial of a group algebra element becomes very expensive as the degree
approaches 1000. We present a new automatic algorithm to extract an irreducible rational
representation from a larger-degree representation σ by using fixed point condensation over
Q. The major advantage of this approach is that the rational Meataxe algorithm need only
be applied to a condensed module M̃ , which is derived from σ and a suitable condensation
subgroup K of G and whose dimension is typically much smaller than the degree of σ,
so this avoids the above limitations of the rational Meataxe in high degree. The original
examples of condensation go back to Parker and Thackray in 1979 [Tha81] and were used
to construct modular representations, but condensation has apparently been hardly used
hitherto to construct representations in characteristic zero. Nickerson [Nic06] gave an al-
gorithm for decomposing permutation representations over a field of characteristic zero,
which effectively uses a special case of fixed-point condensation where the condensation
subgroup is always chosen to be a point stabilizer. The key component of our automatic
algorithm is a search to find a suitable condensation subgroup K so that the dimension of
the condensed module M̃ is minimized but also so that the relevant information to con-
struct the irreducible constituent may be discovered. We also present an algorithm which
automatically searches for a suitable ‘virtual’ rational representation σ to which the auto-
matic condensation algorithm can be applied to extract the desired irreducible constituent.
The search considers permutation, induced and tensor product representations.

Previous work which uses a characteristic zero Meataxe approach has been mostly fo-
cused on computing irreducible rational representations. One can move from an irreducible
rational representation ρQ to an absolutely irreducible representation ρ over a suitable
minimal field F in polynomial time by computing the action on an eigenspace over F of
a suitable endomorphism of ρQ, but it it is often very difficult to control the size of the
entries in the result. We present a heuristic LLL-based algorithm which attempts to select
a basis of the eigenspace over F so that the final representation has small entries. Many
absolutely irreducible irrational representations with very small entries can be constructed
by this algorithm. However, the success of the method depends very strongly on finding
a reasonably sparse endomorphism of the rational representation ρQ: as the degree of the
representation increases (typically above 100), this algorithm becomes quite slow and often

4

fails to find a representation with small entries. Algorithms presented later overcome these
problems.

Based on the splitting approach, we also present an algorithm to construct irreducible
F -representations, where F is any number field which is normal over Q.

The key advantages of the condensation-based splitting approach are that it does not
place any conditions on G or χ and allows the construction of irreducible rational represen-
tations of rather high degree (up to 1000) with small integral entries in reasonable time and
it allows the construction of absolutely irreducible representations over non-trivial number
fields, often with small entries. The major limitations of the approach are that it is not
applicable in practice when G has no proper subgroups of moderate index, and it will often
fail to construct an irrational representation with reasonably small entries.

The Extension Approach

Let χ be an absolutely irreducible character of a finite group G. Suppose that H is a
proper subgroup of G and ρH : H → GLn(F) affords the restricted character χH = χ ↓ H .
Then one can attempt to extend ρH to a representation ρ : G→ GLn(F) affording χ, such
that ρ ↓ H = ρH . It is easy to see that the set of all such extensions forms an orbit under
the action of the centralizer of ρH in GLn(F). If ρH is absolutely irreducible, then the
centralizer is trivial, so the extension ρ is unique; we call this case ‘irreducible extension’.

For an arbitrary finite group G, Minkwitz [Min96] gave an algorithm for irreducible
extension which involves looping over H, so this algorithm is obviously only practical
when H is relatively small. Plesken & Souvignier [PS98, 3.1] and Dabbaghian-Abdoly
[DA05] described algorithms based on linear algebra which involve evaluating ρH at O(n2)
elements of H and solving a linear system over F of rank n2 where n is the degree of the
character χ, so this approach becomes very expensive as n grows. Wilson [Wil99] suggested
that in extension algorithms one could use an amalgam of H and a normalizer of some
subgroup of H and Unger [Ung10] noted that this idea can be directly applied to the linear
algebra-based irreducible extension algorithm of Dabbaghian-Abdoly so that the rank of
the linear system to be solved can usually be reduced dramatically. We describe how this
variant can be implemented efficiently.

The major limitation of the irreducible extension algorithm is that it is very often the
case that there is no subgroup H of G such that χ ↓ H is absolutely irreducible, so the
algorithm simply cannot be used. Instead, one can attempt to do ‘general extension’ from
ρH to G, where ρH is not assumed to be absolutely irreducible. Schulz described a gener-
alization of Minkwitz’s irreducible extension algorithm, for the case that the multiplicity
of each absolutely irreducible constituent of ρH is 1 [Sch02, 2.2]; since this involves looping
over H, the algorithm is again limited to the case that H is rather small. An alterna-
tive approach is to set up a symbolic matrix X with entries in a suitable polynomial ring
F [x1, . . . , xk], so that X represents the image of some g ∈ G \H in the proposed extension
ρ of ρH ; one can then attempt to gather polynomial relations on x1, . . . , xk correspond-
ing to suitable relations in the group involving g and elements of H, and then solve the
associated system. There has hitherto been no practical algorithm presented for general
extension in characteristic zero based on this approach which can handle non-trivial cases.
Wilson [Wil99] outlined the basic method and gave some simple examples, but with no
general algorithm for characteristic zero (the focus for larger examples was on modular

5

representations). Plesken & Souvignier [PS97] described a similar method with some basic
improvements which is only suitable in practice for groups defined by short presentations
and representations of small degree.

We present a practical heuristic algorithm for general extension which is effective for an
arbitrary finite group G and absolutely irreducible character χ. Instead of using polynomial
relations derived from a complete presentation of G (for which the polynomial system would
be impossible to manage in non-trivial examples), we show how one can usually construct
a suitable polynomial system from a small set of group relations based on elements of G
of small order. The termination of the algorithm depends on a precise criterion which
we develop by using concepts from Algebraic Geometry and Gröbner bases. We also
describe several techniques by which the polynomial system can be reduced as the algorithm
proceeds, so that group relations of relatively high length can often be handled. Practical
heuristics are also described so that the final representation can often be written over a
minimal field.

One major advantage of the general extension algorithm is that it can easily handle the
situation where G has no proper subgroups of moderate index, and does not require any
specific conditions for G or χ, so the algorithm can be applied recursively. It also often
yields a result with reasonably small entries, even when the result must be written over
an irrational number field. Using this algorithm, we have been able for the first time to
compute many ordinary representations of the very large sporadic groups which do not
have maximal subgroups of moderate index.

The Hybrid Approach

Suppose that G is a finite group and ρ1 : G→ GLn(F) is a representation of G, where
F is Q or a number field, and such that the image matrices of ρ1 have large entries. A
very challenging problem is to compute an equivalent representation ρ over F which has
smaller entries than ρ1. There is a well-known algorithm [PS96, Sou09, Sch02] to reduce the
entries of a rational or integral representation, which works via LLL-reduction of a positive
definite form fixed by the representation. The major limitation is that above degree 100,
this method loses its effectiveness (and becomes very slow) and there does not seem to be
any practical analogy for representations over number fields.

We present a new heuristic algorithm for reducing the entries of a given ordinary rep-
resentation ρ1, whose character is χ. The basic idea is to conjugate ρ1 to a representation
ρ which is an extension of ρH , where ρH affords χ ↓ H for some subgroup H of G. The
algorithm can be considered in a sense to be the reverse of the general extension algorithm,
combined with a heuristic LLL-based reduction. The algorithm is very effective for reduc-
ing a representation even when it has high degree and is defined over a non-trivial number
field.

Finally, we present a hybrid algorithm to construct an absolutely irreducible represen-
tation of a given character χ which combines aspects of both the splitting and extension
approaches. Using the condensation-based splitting approach, it first sets up information
determining an absolutely irreducible representation ρ1 which affords χ and is written over
a minimal field F , though ρ1 is not constructed explicitly (often it will have very large
entries and would take a very long time to construct). Then the algorithm uses the above
entry reduction algorithm and modular techniques to conjugate ρ1 directly to a reduced

6

representation ρ which is the extension of some representation ρH : H → GLn(F) which
affords χ ↓ H (for a subgroup H of G).

The great advantage of the hybrid algorithm is that it always produces representations
over a minimal field and generally with very small entries, even over non-trivial number
fields (of a similar or better quality to those returned by the general extension algorithm),
while it is often much more efficient than the general extension algorithm when the polyno-
mial system arising in that algorithm is very large or is difficult to solve over the minimal
field F . Using this algorithm, we have been able to construct the degree-10944 irreducible
rational representation of the O’Nan sporadic group for the first time.

The Implementation and Database of Representations

Prior computational programs to construct representations have been developed by
Flodmark and Blokker [FB67], Brott and Neubüser [BN70], Gollan and Grabmeier [GG90],
Brückner [Brü98], and Dabbaghian [DA03, Dab08].

All of the algorithms in this thesis have been implemented by the author within the
Magma Computer Algebra System [BCP97, CP96] (several of the fundamental algorithms
described in Chapters 1 and 2 have been implemented by the author within the C kernel
of Magma). A first version of the rational Meataxe and algorithms for construction
of irreducible rational representations via condensation were released in Magma 2.16 in
November 2009 and it is planned that the other algorithms will be released within Magma
in the future. Note that all timings are for a 2.8GHz Intel Xeon64 (with 128GB memory,
though much less than that was used for most computations).

The final goal of this thesis is to apply the algorithms to build a database of ordi-
nary representations of interest. There has been much previous work to construct such
databases. The online ATLAS of finite group representations of Wilson et al. [WWT+]
contains very many permutation and modular matrix representations of almost simple
groups. There are also ordinary representations for many of the groups, but there are
many gaps at the time of writing. For several important groups, an irreducible rational
representation is present in the database, but not a minimal-degree faithful absolutely irre-
ducible representation, presumably because it has been hitherto very difficult to compute
such representations with reasonably small entries (e.g., degree 56 for J1 and degree 85 for
J3 are missing).

Of particular interest are representations of quasi-simple groups. Hiss & Malle have
given a classification of all faithful irreducible representations of quasi-simple groups to
degree 250 [HM01, HM02]. Nickerson [Nic06] constructed many ordinary representations
from this classification, but there are many absolutely irreducible representations which he
could not construct (see Appendix A of that thesis). Holt has also constructed a partial
database of representations of quasi-simple groups within Magma matching this classifica-
tion. Using our algorithms, we have constructed a complete database of the 669 absolutely
irreducible ordinary representations in the main classification and we present a table de-
scribing these representations which matches the main table of Hiss & Malle. We have also
constructed representations of L2(q) and 2.L2(q) for q < 100. Every representation in our
database is written over a field of minimal degree and generally has small entries.

The sporadic simple groups are of special interest. Wilson [Wil98a] noted that it was
desirable to have ordinary representations of the sporadic simple groups and these have

7

been missing hitherto for several of the groups. For some of these groups, a minimal-degree
faithful representation has degree above 1000, and previous methods have been inadequate
to construct these. But we have been able to construct such representations for the first
time for all such groups, excluding only the Monster group. To summarize the chief results,
we have succeeding in constructing the following faithful absolutely irreducible ordinary
representations:

• The minimal-degree representation of every sporadic group and its covers except for
the Monster group (degree 196883) and the double cover 2.B of the Baby Monster
(degree 96256).
• All representations of every sporadic group to degree 10000 at least.
• All representations of every cover of every sporadic group to degree 1000 at least.
• All representations of every Mathieu group and its covers.

The database will be released within Magma in the near future. The webpage [Ste11]
contains several of the representations (including all those representations of moderate
degree which are mentioned in the examples of this thesis).

Outline of the Thesis

We now give a brief overview of the thesis.

In Part I, we present algorithms to construct irreducible ordinary representations.

• In Chapter 1, we present basic results from the theory of Group Representations
and outline fundamental efficient algorithms for fast linear algebra over the rings of
characteristic zero which we will encounter.

• In Chapter 2, we describe a ‘rational Meataxe’ which decomposes a semisimple A-
module, where A is a finite-dimensional algebra over Q. A special variant of the
algorithm extracts only the desired constituents matching some given trace informa-
tion.

• In Chapter 3, we describe the splitting approach for constructing irreducible repre-
sentations. We show how condensation can be used automatically in characteristic
zero to decompose permutation, induced or tensor representations efficiently. Based
on this, we present a generic algorithm to construct irreducible rational representa-
tions via condensation. This immediately leads to algorithms to construct absolutely
irreducible representations over minimal fields and irreducible representations over a
general number field which is normal over Q. An algorithm is also presented to rewrite
a given absolutely irreducible representation over a minimal field.

• In Chapter 4, we consider irreducible extension, where an absolutely irreducible rep-
resentation ρH of a subgroup H is extended to a representation of G. We show how
to make a linear algebra-based algorithm efficient and develop important techniques
to be used in the general extension algorithm.

• In Chapter 5, we present our general extension algorithm, where an arbitrary repre-
sentation ρH of a subgroup H is extended to a representation of G. This algorithm
is particularly effective when G does not have any maximal subgroups of reasonably

8

small index and we describe in detail how we have been able to construct some very
high-degree ordinary representations of the sporadic simple groups.

• In Chapter 6, we first present the new heuristic algorithm for reducing the entries of a
given representation ρ of G. We next introduce the concept of a ‘black-box’ represen-
tation, which encodes a fixed representation over a number field which has potentially
huge entries but to which one can apply modular techniques efficiently. Combining
this with the reduction technique yields the hybrid algorithm for constructing an ir-
reducible representation of any group G such that the representation has very small
entries in general, even when the degree of the representation is large.

• In Chapter 7, we outline a basic strategy for computing a representation affording a
given character χ, using all the algorithms presented in the thesis.

In Part II, we describe our database of ordinary representations which have been con-
structed by the algorithms of the thesis and are all realized over a minimal field. This
is presented by a series of tables which lists information for each constructed representa-
tion.

• In Chapter 8, we first give a description of the format of the tables (principally on
how to read the detailed information which describes the methods used).

• In Chapter 9, we give tables describing the many representations of quasi-simple groups
which we have constructed. We first give a table up to degree 250, exactly matching
the main table in the classification of Hiss & Malle [HM02]. We then give a table
listing higher-degree representations of quasi-simple groups; this includes several of
the minimal-degree faithful representations of the sporadic groups.

• In Chapter 10, we describe representations of L2(q) and 2.L2(q) for q < 100.

• In Chapter 11, we describe representations of some other types of groups.

9

Part 1

Constructing Irreducible Representations

Chapter 1

Representation Theory and Basic Tools

1.1. Introduction

In this chapter, we present basic results in the theory of group representations and
fundamental tools for linear algebra in characteristic zero which we will need.

Throughout the thesis, all groups are finite and all algebras and modules over a field F
are finite-dimensional. Also, fields will in general be either the rational field Q or a number
field Q(α) (the only exceptions will be finite fields used in modular algorithms, which will
be noted).

For the presentation of representation theory, we generally follow Isaacs [Isa06] and
Huppert [Hup98], so we refer the reader to those standard references. We assume that
the following basic concepts are familiar (see appropriate references in [Isa06]): algebras
and modules [Chap 1], Schur’s lemma [1.5], Maschke’s Theorem [1.9], representations [2.1],
characters [2.2], similarity [2.9], irreducible characters and the character table [p. 15–17].
We also use the following notation and conventions throughout the thesis:

1. Mn(R) denotes the ring of n× n matrices over the ring R and Mm×n(R) denotes the
R-module of m× n matrices over the ring R.

2. For a representation ρ : G → GLn(F) of a group G, there is a corresponding FG-
module M , where v ·a := vR(a) for v ∈M,a ∈ FG. Conversely, if M is an FG-module
of dimension n with a fixed basis B for the underlying vector space F n, then for
a ∈ FG, we have a map aM : M → M given by v 7→ va and there is a corresponding
representation ρ : G→ GLn(F) such that ρ(g) for g ∈ G is defined to be the matrix of
1.g ∈ FG with respect to B.

3. For a representation ρ : G → GLn(F) and an extension field E of F , let ρE : G →
GLn(E) denote the extension of ρ (via extension of scalars from F to E). Similarly, for
an A-module M , where A is an F -algebra, let ME denote corresponding AE-module,
where AE is the extension of A to E.

4. If χ is the character of some representation ρ : G → GLn(F), then we say that ρ
affords χ, and we say that a character χ can be realized over a field F if there exists
some representation ρ : G→ GLn(F) which affords χ.

5. Suppose that χ is an E-character (a character whose values lie in a field E) and F is a
subfield of E. Then F (χ) denotes the subfield of E generated by F and the character
values of χ. Also, Q(χ) is called the character field of χ. Note that F (χ) is always a
finite degree Galois extension of F and the Galois group Gal(F (χ)/F) is abelian [Isa06,
p. 152].

6. Let A be an F -algebra and let M1,M2 be A-modules of dimensions d1, d2 respectively.
Let H = HomA(M1,M2). Then relative to standard bases of M1,M2, elements of

12

H may be identified with elements of Md1×d2(F) and H may be identified with a
subspace of the F -vector spaceMd1×d2(F). Similarly, EndA(M1) can be identified with
a subalgebra of the matrix algebraMd1(F). We can do the same with representations
ρ1 : G → GLd1(F) and ρ2 : G → GLd2(F), identifying HomFG(ρ1, ρ2) with a subspace
of the F -vector space Md1×d2(F), and identifying EndFG(ρ1) with a subalgebra of the
matrix algebra Md1(F).

1.2. Splitting Fields and the Schur Index

Let G be a finite group.

Definition 1.2.1. Define Irr(G) to be the set of all absolutely irreducible C-characters of
G (the characters afforded by absolutely irreducible representations). A field E is called a
splitting field for G if every irreducible E-representation of G is absolutely irreducible.
Following [Isa06, p. 149], if E is a splitting field for G we let IrrE(G) denote the set of
characters of the (absolutely) irreducible E-representations of G.

Suppose E is a splitting field for G and let F be a subfield of E. If χ, ψ ∈ IrrE(G),
we say that χ and ψ are Galois conjugate over F if F (χ) = F (ψ) and there exists
τ ∈ Gal(F (χ)/F) such that χτ = ψ. This clearly defines an equivalence relation on
IrrE(G), and the size of the class is |F (χ) : F | [Isa06, 9.17]. For a character χ of G, let
GalSumE/F(χ) denote the sum of the orbit of χ under the Galois group Gal(E/F), where
F is a subfield of E and it is assumed that E(χ) = E. Also, we will let GalSumF(χ) denote
GalSumF (χ)/F (χ). Clearly the character values of GalSumE/F(χ) and GalSumF(χ) all lie
in F .

Definition 1.2.2. [Isa06, 10.1] Suppose F is a subfield of E, where E is a splitting field
for G and χ ∈ Irr(G). Choose an irreducible E-representation ρE which affords χ and an
irreducible F -representation ρF such that ρE is a constituent of (ρF)E. Then the multiplicity
of ρE as a constituent of (ρF)E is called the Schur index of χ over F and is denoted by
sF (χ).

Theorem 1.2.3. [Isa06, 10.2, 10.17] Suppose χ ∈ Irr(G) and F is a subfield of C. Then:

1. sF (χ)(χ) = sF (χ).
2. Let C be the Galois conjugacy class of χ over F . Then sF (χ)(

∑
C) is the character

of an irreducible F -representation of G.
3. Suppose F (χ) = F . Then there exists an extension field E of F such that χ is

afforded by an E-representation and |E : F | = sF (χ).

Remarks 1.2.4. Isaacs uses mF (χ) (or m) while Huppert uses sF (χ) (or s) for the Schur
index. We use the latter because we wish to use m in general for the multiplicity of a
representation (which may have a non-trivial Schur index) as a constituent of some other
representation (not necessarily irreducible over some field).

Definition 1.2.5. Let χ ∈ Irr(G) and F ⊂ C be a field. Call an extension field E of F a
minimal extension of F for χ if χ can be realized over E and DegF (E) is minimal under
such a condition. Also, call any field F ⊂ C a minimal field for χ if F is a minimal
extension of Q for χ; by the definition of the Schur index and Thm. 1.2.3, it is clear that
a minimal field F for χ must be a degree-s extension field of Q(χ), where s = sQ(χ).

13

1.3. Irreducible F -representations

We will often need to work with representations which are irreducible over a field F
but not necessarily absolutely irreducible. This suggests the following definition.

Definition 1.3.1. Let G be a finite group and F a field. Define IrrF (G) to be the set of
characters of all irreducible F -representations of G.

Remarks 1.3.2. Note that if E is a splitting field for G, then IrrE(G) according to this
definition coincides with the definition of IrrE(G) in Def. 1.2.1. Isaacs [Isa06] uses the
notation IrrE(G) only for the case that E is a splitting field, but in this thesis F will be
allowed to be any field. By [Isa06, 9.22], the characters in IrrF (G) are non-zero, distinct
and linearly independent over F , and given an arbitrary F -representation ρ, ρ can be
decomposed into irreducible F -representations, so that the character of ρ equals the cor-
responding combination of the characters of the irreducible modules in the decomposition.

Theorem 1.3.3. [Isa06, 9.21] Let F be a subfield of E, where E is a splitting field for G.
Let ρ be an irreducible F -representation of G. Then

1. The irreducible constituents of ρE all occur with equal multiplicity s.
2. The characters χi ∈ IrrE(G) afforded by the irreducible constituents of ρE constitute

a Galois conjugacy class over F and so the fields F (χi) are all equal.

Theorem 1.3.4. Let F be a field and let E be a splitting field for G containing F . Partition
IrrE(G) (the absolutely irreducible characters of G) into Gal(E/F)-classes {C1, . . . , Cr}.
For i = 1, . . . , r, let si be the common Schur index over F of the characters in Ci and let
χi be si times the sum of the characters in Ci. Then IrrF (G) = {χ1, . . . , χr}. Also, the χi
do not depend on the choice of E, so this procedure gives a simple algorithm for computing
IrrF (G) from the character table of G and the si values.

Proof. By Thm. 1.2.3, each χi is the character of an irreducible F -representation of G,
so is in IrrF (G). Conversely, if χ ∈ IrrF (G), then there is an irreducible F -representation
affording χ and this must equal si times the sum of the characters in Ci for some i, by
Thm. 1.3.3 (1), (2) and Def. 1.2.2. The last statement follows from [Isa06, 9.13]. �

Most algorithms in this thesis assume that one can first compute the character table of
G. We use W. Unger’s algorithm [Ung06], which has been implemented by him in Magma
(function CharacterTable) and is very efficient: it typically takes only a small number
of seconds for most groups of order up to about 1010 when there is a moderate number
of conjugacy classes. Further, the algorithm can frequently handle groups of much larger
orders within reasonable time (e.g., the character table of Fi22, of order ∼ 6.5 × 1013, is
computed in about 7 seconds). We will thus use this algorithm extensively for moderately-
sized groups but we will also present a method later to compute representations without
needing to compute the character table of G explicitly. Unger has also developed an
algorithm to compute the Schur index sQ(χ) of χ for a given χ ∈ Irr(G) [Ung09]. This
algorithm has also been implemented by him in Magma (function SchurIndex) and usually
takes less than a second for a given character.

Based on these two algorithms, we can easily compute IrrF (G), using the simple method
described in Thm. 1.3.4. In particular, we frequently compute IrrQ(G) by this method; the
characters thus computed all have rational integers as entries. Given a rational character

14

χ of G, we could compute the unique decomposition of χ w.r.t. IrrQ(G) = {χ1, . . . , χk} by
taking the k inner products of χ with each χi, but it is generally faster to compute and
store the matrix C ∈ Mk×n whose rows are the χi (where n is the number of classes of
G) and then decompose any χ simply by solving the linear system v × C = w for v ∈ Zk,
where w ∈ Zn is the vector corresponding to χ. Standard modular techniques can also be
used to compute the unique integral vector C.

1.4. Division Algebras and Central Simple Algebras

Definition 1.4.1. Let A be an algebra of finite dimension over a field F . The algebra A
is said to be central simple over F if A is simple (i.e., 0 and A are the only two-sided
ideals of A) and the centre of A is F .

Theorem 1.4.2. [Hup98, 38.6] Let A be a central simple algebra over the field F . Then
A is isomorphic to Mn(D) for some division algebra D, with the centre Z(D) of D equal
to F .

Theorem 1.4.3. [Hup98, 38.8, 38.12] Let D be a division algebra, central over a field F .
Then:

1. DimF (D) = s2 for some integer s.
2. Suppose E is a subfield of A =Mm(D) and E contains F . Then E is a maximal

commutative subalgebra of A if and only if DimF (E) = ms.
3. Let E be a maximal commutative subfield of D. Then DimF (E) = s. Such an E

always exists.

Definition 1.4.4. Let F be a field. Given a monic polynomial

f = xd +
d−1∑
i=0

cix
i ∈ F [x],

the companion matrix Cf of f is defined to be the following matrix in Md(F):
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0
. . . 1

−c0 −c1 −c2 · · · −cd−1

 .

Remarks 1.4.5. The essential fact about Cf is that it is the rational form of itself, so
its minimal polynomial and characteristic polynomial over F both equal f and its trace
equals the trace of f (−cd−1, the sum of the roots of f over an algebraic closure).

Proposition 1.4.6. Let D be a division algebra, central over a field F , with DimF (D) = s2

and suppose m ≥ 1. Then Mm(D) contains a maximal subfield S containing F and for all
such S, DegF (S) = ms.

Proof. By the third point of Thm. 1.4.3, D contains a maximal subfield SD with DegF (SD) =
s. Let f be any irreducible polynomial of degree m over SD. Then the companion matrix
of f is in Mm(SD) and thus also in Mm(D) and it must generate a subfield S of Mm(D)

15

of degree ms over F . By the second point of Thm. 1.4.3, S must be a maximal subfield of
Mm(D). The last statement also follows by the second point of Thm. 1.4.3. �

1.5. Decomposing over an Extension Field

The following basic results consider what happens to an irreducible representation when
moving to an extension field.

Theorem 1.5.1. [CR87, Thm. 74.5] Suppose χ ∈ Irr(G). Let C = Q(χ) and let s = sQ(χ).
Let ψ = s · GalSumQ(χ), which is the character of an irreducible Q-representation of G,
by Thm. 1.2.3. Suppose ρ affords ψ and let E = EndQG(ρ). Then E is a division algebra,
the centre of E is isomorphic to C, and DimC(E) = s2.

Proposition 1.5.2. [LP10, 1.5.4] Let M be a semisimple A-module (a direct sum of simple
A-modules), where A is a finite-dimensional algebra over a field F . Suppose

M ∼= ⊕ki=1 ⊕
mi
j=1 Si

where the Si are pairwise non-isomorphic simple modules. Let E = EndA(M). Then:

• E ∼= ⊕ki=1Mmi(Di), where Di = EndA(Si) is a division algebra.
• Z(E) ∼= ⊕ki=1Fi, where the Fi are fields.

Lemma 1.5.3. Let F be a field, A an F -algebra and M an A-module of dimension n.
Suppose e is an invertible element of EndA(M). Let f be the minimal polynomial of e
over F and let d = Deg(f). Let E be the field extension F (α) of F , where the minimal
polynomial of α over F is f and let Sα be the α-eigenspace of e over E (i.e., the kernel of
e− α in Mn(E)). Then Sα is a submodule of ME of dimension n

d
.

Proof. Since e is invertible, its minimal polynomial f ∈ F [x] is irreducible, so the char-
acteristic polynomial ce ∈ F [x] of e must be a perfect power of fA. Since e ∈ Mn(F)
and DegF (f) = d, we have ce = (fe)

q, where q = n
d
. Factoring these polynomials in E[x],

(x− α) must occur with multiplicity 1 in fe and multiplicity n in ce. So the α-eigenspace
of e over E has dimension q and since it is the kernel of an endomorphism of ME, it is a
submodule of ME, and has dimension q = n

d
. �

Lemma 1.5.4. Suppose that χ ∈ Irr(G) and ρ : G → GLn(F) is a representation of G
for some number field F = Q(α) which has a subfield isomorphic to Q(χ). Suppose also
that E is some splitting field for G which contains Q(χ) and F and is such that χρ, the
character of ρ, is conjugate to χ, lifted to E. Let g1, . . . , gk be elements of G such that
{χ(g1), . . . , χ(gk)} generate Q(χ) over Q. Define the field monomorphism φ : Q(χ) → F
via φ(χ(gi)) = χρ(gi) for 1 ≤ i ≤ k. Then under this embedding of Q(χ) into F , the
characters χ and χF are equal, so ρ affords χ.

Proof. φ is well-defined because Q(χ) is normal and the characters are conjugate under
automorphisms of Q(χ). By construction, φ identifies the character values of χ with those
of χρ for the generators of Q(χ) and thus for all character values. �

Corollary 1.5.5. Suppose χ ∈ Irr(G). Let s = sQ(χ) and χQ = s ·GalSumQ(χ) ∈ IrrQ(G),
and suppose that ρQ : G → GLl(Q) affords m · χQ for some m ≥ 1. Let E = EndQG(ρQ)
and let C be the centre of E. Then:

16

1. There exists a maximal subfield F1 of E which contains C and is such that DegC(F1) =
ms.

2. Let e be a generator of F1 over C, let f be the minimal polynomial of e over
Q and let F be the number field Q(α), where α has minimal polynomial f . Let
ρ be the representation of G corresponding to the submodule of (MQ)F generated
by e − α, where MQ is the QG-module corresponding to ρQ. Then ρ is absolutely
irreducible and under a suitable embedding of Q(χ) into F , the character of ρ equals
χ. Furthermore, F is a minimal field for χ if m = 1.

Proof. By Thm. 1.5.1 and Prop. 1.5.2, we have that C is isomorphic to Q(χ) and E ∼=
Mm(D), where D is a division algebra with centre isomorphic to C and DimC(E) = s2. By
Prop. 1.4.6, E must then contain a maximal subfield F containing C, with DegC(F) = ms,
which proves the first point. For the second point, first write c = DegQ(C). Now the degree
of ρQ equals mscχ(1) and the degree of f equals msc, so by Lem. 1.5.3, the degree of ρ
equals χ(1). As ρ is also a constituent of ρQ, whose character is just a sum of conjugates of
χ, ρ must be absolutely irreducible and as F contains C which is isomorphic to the normal
field Q(χ), the character of ρ can be considered equal to χ under a suitable isomorphism
from Q(χ) to C (giving an embedding of Q(χ) into F), as in Lem. 1.5.4. The last statement
follows from the remark at the end of Def. 1.2.5. �

1.6. Rewriting over a Subfield

Definition 1.6.1. Suppose F is a field and E = F (α) is a simple extension field of F ,
with the monic minimal polynomial of α over F equal to f ∈ F [x], of degree d. Define the
map BE/F : E →Md(F) by

d−1∑
i=0

ciα
i 7→

d−1∑
i=0

ci(Cf)
i (c1, . . . , cd−1 ∈ F),

where Cf is the companion matrix of f (see Def. 1.4.4). It is easy to see that BE/F is an
F -algebra monomorphism. We can also naturally extend BE/F to an F -algebra monomor-
phism

BE/F :Mn(E)→Mnd(F).

Proposition 1.6.2. Suppose ρE : G → GLn(E) is a representation affording χ and sup-
pose F is a subfield of E, where DegF (E) = d. Define a new representation ρF : G →
GLnd(F) by

g 7→ BE/F (ρE(g)),

which we call the restriction of scalars of ρE from E to F . Then:

1. ρF is a representation of G and the character of ρF equals the trace w.r.t. F of χ
(obtained by applying TrE/F to each value of χ).

2. Suppose also that E is a minimal extension of F such that ρE affords χ. Then ρF is
irreducible.

Proof. 1. It is trivial to check that ρF is a valid representation and the statement on the
character follows from the fact that for x ∈ E, Tr(BE/F (x)) = TrE/F (x).

17

2. Let ψ ∈ IrrF (G) be the F -irreducible character containing χ and let ρψ : G→ GLn(F)
be any F -representation which affords ψ. Let E1 be a maximal subfield of EndFG(ρψ).
Then some constituent of (ρψ)E1 affords χ and Deg(ψ) = |E1 : F | ·Deg(χ). Now let χF
be the character of ρF . Then Deg(χF) = |E : F | · Deg(χ) and since E is minimal, we
must have |E : F | ≤ |E1 : F |, so Deg(χF) ≤ Deg(ψ) and we must thus have equality,
so χF = ψ and ρF is irreducible.

�

1.7. Algorithms for Integral Matrices

In this section we describe fundamental operations and associated algorithms for inte-
gral matrices which are of critical importance for constructing ordinary representations.

1.7.1. Hermite Form.

Definition 1.7.1. A matrix T ∈ Mn(Z) is called unimodular if T is invertible over Z;
i.e., if its determinant is ±1.

Definition 1.7.2. Suppose A ∈ Mm×n(Z). The (row) Hermite form of A is the unique
matrix H = TA for unimodular T ∈Mm(Z) such that:

• Rows [1, . . . , r] of H are non-zero and rows [r + 1, . . . ,m] are zero, where r is the
rank of A.
• If ci is the column of the first non-zero entry of row i (for 1 ≤ i ≤ r), then
c1 < c2 < . . . < cr, and for 1 ≤ i ≤ r: di = H[i, ci] is positive, H[k, ci] < di for
1 ≤ k < i and H[k, ci] = 0 for i < k ≤ r.

A good effective classical (non-modular) algorithm for computing the Hermite form
was described by Kannan & Bachem [KB79] (with improved bounds given in [CC82]).
The basic algorithm simply takes m steps and at the end of k-th step, the first k rows
of A are replaced with the Hermite form of the first k rows of A. The k-th step involves
expanding the Hermite form of the first k rows to include the k-th row (using euclidean
operations and basic row operations).

A modular technique was suggested by Micciancio & Warinschi in [MW01] to compute
the Hermite form of a n × n integral matrix of full rank n, under the assumption that
the index g of the lattice generated by the first n− 1 columns of A in Zn−1 is very small.
This is the case at least for matrices with random entries bounded by some bit length.
We have implemented an extension of this algorithm which works on an arbitrary m × n
integral matrix A with any rank. We will let HermiteForm(A) denote the algorithm
which returns the Hermite form of A.

1.7.2. Smith Form.

Definition 1.7.3. Suppose S ∈ Mm×n(Z) and has rank r. The matrix S is said to be in
Smith (normal) form if ei = S[i,i] is positive for 1 ≤ i ≤ r, S is zero elsewhere, and
ei|ei+1 for 1 ≤ i < r.

Theorem 1.7.4. [Smi61], [Coh93, 2.4.12] Suppose A ∈ Mm×n(Z) and A has rank r.
Then there exists a unique matrix S ∈Mm×n(Z) which is in Smith normal form such that
S = PAQ for unimodular matrices P ∈ Mm(Z), Q ∈ Mn(Z). The matrix S is called the
Smith (normal) form of A. Note that P and Q are not unique in general.

18

Definition 1.7.5. Define the elementary divisors of A to be the non-zero positive inte-
gers [e1, . . . , er] on the diagonal of the Smith form of A (so ei|ei+1 for 1 ≤ i < r). (Note that
we call a matrix A ‘diagonal’ if it has non-zero entries only on its diagonal i.e., A[i, j] = 0
for i 6= j; the matrix need not be square.)

For computing the Smith form S of a matrix A ∈ Mm×n(Z), our Magma implemen-
tation uses the following strategy:

1. If A is dense, then first a multiple D of the largest elementary divisor of A is computed
using the method outlined in [ABM99]; if D is smooth, then the modular algorithm
of F. Lübeck [Lüb02] is then used to compute S. Otherwise, the algorithm repeatedly
calls the dense Hermite form algorithm above and transposes, until a diagonal form is
obtained; the divisibility condition on the diagonal is easily obtained by successively
computing GCDs and LCMs of adjacent diagonal entries.

2. If A is sparse, then first sparse elimination is performed via Markowitz pivoting [DER84,
Sec. 9.2] to obtain a smaller dense matrix A1 with density at least 50% (this is similar
to using the techniques described in [HHR93]), and then the above methods are applied
to the dense matrix A1.

We will let ElementaryDivisors(A) denote the algorithm which computes the Smith
form of A and returns the elementary divisors of A.

1.7.3. Saturation.

Definition 1.7.6. Let L ⊆ Zn be a lattice of rank r. Define the saturation of L to be
(L ⊗ Q) ∩ Zn, where L ⊗ Q is the subspace of the vector space Qn generated by L. L is
also said to be saturated if its saturation equals itself. (Note: some authors also use the
terms ‘purified lattice’/‘purified’ instead of ‘saturation’/‘saturated’.)

Lemma 1.7.7. If L,L′ ⊆ Zn are lattices which have the same Q-span and L′ is saturated,
then L′ equals the saturation of L.

Proof. The saturation of L is (L⊗Q) ∩ Zn = (L′ ⊗Q) ∩ Z = L′. �

Lemma 1.7.8. If L ⊆ Zn is a lattice of rank r and B is a basis matrix of L with trivial
elementary divisors, then L is saturated.

Proof. Let S = PBQ be the Smith form of B, where P and Q are unimodular and
S = [Ir|0]. Suppose v is in the saturation of L. Since P is unimodular, PB is also a basis
matrix for L and we can write v = uPB for u ∈ Qr. Since v ∈ Zn and Q is unimodular,
vQ ∈ Zn also, so vQ = uPBQ = uS ∈ Zn and u must be integral since S = [Ir|0]. Thus
v = uPB ∈ L. �

Proposition 1.7.9. Suppose L ⊆ Zn is a lattice of rank r. Let B ∈ Mr×n(Z) be a basis
matrix of L. The saturation L′ of L can be computed by either of these methods:

1. Let S = PBQ be the Smith form of B, where P and Q are unimodular and let
[e1, . . . , er] be the elementary divisors of B (the non-zero diagonal entries of S). Then
let [v1, . . . , vr] be the rows of PB and set wi = 1

ei
vi ∈ Zn for 1 ≤ i ≤ r. Set L′ ⊆ Zn to

the lattice spanned by [w1, . . . , wr].

19

2. Set H1 ∈Mn×r(Z) to the column Hermite form of B (i.e., the transpose of the usual
row Hermite form of the transpose of B, so H1 = BT for unimodular T). Let H2 equal
the first r columns of H1 (the rest are zero). Let U = H−1

2 ∈ Mr(Q) and W = UB,
which is integral. Set L′ ⊆ Zn to the lattice spanned by the rows of W .

Proof. 1. Since S has only ei as a non-zero entry in the i-th row and multiplication by
Q−1 on the right only does column operations, the same holds for PB = SQ−1, so vi
must be divisible by ei for 1 ≤ i ≤ r. The matrix whose rows are the wi must have
trivial elementary divisors by construction, so L′ is saturated and has the same Q-span
as L.

2. We have H1 = BT1 for some unimodular T1 ∈Mn(Z) and since B has rank r, we must
have H1 = [H2|Z], where H2 is non-singular and Z is the r× (n− r) zero matrix. Then
WT1 = UBT1 = UH1 = [UH2|Z] = [Ir|Z] (since UH2 = Ir), so W is integral and the
Smith form of W equals [Ir|Z] so L′ is saturated and has the same Q-span as L.

�

The first method to compute the saturation of a lattice is well known, but our Magma
implementation uses the second method, since we have already implemented fast modular
algorithms to compute both the Hermite form and inverse. The time for the whole algo-
rithm is in general very much dominated by the initial column Hermite form computation,
as will be seen in examples. For the matrices arising in the ‘integral spin’ algorithm pre-
sented later (to compute the submodule of a module generated by some integral vectors),
it is often the case that n >> r (e.g., r ∼ 500 and n ∼ 10000).

To avoid switching back and forth between lattices and their basis matrices, we will
let Saturation(B) denote the algorithm which takes a basis matrix B ∈ Mr×n(Z) for a
rank-r lattice L and returns a basis matrix for the saturation of L.

Lemma 1.7.10. Suppose A ∈Mn(Z) is non-singular (i.e., has rank n). Then the lowest
common denominator of A−1 ∈Mn(Q) is en, the largest elementary divisor of A.

Proof. Let S be the Smith form of A, so S = PAQ with P,Q with unimodular. Then S
is a diagonal matrix with non-zero diagonal entries [e1, . . . , en], so over Q we have A−1 =
QS−1P and the lowest common denominator of S−1 is clearly en and multiplication by the
unimodular P and Q does not change this. �

Proposition 1.7.11. Suppose that B ∈Mr×n(Z) is a basis matrix for a rank-r sublattice
L of Zn. Let V be the subspace of Qn generated by L (so B is also a Q-basis of V). Suppose
that A ∈ Mn(Z) and V is invariant under right multiplication by A. Let er be the largest
elementary divisor of B. Then there is a unique matrix X ∈Mr(Q) satisfying XB = BA
and the lowest common denominator of X is a divisor of er (in particular, X is integral if
er = 1, i.e., if L is saturated).

Proof. Let S = PBQ be the Smith form of B, where P and Q are unimodular and S is a
diagonal matrix with non-zero diagonal entries [e1, . . . , er]. Since P is unimodular, PB is
also a basis matrix for L and we can write BA = UPB for unique U ∈ Mr(Q) (since the
rowspace of BA is a subspace of V). Since BA is integral and Q is unimodular, BAQ =
UPBQ = US is also integral. Thus Uer is also integral, so the lowest common denominator

20

of U must be a divisor of er. Setting X = UP , the lowest common denominator of X must
also be a divisor of er since P is unimodular, and XB = UPB = BA. �

1.7.4. Minimal and Characteristic Polynomial. To compute the minimal or char-
acteristic polynomial of a matrix A ∈Mn(Z), our implementation uses algorithms similar
to those described in [CLG97] and [DPW05]. The basic idea is to choose an initial non-zero
vector v ∈ Zn and compute the smallest d such that the vectors v, vA, vA2, . . . , vAd are
linearly dependent; the corresponding relation gives a polynomial f such that v ·f(A) = 0,
so f is a divisor of the minimal polynomial of A, and the submodule of Zn generated by
the above vectors is called the Krylov subspace generated by v. In practice, the algorithm
first finds the relation modulo a suitable prime p, and then p-adically lifts this to the in-
tegral relation (using a technique similar to that described in [Dix82]). If the degree of
f equals n, then the minimal and characteristic polynomials of A are equal and f equals
them (this is a common situation). Otherwise, the algorithm computes another Krylov
subspace generated by a new vector v2 not in the current submodule and combines the
results, iterating as needed until rank n is reached (working in the quotient space and
multiplying the resulting polynomials for the characteristic polynomial, or computing the
LCM of the resulting polynomials for the minimal polynomial; see the above references for
details).

There is one very simple but useful extension to this algorithm which we will use later.
Suppose that we have computed v, vA, vA2, . . . , vAd and the corresponding f as above, so
that v ·f(A) = 0. Suppose also that g is an irreducible factor of f such that the multiplicity
m of g in f equals the multiplicity of g in the characteristic polynomial of A. Then we can
compute the nullspace of gm(A) efficiently as follows:

1. Set q = f/gm ∈ Z[x] and write e = Deg(gm).

2. Set wi := v · (xiq)(A) for 0 ≤ i < e.

3. Set B := [w0, . . . , we−1].

It is easy to see that B is a Q-basis for the nullspace of gm(A) since wi ·gm(A) = v ·xif = 0
for 0 ≤ i < e, and the wi are linearly independent since the degree of xiq is less than d for
0 ≤ i < e. Each wi can be computed as a linear combination of the already known vAi

vectors, so further multiplication by A is avoided and the number of arithmetic operations
is O(e(n− e)n). One can then compute the saturation of the lattice spanned by the rows
of B to obtain the nullspace over Z. This method is particularly useful when the degree
of gm is rather high, since it avoids the computation of gm(A) (which takes O(e ·MM(n))
arithmetic operations, where MM(n) denotes the complexity of the matrix multiplication
algorithm).

1.8. Lattice Basis Reduction Tools

1.8.1. LLL reduction. The Lenstra-Lenstra-Lovász (LLL) algorithm [LLL82] takes
a basis B of a lattice L and returns a LLL-reduced basis B′ of L. In practice, the entries of
B′ are often much smaller than the entries of B (see the reference for the precise definition
of ‘LLL-reduced’). The algorithm is very useful in many areas of computational algebra.
We cannot over-emphasize the fact that it contributes enormously to the effectiveness of

21

our algorithms. For a detailed exposition and analysis of the algorithm, we refer the reader
to the recent book [NVe09]. We just note here some basic properties of the algorithm.

Theorem 1.8.1. [Coh93, 2.6.2] Let v1, . . . , vk be a LLL-reduced basis of a lattice L. Then
for any non-zero w ∈ L, we have |v1| ≤ 2(n−1)/2|w|.

A parameter δ is used in the algorithm and by default it is usually set to 3/4 (including
in the Magma implementation). But it may be set to any value in the range 1/2 < δ < 1
and then the base 2 in the bound of the above theorem can be replaced with 1/(δ − 1/4).
Taking the value of δ to be just under 1 (say 0.999), the algorithm can run slower in
general, but the output will often have better quality in general; the base of the above
bound becomes close to 4/3.

We note also that there is a simple extension of the original algorithm, called MLLL
(‘modified LLL’) [Poh93, Alg 3.8] which takes a set S of vectors in Zn which are not
necessarily independent; the output is a LLL-reduced basis of the lattice spanned by S.
For simplicity, we will let ‘LLL’ refer to the extended algorithm (just as the Magma
implementation does).

We use the implementation of the algorithm in Magma by D. Stehle [NS09b, Ste09].
The algorithm is very effective for the kinds of lattices which we encounter even if the rank
is over 1000 (particularly if the matrix is first reduced to Hermite form; see Sec. 3.4 below
for more discussion).

1.8.2. Seysen Reduction. Let L be a lattice of rank n with basis B = (b1, · · · , bn).
The dual lattice L∗ of L is defined by the basis vectors (b∗1, · · · , b∗n), where (bi, b

∗
i) = 1,

(bi, b
∗
j) = 0, for 1 ≤ i, j ≤ n, j 6= i. Seysen introduced a lattice basis reduction algorithm

which computes simultaneous reduction of a lattice basis and its corresponding dual basis
[Sey93]. LaMacchia analyzed the algorithm and described a practical heuristic version
of the algorithm [LaM91] (the original motivation was for cryptographic problems). The
author has implemented LaMacchia’s version of the algorithm in Magma.

The usefulness of the algorithm in the context of ordinary representations is that when
computing the reduced action of a reducible integral representation ρ : G → GLn(Z) on
a saturated invariant sublattice S of Zn, then if a basis B of S is reduced by Seysen’s
algorithm, this tends to reduce the size of the entries in the matrices defining the corre-
sponding representation. As the degree increases, the algorithm’s cost increases and often
its effectiveness decreases (i.e., it often does not reduce much more than LLL), but it is
certainly worth applying in up to moderate dimensions to reduce the entries, and Ex. 3.7.3
below presents an example where Seysen reduction is worth using in a higher dimension.

1.9. Computing Homomorphisms and Endomorphisms

Let A be a finite-dimensional algebra over a field F and suppose that M1 and M2 are
A-modules. We outline efficient algorithms to compute HomA(M1,M2) and EndA(M1) for
each kind of field which we will encounter.

1.9.1. Homomorphisms over a Finite field. Suppose that F is a finite field. Our
implementation uses two methods to compute HomA(M1,M2):

22

1. If M1 is semisimple, then first the composition factors of M1 are computed using the
modular Meataxe and then a basis of the Hom-module is constructed from the ho-
momorphisms from C into M2, for each irreducible constituent C of M1 (using the
algorithm given in [HR94]).

2. In the general case, we use an algorithm of C. Leedham-Green and the present au-
thor developed in 1994 (unpublished), which is very similar to the algorithm given in
[LS03], except that the vectors chosen to generate submodules of M1 are chosen from
the transformation matrix corresponding to the generalized Jordan form of a random
algebra element instead of using peakwords.

The modules which arise in this thesis are practically always semisimple, so the first method
can usually be used, which is faster in general. Computing EndA(M1) is simply done by
computing HomA(M1,M1). Also, it is easy to adapt the first method above to an efficient
algorithm to compute the centre of the endomorphism ring of M1.

1.9.2. Homomorphisms over the Rational Field. Suppose now that F equals
Q. We have implemented a modular algorithm Hom to compute HomA(M1,M2). The
algorithm uses the standard ‘small primes with Chinese Remaindering’ modular scheme
(see [vzGG03, Fig. 5.2]), as follows.

1. For each successive prime pi, the algorithm computes an echelonized form of the basis
of the corresponding Hom-module over Fpi .

2. The modular basis matrices are then combined by the Chinese Remainder Theorem
[vzGG03, 5.4] to obtain the basis matrix modulo P =

∏k
i=1 pi after the k-th step. The

algorithm then attempts rational reconstruction of each entry of the basis modulo P to
obtain the echelonized basis over Q. Rational construction ([vzGG03, 5.10], [Mon04])
takes an integer residue x with 0 ≤ x < P and determines whether there is a rational
n
d
∈ Q with (d, P) = 1, x ≡ n · d−1 (mod P), |n| ≤ BN and 0 < d ≤ BD, where BN ,

BD are positive integer bounds with 2BNBD ≤ P ; the solution is unique if there is one.

3. If the rational reconstruction of each entry succeeds, then the algorithm simply checks
that the associated rational matrices actually form a basis of homomorphisms for the
original input modules (this simply involves checking that a1,jhi = hia2,j for 1 ≤ i ≤ r
and 1 ≤ j ≤ k, where r is the dimension of the Hom-module and k is the number of
generators of A and the a1,j and a2,j are the matrices of the action of M on A1 and A2

respectively). If the check passes, then the algorithm is finished; otherwise it continues
with more primes.

4. A so-called ‘bad prime’ p is such that the Hom-module of the modulo-p reduction of the
input does not equal the modulo-p reduction of the Hom-module of the rational input
modules. For such a p, the pivot structure of the echelonized basis matrix modulo p
will not match the pivot structure of the correct rational echelonized basis and this
can easily be detected by comparing the new modular pivot structure with that of the
current pivot structure (coming from the previous primes). The set of bad primes must
be finite, since they either divide an input denominator or a denominator of an entry
in the echelonized rational basis. So it is easy to detect and reject any bad primes and
sufficiently many good primes will always be found. Note also that if r is the rank of

23

the correct rational Hom-module, then a good prime will always give a Hom-module
of rank r, so the resulting rational basis will have the correct rank.

5. In our implementation within Magma, the entries of the matrices over Fp are repre-
sented by exact-integer double-precision floating point numbers. The algorithm chooses
each prime p to be just below 223.5, so 64p2 < 253 (the maximum integer which can
be represented exactly) so that 64 products of integers between 0 and p − 1 can be
added before reducing the sum modulo p. Several critical matrix operations such as
echelon form, inverse, determinant and rank are mapped to fast multiplication rou-
tines which use the ATLAS (Automatically Tuned Linear Algebra Software) library
of Whaley [WP05, Wha] and also Strassen’s asymptotically-fast matrix multiplication
algorithm [Str69] when the dimension is above 1024. Strassen’s algorithm is not just
of theoretical interest, since later in the thesis those operations are applied to matrices
with dimensions in the thousands, and this algorithm gives a very significant practical
improvement.

6. For rational reconstruction, our implementation uses an asymptotically-fast version of
the algorithm, which is similar to the ‘Half-GCD’ algorithm of [AHU75, 8.9]. Rational
reconstruction is often applied with the numerator bound BN and denominator bound

BD both taken to be b
√
P

2
c, but it is better in practice to make the bounds tighter,

which means that if the whole basis reconstructs successfully, then the probability that
it is correct is much higher, so that in practice the verification in point 3 above will
virtually always only be tried when the current result is already correct.

Note also that if A is a Z-algebra, then one can compute HomA(M1,M2) for A-modules
M1,M2 by applying the above modular algorithm over Q and then saturating the result
by the methods of the previous section.

Plesken & Souvignier also presented algorithms [PS96] for computing homomorphisms
and endomorphisms over Q by the averaging operator technique (see also [Sch02, 2.2]), but
we have found that the modular algorithm is generally faster and preferable, particularly
since it is better to compute the full endomorphism ring so that it can be saturated and
LLL-reduced so that small endomorphisms can be used, and subsequent operations will
have matrices with smaller entries.

1.9.3. Homomorphisms over a Number Field. Suppose F = Q(α), where the
minimal polynomial of α is f ∈ Q[x], of degree d. We have also implemented a fast
modular algorithm to compute HomA(M1,M2), where A is an F -algebra. This algorithm
is very similar to the above modular algorithm for rational modules, except for the following
extensions:

1. Each prime p is chosen so that f has d distinct roots β1, . . . , βd in Fp and then for each
root βi, we reduce the input entries modulo p and map α to βi, compute the echelonized
basis modulo p and combine the d results by interpolation ([vzGG03, 5.2]) to obtain
each entry in Fp[x]/〈f〉.

2. The algorithm proceeds as above, using Chinese remainder on the successive primes
and rational reconstruction on the entries in (Z/(PZ))[x]〈f〉 of the basis matrix: the
only difference is that there are d times as many modular entries to which we apply
Chinese remaindering and rational reconstruction. The termination check involving

24

the matrix products is the same (and a modular algorithm can be used in the matrix
multiplications).

1.9.4. Endomorphisms over Q or a Number Field. We also have the following
similar modular algorithms for computing endomorphisms over Q or a number field:

1. EndomorphismRing(M): computes EndA(M) by computing HomA(M,M) (the in-
ner algorithms can be simplified of course because of the repeated module).

2. CentreOfEndomorphismRing(M): computes the centre of EndA(M) by making
the inner modular algorithm compute the centre of the endomorphism ring over the
inputs reduced modulo p (and this centre can be computed in the semisimple case
very efficiently via the Meataxe). This algorithm often requires less primes than when
computing the full endomorphism ring (when the dimension of the centre is smaller)
and is useful for decomposing modules into homogeneous components.

1.10. Entry Reduction of a Rational Representation

Suppose G is a finite group and ρ : G → GLn(F) a representation of G, where F
is Q or a number field. We use the terminology ‘entry reduction of ρ’ to denote some
computation which yields an equivalent representation ρ′ which typically has smaller entries
than ρ. We first outline well-known methods to reduce the entries of a rational or integral
representation.

Given a rational representation ρ : G → GLn(Q), ρ can always be conjugated to an
integral representation [KP02]. There is a simple practical method to do this, as follows.
Let M = ρ(G) (i.e., the matrix group defined by the image of ρ). Since M is finite, the
denominators of all entries of elements of M are bounded and thus the M -invariant set
L = {v · g|v ∈ Zn, g ∈ M}, is a sublattice of Zn of finite index. Then conjugating ρ by a
basis matrix of L gives an integral representation which is equivalent to ρ.

Now for a given integral representation ρ : G → GLn(Z), let M := ρ(G) again and
compute a positive definite form F which is invariant under M , using, for example, the
iterative algorithm in [PS96] (the original statement of the algorithm in [PS96] used a fixed
generating set of the matrix group, but this is improved in [Sou09] by applying the product
replacement algorithm [CLGM+95] after each iteration step to speed up the convergence).
After applying LLL-reduction to the Gram matrix F (and optionally also Seysen reduction)
to obtain a reduced Gram matrix F ′ and transformation matrix T such that F ′ = T ·F ·T tr,
simply set ρ′ := ρT . The basic idea is that since the new representation ρ′ fixes the form
F ′, so if F ′ has smaller entries than F , then ρ′ will in general have smaller entries than ρ.

If the degree n is up to about 20, then this approach tends to conjugate any rational or
integral representation, no matter how large its entries, to an integral one with extremely
small entries (single digit and often sparse). But as n grows, the quality of the output
diminishes. For n > 100, the algorithm often has very little effect on the size of the
entries. The basic reason is the increasing weakness of LLL as the dimension increases for
computing a minimally-reduced basis: see the bound in Thm. 1.8.1 on the ratio between
the shortest vector of a LLL-reduced basis and a shortest vector of lattice. So for small n,
this algorithm is very effective at producing an equivalent representation with very small
entries but for larger n the algorithm is not very useful.

25

Another limitation is that there is no obvious way to extend the above algorithm to a
method to reduce the entries of a representation ρ : G→ GLn(F) defined over an irrational
number field F . Given such a ρ, we can always compute the restriction of scalars of ρ to
Q, and then reduce that rational representation using the above algorithm, but it is often
very difficult to extract an irreducible constituent of this over F again with small entries
(see more discussion on this issue on p. 75).

We will introduce a new algorithm for reducing the entries of a representation in Chap-
ter 6, which works very effectively for representations with degrees in the hundreds or even
thousands and which are defined over number fields. The new algorithm still relies upon
LLL-reduction, but the dimension of the relevant lattice is typically much smaller than the
degree n.

26

Chapter 2

A Rational Meataxe

2.1. Introduction

Let M be an A-module, where A is a finite-dimensional algebra over a field F . If F
is a finite field, then Parker’s Meataxe algorithm [Par84] is a very effective algorithm
for determining whether M is simple, and for finding a proper submodule of M when it
is not simple. Holt & Rees later described an improved version of the algorithm [HR94].
The basic approach is to generate a random element a ∈ A and then to consider the
submodule of M generated by a non-zero element of some generalized eigenspace of a. If
the submodule is not proper, then a criterion is applied to attempt to determine whether
M simple. When we try to extend the same algorithm to a rational Meataxe (where
F = Q), there are several major difficulties. These have been well-known for some time
and various techniques to overcome these have been proposed by Holt [Hol98], Plesken &
Souvignier [PS96] and Parker [Par98] and others. Besides the practical issue of growth
of the matrix entries (which can make computations of even moderate degree infeasible),
there are least two major algorithmic problems:

1. The traditional Meataxe criterion to prove the simplicity of M may fail (in partic-
ular, if M is a QG-module and has a constituent with a non-trivial Schur index,
then the criterion will fail).

2. Even if it is known that M has a proper submodule, it may be very hard to find
one.

In this chapter we describe a rational Meataxe; using our implementation of this, the
first problem is now easily solvable in practice, and the second problem can now be solved
in most situations which arise in practice. The algorithm will only apply to semisimple
A-modules, so in this case, a module will be simple if and only if it is indecomposable,
and our algorithm will return a direct sum decomposition of its input. The two types
of semisimple module to which we will later apply the rational Meataxe algorithm are as
follows.

1. M may be a QG-module, in which case information from the character table of G
may also be used.

2. M is a condensed A-module so A is a condensed algebra (see next chapter for
details), in which case information involving the trace of the action of A can also
be used.

An A-module M is called homogeneous if it is isomorphic to the direct sum of one
or more copies of the same simple A-module S; i.e., if M ∼= ⊕mi=1S for some m ≥ 1. In
practice, it is straightforward to split a module into homogeneous components, but it can
be much harder to decompose each homogeneous component; this requires analysis of its
endomorphism ring. Algorithmic techniques using this approach were first described by

27

Plesken & Souvignier [PS96], but more recent improvements have been proposed, based on
using a maximal order of the endomorphism ring [NS09a, Sou09]. We outline alternative
methods based on tools from Arithmetic Geometry and Cohomology to split homogeneous
modules for which the centre of the endomorphism ring has large dimension.

Note that in the usual usage of the traditional (modular) Meataxe to find a composition
series of M , if a proper submodule S of M is found, then one typically recurses on S and
the quotient module M/S. We avoid this approach in characteristic zero, since it is harder
to control the growth of coefficients in the quotient module and recursively constructed
submodules (and the basis for their embedding into the original module M); rather, it
is better to compute a direct sum decomposition of M without a recursive splitting if
possible. Also, if the algebra A has generators with entries in Z alone, then the algorithm
always returns submodules such that the reduced action is also integral.

2.2. Decomposing into Homogeneous Components

The following simple algorithm first decomposes a semisimple module M over Q into
homogeneous components.

Algorithm HomogeneousComponents(M)
Input:

• An A-module M where A is a subalgebra of Mn(Q).

Output:

• Submodules [S1, . . . , Sk] of M such that M = ⊕mi=1Si, and the Si are homogeneous.

Steps:

1. Set Z := CentreOfEndomorphismRing(M).

2. Set d := DimQ(Z). If d = 1 then return [M].

3. Set B := LLL(Saturation(Basis(Z))).

4. For b in B do:
{

Set f to the minimal polynomial of b.
If f is irreducible and Deg(f) = d then return [M].

Factorize f as
∏k

i=1 g
ei
i with the gi irreducible.

If k > 1 then:
{

Set Si to the submodule of M generated by (geii)(b) for 1 ≤ i ≤ k.
Set Li := HomogeneousComponents(Si) for 1 ≤ i ≤ k.
Return the concatenation of L1, . . . , Lk.

}
}

5. Return [M].

28

Lemma 2.2.1. Algorithm HomogeneousComponents is correct.

Proof. By Prop. 1.5.2, the centre Z of EndA(M) is isomorphic to a direct sum of m fields,
where m is the number of homogeneous components of M . If m = 1, then all the minimal
polynomials will be irreducible (if degree d is encountered, then that immediately proves
that Z is a field), and so the single homogeneous component M will be correctly returned.
If m > 1 then an element of the basis B must split Z (by [CIW97, Cor. 13]), and then the
recursive call ensures a complete splitting into homogeneous submodules by induction. �

In the implementation, we use the modular algorithm to compute the centre Z of the
endomorphism ring (see p. 25). Note that this can often be computed more more quickly
than the full endomorphism ring, so it is well worth using the modular algorithm for the
initial decomposition via the centre Z (one can also use the regular representation of Z on
itself to reduce the dimension). We use the LLL-reduced basis B of Z so that it is generally
faster to compute the minimal polynomials and also so that the bases of the submodules
in the decomposition will tend to have smaller entries.

2.3. Splitting Homogeneous Modules

2.3.1. Introduction. This section presents algorithms to split homogeneousA-modules
over Q. A very useful approach is to use a maximal order of the endomorphism ring.

Lemma 2.3.1. Suppose M is a homogeneous A-module, where A is a subalgebra ofMn(Q),
so M ∼= ⊕mi=1S for a simple A-module S and m ≥ 1. Let E = EndA(M). Then
E ∼=Mm(D), where D is a division algebra with F = Z(D) a field and DimF (D) = s2 for
some integer s ≥ 1.

Proof. This follows directly from Thm. 1.4.2 and Thm. 1.4.3 (1). �

Remarks 2.3.2. The integer s in the last Lemma is called the Schur index of the central
simple algebra E. (It is easy to see that if M is an QG-module, then s equals the Schur
index of the character of an absolutely irreducible constituent of M .)

Definition 2.3.3. Let A be a subalgebra of Mn(Q). An order of A is a finitely-generated
subring O of A such that Z is in the centre of O and O ⊗Q = A (so O generates A over
Q). A maximal order of A is an order O such that no other order of A properly contains
O.

Remarks 2.3.4. Let A be a subalgebra of Mn(Q). The saturation S of A ∩Mn(Z) (see
Def. 1.7.6) is an order of A but is not always maximal. A maximal order O of A will
contain S but may also contain elements ofMn(Q) which are not inMn(Z) (see Ex. 2.3.7
below), but every element of O is always integral (has monic minimal polynomial in Z[x])
[Rei03, 8.6]. Note also that if A is isomorphic to a number field F , then a maximal order
of A is isomorphic to a maximal order of F .

G. Nebe and the current author developed an algorithm (implemented in Magma) to
compute a maximal order of a central simple algebra and recognize the associated Schur
index and multiplicity. Since we use the algorithm heavily in subsequent algorithms, we
state its specification formally here. See [NS09a] for a detailed description of the algorithm.

29

Algorithm MaximalOrder(E)
Input:

• A central simple matrix algebra E ⊆Mn(Q).

Output:

• A Z-basis B = [b1, . . . bk] (with bi ∈Mn(Q)) of a maximal order O of E.

• The Schur index s of E.

• The multiplicity m.

Given the output of the algorithm, we always have E ∼= Mm(D), where D is a division
algebra, F = Z(D) is a field and DimF (D) = s2.

Remarks 2.3.5. If E = EndA(M) where M is a homogeneous A-module (which is always
the case in our applications), then the returned m gives the multiplicity such that M ∼=
⊕mi=1S for simple S, so we recognize that M is simple if and only if m = 1.

Let E be a Q-algebra. Call a non-zero element a ∈ E a split element if the minimal
polynomial f of a has at least two distinct irreducible factors. In such a case, if g is a
factor of f with g 6= 1, f , then b = g(a) must be singular (a zero divisor). If E is the
endomorphism ring of some A-module M , then the kernel of b gives a proper non-zero
submodule of M . The main technique to split a homogeneous module M is to find a split
element in the endomorphism ring of M .

2.3.2. Splitting via Maximal Order Basis Search. Suppose that M is a homoge-
neous A-module which is not simple, where A is a Q-algebra. Plesken & Souvignier [PS96,
6(i)] suggested that one could split M by searching for split elements in a LLL-reduced
basis of the saturation E ⊆ Mn(Z) of the endomorphism ring of M . While this works
very often for cases where the dimension of E is small, it often fails when the dimension is
larger. Souvignier later proposed [Sou09] to search for split elements in a maximal order
O of E. Since the elements of a maximal order O are integral and a reduced basis of O
goes ‘deeper’ into the structure of E, there is generally a much better chance of finding
split elements via O than via E. Souvignier described an algorithm to split M by using
a LLL-reduced basis of O w.r.t. the trace product form, but we have found that this does
not work very well in higher dimensions. After much experimentation, we have found
that the best method is first to compute a LLL-reduced basis B of O (using the standard
coordinates, so not with a trace-based form) and then try the following in order:

1. See if any element of B is a split element;
2. See if a sum or product of basis elements of B is a split element;

Using these ideas steps alone, we tend to find a split element fairly quickly for any algebra
E where the dimension z of the centre is at most 10, so this works very quickly in practice
in nearly all situations which we encounter in this thesis. If this fails, then we successively
perturb the basis B search for a split element in each new basis. The full algorithm to do
all this is as follows.

30

Algorithm MaximalOrderBasisSearch(B, T)
Input:

• A basis B = [b1, . . . , bk] of a Z-algebra with bi ∈Mn(Q) (typically, the algebra is a
maximal order).
• A parameter T (number of tries for search loop); may be ∞.

Output:

• A split element of the Z-algebra generated by B, or ‘Fail’ if one cannot be found.

Steps:

1. For i = 1, . . . k do: if bi is a split element then return bi.

2. For i, j = 1, . . . k do:
{

If bi · bj is a split element then return bi · bj.
If bi + bj is a split element then return bi + bj.

}
3. For c := 1 to T do:
{

Set [i1, . . . , ik] and [j1, . . . , jk] to random integers (not necessarily distinct)
in the range [1 . . . k].

Set L := [bi1 · bj1 , . . . , bik · bjk , b1, . . . , bk].
Set [r1, . . . , rk] := LLL(L).
For i := 1 to k do: if ri is a split element then return ri.

}
4. Return ‘Fail’

Remarks 2.3.6. The call to LLL in Step 3 will use the MLLL algorithm (see Subsec.1.8.1)
because of the dependencies. The initial k vectors will present a different basis for a
suborder which the LLL will act on, and adding the basis for O after that ensures that
the reduced basis is another basis of O. In general, the new basis can be quite different
because of the initial vectors coming from the products. So the heuristic idea is that this
perturbed basis hopefully has quite a different structure and so there is a chance that split
elements will ‘pop out’ of the new basis.

Example 2.3.7. Here is a very small example where the use of a maximal order provides
a splitting of a homogeneous module. We let M be the dimension-4 A-module, where A is
a Q-algebra with action on M given by these 2 generators:

a1 =


0 0 1 1
0 0 −1 0
0 −13 0 0

13 13 0 0

 , a2 =


0 0 1 0
0 0 0 1

13 0 0 0
0 13 0 0

 .

M is a condensed module arising from the construction of a degree-14 irreducible rational
representation of L2(13). Now the endomorphism ring E of M has dimension 4 and a

31

LLL-reduced basis of the saturation of E is:

e1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , e2 =


0 1 0 0
−1 −1 0 0

0 0 0 1
0 0 −1 −1

 ,

e3 =


0 0 1 0
0 0 −1 −1

13 0 0 0
−13 −13 0 0

 , e4 =


0 0 0 1
0 0 1 0
0 13 0 0

13 0 0 0


The minimal polynomials of e2, e3 and e4 are x2 + x+ 1, x2− 13 and x2− 13, respectively.
Since these are irreducible over Q, the reduced basis elements do not split M . But if we
compute a maximal order O of E, then a LLL-reduced basis of O is:

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
−1 −1 0 0

0 0 0 1
0 0 −1 −1

 ,


1
3
−1

3
2
39

7
39

1
3

2
3

5
39
− 2

39
2
3

7
3

1
3
−1

3
5
3
−2

3
1
3

2
3

 ,


−1

3
1
3
− 5

39
2
39

−1
3
−2

3
7
39

5
39

−5
3

2
3
−1

3
1
3

7
3

5
3
−1

3
−2

3


The last 2 matrices both have minimal polynomial x(x − 1), so are split elements. LLL-
reduced basis matrices of the kernels over Z for the first element are:(

−1 3 −1 0
4 1 0 −1

)
,

(
−1 3 0 −1

4 1 1 1

)
thus yielding a decomposition of the original module into simple components.

2.3.3. Splitting Via Solving a Conic. Suppose M ∼= S ⊕ S for a simple A-module
S, where A is a Q-algebra, and suppose that E = EndA(M) has Schur index 1, so s = 1
and m = 2 in the notation of Lem. 2.3.1. Then E is isomorphic to M2(F), where F is a
number field of degree d, and E is a quaternion algebra. When d is very large, the above
heuristic search using the maximal order may take a very long time, so we present another
approach here to split M .

Plesken & Souvignier [PS96, 6(i)] presented a method for splitting M in this situation
by solving a norm equation in a quadratic extension of F . We present an alternative
method here which involves finding a rational point on a conic over F . This method is
equivalent to the above method in the worst case, but is often much more efficient in
practice because we can apply several heuristics.

Let F be a field. A conic C over F is a plane algebraic curve which can be defined
by a bivariate polynomial f ∈ F [x, y] of degree 2. The rational points of C are the set
of pairs (x0, y0) ∈ F 2 such that f(x0, y0) = 0. Magma has a highly optimized algorithm,
developed by S. Donnelly, to determine whether a conic C has a rational point over F and
compute one if so, where F is Q or a number field. For the Q case, the algorithm is due
to D. Simon [Sim05], and for the number field case, the algorithm is due to S. Donnelly

32

(unpublished), based on Lagrange’s method plus other techniques. In the worst case, the
algorithm may involve solving a norm equation in a quadratic extension F2 of F and the
difficulty of this computation is affected by the size of the norms of the coefficients defining
the conic. So the algorithm first reduces the conic to an equivalent one where the norms
of the coefficients are reduced to have absolute value of the order of

√
D where D is the

discriminant of F . If D is smooth (which happens in general for the kinds of fields which
we use, since they are subfields of cyclotomic fields or small-degree extensions of such) then
the reduction of a and b also often leads immediately to a solution, without the need to
solve a norm equation in the quadratic extension F2.

We now present a concrete algorithm to find a singular element of the above endomor-
phism ring E by finding a point on a related conic.

Algorithm SplitAlgebraByConic(A)
Input:

• An algebra A ⊂M4d(Q) which is known to be isomorphic toM2(F) where F is a
number field of degree d. (An explicit isomorphism is not necessarily known.)

Output:

• A singular element of A.

Steps:

1. Let Z be the centre of A and let F = Q(α) be the number field to which Z is
isomorphic. Let z be the element of Z corresponding to α under some isomorphism
between Z and F (so the minimal polynomial of z over Q has degree d).

2. Let AF be A considered as an F -algebra. Choose e1, e2, e3 from a basis of a maximal
order of A so that B = [1, e1, e2, e3] form an F -basis of AF ; i.e., so that

BQ = [1, z, . . . , zd−1, e1, ze1 . . . , z
d−1e1, e2, ze1 . . . , z

d−1e2, e3, ze3 . . . , z
d−1e3]

is a Q-basis of A.

3. Let T0 be the kernel of the linear trace map Tr : AF → F (so T0 has dimension 3).

4. Choose non-zero i ∈ T0 and then choose any non-zero j which is not a scalar multiple
of i from the dimension-2 subspace {j : j ∈ T0, ij + ji = 0} of T0.

5. Set a := i2, b := j2 (so a, b ∈ F since i, j have trace 0) and k := ij = −ji so AF is
explicitly recognized as a quaternion algebra AQ with basis [1, i, j, k].

6. Let C be the conic f(x, y) = 0, where f(x, y) = x2 + (b/a)y2 + b ∈ F [x, y]. Let
(x0, y0) ∈ F 2 be a rational point on C.

7. Set s := x0i+ y0j + k ∈ AQ. (s has norm 0 in AQ so is a zero divisor.)

8. Let a be the element of A corresponding to s by writing an element of AQ in terms of
the basis B from Step 2, and then expanding in terms of the basis BQ.

9. Return a.

33

Proposition 2.3.8. SplitAlgebraByConic is correct.

Proof. The correctness of the construction of i, j, a, b with the stated properties is easy to
see: AF is clearly recognized as a dimension-4 F -algebra via z and the basis B and trace
map must have kernel of dimension 3, so it is elementary to find i, j satisfying the relevant
conditions. If (x0, y0) ∈ F 2 is a rational point on the conic C, then s = x0i + y0j + k is
non-zero and

s2 = (x0i+ y0j + k)2 = ax2
0 + by2

0 + ab = 0

(the cross products are all zero, since ij = −ji, ik = −ki, jk = −kj). So a solution to
the conic clearly yields a non-zero singular element s ∈ AF of trace 0. Since A is known
to be isomorphic to M2(F), the minimal polynomial of any element has degree at most 2
and A also contains singular elements of trace 0 (i.e., having minimal polynomial of the
form x2 + c for c ∈ F), so there must be always a solution to the conic. The final element
a obviously corresponds to s by the isomorphisms underlying the chosen bases, so a is
singular. �

There are a few optimizations to our algorithm based on the conic solution algorithm,
which are often very effective:

1. If a = −c2 for c ∈ F , then (0, c) is easily seen to be a solution. Similarly, if b = −c2

for c ∈ F , then (c, 0) is a solution. So we can first check whether −a or −b are
squares in F .

2. For each subfield S of F (starting with Q and then proceeding by increasing degree),
we test whether a and b lie in S; if so, then we attempt to solve the conic C over S
(instead of F) and if there is a solution then we can just immediately lift it to F .
Solving the conic over the subfield is dramatically easier in general, so this simple
test is well worth trying.

3. If a = caα
i, b = cbα

j for ca, cb ∈ Q, and αi, αj are squares in F (which obviously
will be the case if i and j are even, but may be true too if either are odd), then we

may replace a with ca
√
αi and b with cb

√
αj and scale the final result appropriately.

This case arises very often for the applications we have here, since the basis of the
maximal order is often sparse and a, b often have this form.

4. We can choose each of e1, e2, e3 in Step 2 to be from the basis of the maximal order
O for several different choices. Since the basis is often sparse, the corresponding a
and b are often small for some choice or satisfy the conditions for at least one of
the above optimizations.

Combining all these optimizations yields a method which is very often much better than
just solving a norm equation in a quadratic extension field.

Example 2.3.9. Let G equal the third small group of order 240, according to the classifica-
tion of [BEO01] (created by SmallGroup(240, 3) in Magma). Then G has an irreducible
rational representation ρ32 of degree 32 which is difficult to compute. The representation
occurs with multiplicity 2 in either the induction to G of a degree-8 representation of an
index 8 subgroup of G, or the tensor product of two degree-8 irreducible representations
of G. This degree-64 representation ρ64

∼= ρ32 ⊕ ρ32 is very easy to construct in a second
or so (by methods described later) and is sparse, but is difficult to split. We use the above

34

algorithm to do this. Let E be the endomorphism ring of ρ64. The centre of E is isomorphic
to the degree-16 number field F = Q(α), where the minimal polynomial of α is

x16 + 29x12 + 246x8 + 524x4 + 1.

We apply SplitAlgebraByConic to E; the corresponding conic C is defined by f(x, y) =
x2 + c1y

2 + c2 ∈ F [x, y] where:

c1 =
1

1653
(15α13 + 475α9 + 4222α5 + 7915α),

c2 =
1

1653
(−77227687α13 − 1252610055α9 − 3222152922α5 − 6150095α).

A rational point on C is found in 126s by Donnelly’s algorithm and is:

(1/1653(8905α15 + 21368α14 + 28989α13 + 30316α12 + 164996α11 + 373787α10 + 430901α9+

401660α8 + 451598α7 + 998039α6 + 980348α5 + 1116410α4 + 862α3 + 1905α2+

1871α+ 2131), 1/1653(−9315α15 − 36446α14 − 32131α13 − 157776α11 − 592287α10−
443208α7 − 1427751α6 − 1445442α5 − 846α3 − 2725α2 − 2759α))

We can then instantly compute the corresponding endomorphism in E which has rank
32 (and only 0,±1

2
± 1,±2 as entries) and from this the desired irreducible rational repre-

sentation ρ32 of G of degree 32 (which is integral and has absolute maximum entry 3).

We have performed similar splittings for most of the hard cases (where there is a very
large centre) which occur when constructing all irreducible rational representations of any
group having up to order 500. The results have been stored in a database. At the time of
writing, there are only a small number of holes (where the centre dimension is above 20).

2.3.4. Splitting via Fieker’s Minimal Field Algorithm. In [Fie09], C. Fieker
presents an algorithm which, given:

• an ordinary representation ρ0 : G → GLn(F0) affording an absolutely irreducible
character χ for a number field F0,

• another number field F ,

returns an equivalent representation ρ : G → GLn(F ′) affording χ such that F ′ is a
minimal extension of F for χ. The algorithm involves splitting a cocycle in the Brauer
group of the character field and has been implemented by Fieker in Magma (function
WriteGModuleOverExtensionOf) and uses the package for cohomology computations im-
plemented by D.F. Holt. The algorithm can also be generalized to simple A-modules,
where A is a semisimple algebra over a number field [Fie11].

One practical limitation is that the algorithm makes no attempt to control the quality
of the coefficients in the output, and can be very slow when the degree of the representation
is not very high. We thus avoid calling it if at all possible. But the algorithm can be more
effective than other methods when the degree of the field F0 is large, so we use it sometimes.
When we do use it, we also try to improve the resulting entries by techniques explained
later in the thesis. The algorithm can be applied to split homogeneous rational modules
as follows.

35

Algorithm SplitHomogeneousByMinimalField(M)
Input:

• An homogeneous QG-module M .

Output:

• Simple submodules [S1, . . . , Sm] of M such that M = ⊕mi=1Si, and the Si are all
isomorphic.

Steps:

1. Set E := EndomorphismRing(M).

Set B, s,m := MaximalOrder(E).

If m = 1 then return [M].

2. Let z be the dimension of the centre of E.

Let e be an element of E which generates a subfield of E of degree msz over Q and
let F = Q(α) be the number field isomorphic to this subfield (under the isomorphism
α 7→ e).

Let SF be the submodule of MF generated by the α-eigenspace of e over F and let
ρF be the representation corresponding to SF (which is absolutely irreducible).

3. Set ρF ′ to a representation equivalent to ρF , but written over a minimal extension
field F ′ of Q.

Let ρQ be the restriction of scalars of ρF ′ from F ′ to Q (as in Prop. 1.6.2).

Let S be the QG-module corresponding to ρQ.

4. Now S is an irreducible constituent of M . Compute H = HomQG(S,M) and compute
submodules S1, . . . , Sm of M which give a direct sum decomposition of M from images
of suitable elements taken from a basis of H.

Proposition 2.3.10. Algorithm SplitHomogeneousByMinimalField is correct.

Proof. Since M is homogeneous, the character of M equals mχ for some χ ∈ IrrQ(G). In
Step 1, m is determined and if m = 1, then M is simple so the returned value is correct.
In Step 2, by Cor. 1.5.5 there exists a maximal subfield of E (isomorphic to F = Q(α))
having degree ms over the centre of E, or degree msz over Q, and the representation ρF
derived from the α-eigenspace of e is absolutely irreducible and is a constituent of the
representation corresponding to M . Thus Fieker’s algorithm may be applied in Step 3
to obtain an equivalent representation ρF ′ over a minimal field F ′. By Prop. 1.6.2, the
restriction to scalars representation ρQ is irreducible over Q and its character must equal
χ, so the corresponding QG-module is an irreducible constituent of M . In Step 4, a suitable
subset of a basis of the Hom-module H must always yield a full decomposition of M , since
M is homogeneous and S is an irreducible constituent. �

Remarks 2.3.11. Since the output of Fieker’s algorithm usually does not have small
entries, we have usually applied the entry reduction algorithm for rational representations
(p. 25) to the output whenever we have used this method. One can also use the algorithm
SplitByEigenspace below (p. 74) to compute the submodule SF in Step 2.

36

2.3.5. The Complete Split-Homogeneous Algorithm. We can now combine all
of the above algorithms to obtain the following algorithm to split a homogeneous module
into simple components.

Algorithm SplitHomogeneous(M)
Input:

• An homogeneous A-module M where A is a subalgebra of Mn(Q).

Output:

• Simple submodules [S1, . . . , Sm] of M such that M = ⊕mi=1Si, and the Si are all
isomorphic.

Steps:

1. Set E := EndomorphismRing(M).

2. For each ei in LLL-basis of Saturation(E) do: if ei is a split element then let S1, S2 be
the submodules of M generated by the relevant kernels and return the concatenation
of SplitHomogeneous(S1) and SplitHomogeneous(S2).

3. Set [b1, . . . , bk], s,m := MaximalOrder(E).

If m = 1 then return [M].

4. Set T := 2k. [Default value; can be any other value.]

Set e := MaximalOrderBasisSearch([b1, . . . , bk], T).

5. If e = ‘Fail’ and s = 1 and m = 2 then set e := SplitAlgebraByConic(E).

6. If e = ‘Fail’ andM is an FG-module then return SplitHomogeneousByMinimalField(M).

7. If e = ‘Fail’ then set e := MaximalOrderBasisSearch([b1, . . . , bk],∞).

8. Let S1, S2 be the submodules of M generated by the relevant kernels of e and return
the concatenation of SplitHomogeneous(S1) and SplitHomogeneous(S2).

Proposition 2.3.12. Algorithm SplitHomogeneous is correct.

Proof. The correctness essentially follows from the correctness of the previous algorithms
(Prop. 2.3.8 and Prop. 2.3.10). �

2.4. The Rational Meataxe

We can now present the main rational Meataxe algorithm to decompose a semisimple
A-module M into a direct sum of simple components, where A is a subalgebra ofMn(Q).

The algorithm includes a very important option which will be used in the next chapter:
the caller can request that only one particular simple component S of M is desired. This
is specified by giving special information about the trace of the action of A on S, and is
denoted by an argument TraceInfo = 〈TS,mS〉. In this case, A has k generators and we
assume that the first generator is the identity element of A. Then the i-th component of
TS ∈ Zk gives the trace of the i-th generator of A acting on S (and T [1] thus gives the
dimension of S), while mS is the multiplicity of S as a constituent of M . The algorithm

37

assumes that if the vector of traces for a submodule W of M equals mS · TS, then W is
isomorphic tomS copies of S. Note that it is not compulsory in this option for the algorithm
to return the desired constituent S alone, but if it can find a constituent matching the above
trace information, then it returns it alone.

After giving the formal algorithm, we note several points on how to make it efficient.

Algorithm RationalMeataxe(M[, TraceInfo])
Input:

• A semisimple A-module M where A is a subalgebra of Mn(Q).

• [Optional:] TraceInfo 〈TS,mS〉, where TS ∈ Zk and mS ∈ Z>0, giving trace informa-
tion for a desired simple constituent of M (see above for details).

Output:

• If TraceInfo is given, and if a simple submodule ST of M corresponding to the above
information is found, then [ST] is returned.

• Otherwise, simple submodules [S1, . . . , Sm] of M are returned, such that M = ⊕mi=1Si.

Steps:

1. [Optional: Use Characters]

If M is a QG-module, and such that the character table of G is known or easy to
compute (say, if |G| ≤ 1010), then do the following (otherwise skip to the next step).

Compute IrrQ(G) (via the algorithm in Thm. 1.3.4).

Let χ be the character of M .

If χ = χi for some χi ∈ IrrQ(G), then return [M].

If χ = mχi for some χi ∈ IrrQ(G) and m > 1, then set L := [M] and go to Step 4.

2. [TraceInfo option: try to find component]

Let a be an element of A obtained by linear combinations with small random co-
efficients (and possibly a few multiplications). Set f to the minimal polynomial of
a.

Factorize f as
∏s

i=1 g
ei
i for irreducible gi ∈ Q[x].

Set D := mS · TS[1] [desired homogeneous dimension].

Sort [〈g1, e1〉, . . . , 〈gk, ek〉], so that a pair 〈gi, ei〉 with di = ei ·Deg(gi) dividing D comes
first, and otherwise a pair with smaller di comes first.

If for some i with 1 ≤ i ≤ s, the nullspace of (geii)(a) is invariant under A
and the trace vector [t1, . . . , tk] of the generators of A acting on the
corresponding submodule Wi equals mS · TS then:

{
[Found desired constituent. Return it immediately if simple.]
Set L := [Wi].
If mS = 1, then return L; otherwise go to step 4.

}

[Trace-based search failed. Fall through to full splitting.]

38

If the nullspace of (geii)(a) is invariant under A for all 1 ≤ i ≤ s then:
{

Let Vi be the submodule of M generated by the i-th nullspace.
Set L := [V1, . . . , Vs].

}
Else:

Set L := [M].

3. [Split into Homogeneous Components]

Set L to the concatenation of [HomogeneousComponents(S) : S ∈ L].

4. [Split Homogeneous Components]

Set L to the concatenation of [SplitHomogeneous(S) : S ∈ L] and return L.

Theorem 2.4.1. Algorithm RationalMeataxe is correct.

Proof. If Step 1 is applied, then if χ = χi for some i, then obviously M is simple so
the step is correct in returning [M] immediately, while if χ = mχi, m > 1, then M is
homogeneous, so it is valid to jump to Step 4.

Step 2 is only used in the TraceInfo case. If U1, . . . , Us are the generalized eigenspaces
corresponding to the maximal powers of the irreducible factors of the minimal polynomial of
a, then the Ui obviously give a direct sum decomposition of the underlying vector space F n.
Now the algorithm only needs to return a submodule which matches the trace information
given by TS; if such a submodule Wi is found (matching one of the eigenspaces) then either
the multiplicity mS is one 1 and Wi may be returned immediately or Wi is a homogeneous
module isomorphic to mS · S for simple S and Step 4 only needs to decompose Wi. If the
trace test fails, then L is clearly always set to some decomposition of M .

In Step 3, by the correctness of HomogeneousComponents above, clearly each
submodule of L is split into homogeneous components and in Step 4, by the correctness of
SplitHomogeneous above, the homogeneous components of each component are split
into simple submodules. Thus in the general case, a direct sum decomposition of M into
simple components is returned, while in the TraceInfo case, the components returned will
be simple and one of the components will match the trace information. �

Remarks 2.4.2. We note the following points on the implementation:

1. The use of the character in Step 1 when applicable is very effective in practice, since
it predicts exactly the decomposition of M . For example, M may be proven to be
irreducible very quickly, and this saves a lot of time when the dimension of M is large.
Note however that in the rest of the thesis we will mostly apply the Meataxe to modules
which are not QG-modules (the main exception is in the setting up the condensation of
tensor modules below). One can also use the character information in the subsequent
steps (e.g., to determine that a component is irreducible after an initial splitting).

2. The TraceInfo option will be used in the next chapter to extract a simple constituent
of a condensed module. In this situation, M often has very many simple components,
so that is why we first obtain a homogeneous splitting by an algebra element (like
the ‘traditional’ Meataxe), instead of computing the endomorphism ring or its centre,
both of which may be very large so much more expensive to compute. If the desired

39

component is not found, then the step will be a waste of time, but we have found that
it practically always works in finding a direct sum decomposition so is well worth doing
in practice. The nullspace of each hi = (geii)(a) in Step 2, where hi is a divisor of the
minimal polynomial of A (with maximal multiplicity), can be computed by the method
discussed in Subsec. 1.7.4 so this can be done very efficiently, even when the degree of
g is large. Since our modules are assumed to be semisimple, this method always works
well in practice.

3. The TraceInfo option will be used heavily in the next chapter when M is a condensed
module, and it will often be the case that M may have a large dimension, but we only
wish to compute a single small constituent of M , and the trace information will allow
us to identify this constituent uniquely. In this case, the computation of the minimal
polynomial f of a and then the nullspace of the evaluation of a single small-degree
factor of f at a is very fast and so the whole algorithm takes very little time.

For simplicity of exposition, we have presented the algorithm so that in this option,
only a single constituent is desired. But in the implementation, the algorithm allows
the trace information for several constituents to be given, so that corresponding simple
submodules are extracted. This avoids multiple calls of the Meataxe when multiple
constituents are desired from one condensed module when condensation is used (see
the next chapter).

The next chapter will give several examples of the use of the rational Meataxe, partic-
ularly in the case where the option with the trace information is used.

2.5. A Simplicity Test

We give here a practical algorithm to decide whether a semisimple A-module, for a
subalgebra A of Mn(Q) is simple. This algorithm is a simplification of the more general
Meataxe algorithm above and is not needed separately in subsequent algorithms, but is
included here for completeness and to summarize all the techniques which can be used to
prove simplicity.

Algorithm IsSimple(M)
Input: A semisimple A-module M , where A is a subalgebra of Mn(Q).
Output: A boolean flag indicating whether M is simple.
Steps:

1. [Optional: Character Test] If M is a QG-module, and such that the character table
of G is known or easy to compute (say, if |G| ≤ 1010), then compute IrrQ(G) (via the
algorithm in Thm. 1.3.4) and the character χ of M and then return whether χ = χi
for some χi ∈ IrrQ(G).

2. [Optional: Modular Test] Test whether M mod p is irreducible for some prime p; if so,
return true. (Occasionally works, but useless when there is a non-trivial Schur index.)

3. [Optional: Try Meataxe-type Split for Highly Decomposable Case] Choose element a ∈
A from a small random linear combination of the generators of A and if a generalized
eigenspace of a generates a proper submodule of M , then return false.

40

4. [Endomorphism Ring Centre Test] Set Z := Saturation(Centre(EndA(M))). For
each e in a LLL-reduced Z-basis of Z do: if e is a split element, then return false.

5. [Endomorphism Ring Test] M is now homogeneous. Compute E = EndA(M). If
E = Z, return true. Otherwise, for each e in a LLL-reduced basis of the saturation of
E: if e is a split element, then return false.

6. [Maximal Order Test] Set B, s,m := MaximalOrder(E) and then return whether
m = 1.

Theorem 2.5.1. Algorithm IsSimple is correct.

Proof. Step 1 is correct because IrrQ(G) is exactly the set of characters of irreducible
Q-representations of G (Def. 1.3.1). Step 2 is correct, since if M is not simple, then it
must be not simple mod p too. Steps 3 to 5 are clearly correct if they return true (a proper
submodule is found). If Step 5 is reached, M must be homogeneous and E is a central
simple algebra. The algorithm MaximalOrder determines the multiplicity m and thus
M is simple if and only if m = 1. �

41

Chapter 3

Constructing Irreducible Representations Via Condensation

3.1. Introduction

In this chapter we describe efficient algorithms for the splitting approach for computing
irreducible representations. The basic idea is to extract these as constituents of a poten-
tially large-degree representation, using condensation in an automatic way. There has been
extensive use of condensation in constructing modular representations of finite groups, but
there has apparently hitherto been hardly any use of condensation in characteristic zero.
We develop a key automatic algorithm which uses an algorithm for finding non-negative
solutions of an integral linear system to choose a suitable condensed module so that the
desired irreducible representations can be constructed efficiently.

3.2. Non-negative Solutions to Integral Linear Systems

In this section we describe an algorithm to solve the following important problem.
Suppose that we are given vectors [v1, . . . , vk], w, all in Zn and such that the first coordinate
of each vector is strictly positive. Let V be the k × n matrix whose rows are [v1, . . . , vk].
We wish to find all solutions in s to the linear system given by:

s · V = w,

such that the entries of s are all non-negative.

The motivation for solving this problem is clear when we consider the characters of
rational representations of finite groups. A rational character has integral entries and the
first value is always positive (the degree of the character). If the vi are the irreducible
rational characters of a group G and w is an arbitrary rational character of G, then w can
be written uniquely as a non-negative linear combination of the vi. In this case, n ≥ k and
the above matrix V has rank k, so the solution over Z is unique (and has non-negative
coordinates), so the problem can easily be solved by standard linear algebra. But there
are two more general situations which we will encounter:

1. We may only have partial characters; i.e., the vi and w may have character values
only for a proper subset of the full list of conjugacy classes, in which case we may
have n < k and then the rank of the corresponding matrix V will be less than k, so
there may not be a unique solution for s and it may be hard to find a non-negative
solution.

2. We will also need to solve this problem for vectors of traces of elements of a con-
densed algebra (in Sec. 3.7 below); again, the rank of the corresponding V matrix
may be less than k, so it may be difficult to find non-negative solutions.

This problem is clearly related to the well-known Knapsack (or subset-sum) problem.
There are well-known methods to solve this restricted problem, such as those based on the

42

LLL algorithm (see [SE91] for example). We develop our own simple heuristic algorithm
here since it seems to work very effectively for the kinds of inputs we apply it to, and we
can take advantage of the special condition that the first coordinate of every vector must
be strictly positive. The basic idea is to determine bounds B1, . . . , Bk for each coordinate
of a solution vector s, and then do a standard recursive search, using the bounds for each
coordinate. Since the first coordinate of every vector in the input is positive, each Bi can be
initialized to a non-negative value. A naive search obviously has exponential complexity in
k when the bounds are uniform. But we first we use some heuristics to reduce the bounds,
and usually this reduction works well enough that the recursive search is very easy.

The first basic subalgorithm Search does a simple recursive search based on the given
bounds on each coordinate.

Subalgorithm Search([v1, . . . , vk], w, [B1, . . . , Bk], MaxSolutions)
Input:

• Vectors [v1, . . . , vk] and w, all in Zn and such that the first coordinate of the vi and w
are positive.

• Bounds [B1, . . . , Bk] for each coordinate of the solutions.

• A positive integer MaxSolutions (may be ∞), bounding the number of solutions
returned.

Output:

• All solution vectors [s1, . . . , sr] ∈ (Z≥0)k such that si · V = w, where V is the ma-
trix whose rows are [v1, . . . , vk] and the j-th coordinate of each si is at most Bj. If
MaxSolutions <∞, then r is limited to at most MaxSolutions.

Steps:

1. If w = 0 then return {t} where t = (0, . . . , 0) ∈ Zk.

If k = 0 then return {}.

2. Set m to the minimum of Bk and b w[1]
vk[1]
c and set S := {}.

For i := 0 to m do:
{

Set T := Search([v1, . . . , vk−1], w − ivk, [B1, . . . , Bk−1], MaxSolutions).
For t in T do:
{

Write t = (c1, . . . ck−1).
Insert (c1, . . . ck−1, i) into S.
If #S = MaxSolutions then return S.

}
}
Return S.

43

Lemma 3.2.1. Subalgorithm Search is correct.

Proof. This algorithm is easily seen to be correct by induction. For the base case, if
w = 0, then the zero vector is the unique solution; otherwise, if k = 0, then there can be
no solution. In the general case, m is clearly set to an upper bound on the number of times
that vk can contribute to a sum equal to w, since the first coordinates are all positive (if
the bound Bk is smaller, then it is used instead). Then Search simply recurses with one
less vi vector, finds the relevant solutions, and extends each solution with the coefficient
corresponding to vk. �

We now give an improved algorithm which first attempts to reduce the bounds on the
coordinates, and then calls the above subalgorithm. Let V be the matrix whose rows are
[v1, . . . , vk], so that we wish to find the set of all solution vectors of the form s ∈ (Z≥0)k

with sV = w. Clearly, if T is an n × n invertible matrix over Q, with V T and wT
having integral entries, then sV = w if and only if sV T = wT for any s ∈ (Z≥0)k. So
we can replace the original problem involving (V,w) with (V T,wT) for any such T . The
advanced algorithm reduces the bounds on the coordinates by doing column operations
on the associated matrix to generate equivalent systems for which there are coordinates
with every coefficient positive, thus giving extra bounds. First there is a subalgorithm
UpdateBounds which simply makes the bounds smaller if possible, based on matrices
defining an equivalent system. Then the main algorithm NonNegativeSolutions calls
UpdateBounds on various matrices until no more bound reduction is possible, and then
calls Search with the final bounds.

Subalgorithm UpdateBounds([B1, . . . , Bk], C, A)
Input: Current bounds [B1, . . . , Bk], a positive column vector C ∈ (Z>0)(k+1)×1, and a

matrix A ∈ Z(k+1)×c.
Output: Updated bounds [B1, . . . , Bk] based on C and A.
Steps:

1. For j := 1 to c do:
{

[Update bounds by adding suitable multiple of C to column j of A.]
Let u be the j-th column vector of A.
Let q ∈ Z>0 be minimal such that u′ = u+ qC has no negative entry.
Set a := u′[k + 1].
For i := 1 to k do:

If u′[i] 6= 0 then set Bi to the minimum of Bi and b a
u′[i]
c.

}
2. Return [B1, . . . , Bk].

44

Algorithm NonNegativeSolutions([v1, . . . , vk], w, MaxSolutions)
Input:

• Vectors [v1, . . . , vk] and w, all in Zn and such that the first coordinate of the vi and w
are positive.

• A positive integer MaxSolutions (may be ∞), bounding the number of solutions
returned.

Output:

• All solution vectors [s1, . . . , sr] ∈ (Z≥0)k such that si · V = w, where V is the matrix
whose rows are [v1, . . . , vk].

Steps:

1. Let C be the positive column vector in (Z>0)(k+1)×1 with C[i] = vi[1] for 1 ≤ i ≤ k
and C[k + 1] = w[1].

2. Let A ∈ Z(k+1)×n be the matrix whose i-th row is vi for 1 ≤ i ≤ k and whose (k+1)-th
row is w.

Set [B1, . . . , Bk] := UpdateBounds([∞, . . . ,∞], C, A).

3. Set index label I := [1, 2, . . . , k].

Loop forever:
{

Set H := HermiteForm(Saturation(Transpose(Atr))tr.
Remove all zero columns from H.
Set [B1, . . . , Bk] := UpdateBounds([B1, . . . , Bk], C,H).
Set L := LLL(H tr)tr.
Set [B1, . . . , Bk] := UpdateBounds([B1, . . . , Bk], C, L).
If Bi 6= 0 for all i, then break out of the loop [no more reduction possible].
For each i with Bi = 0 do:

Delete row i of A and C, delete Bi and index I[i].
}

4. Let [v′1, . . . , v
′
r, w

′] be the rows of A.

5. Set S ′ := Search([v′1, . . . , v
′
r], w

′, [B1, . . . , Br], MaxSolutions).

6. Expand each vector s′ of S ′ according to I (expand s′ ∈ Zn′ to s ∈ Zn by mapping
column j in s′ to column I[j] in s), set S to the result, and return S.

Proposition 3.2.2. Algorithm NonNegativeSolutions is correct.

Proof. Let V be the matrix whose rows are [v1, . . . , vk]. As noted above, for s ∈ (Z≥0)k, we
have sV = w if and only if sV T = wT for any n×n invertible matrix T over Q. The initial
steps of NonNegativeSolutions simply try to reduce the problem by multiplying by
such invertible T to the current system (clearly the column Hermite form, saturation and
LLL operations apply invertible column operations only). Each new (column equivalent)
matrix is passed to subalgorithm UpdateBounds. This also effectively multiplies its

45

input by an invertible matrix on the right (by doing column operations only): since the
column vector C contains positive entries only, there must exist a q each time such that qC
can be added to the j-th column vector of A to make it non-negative. Then for this column,
each bound Bi is correctly updated, based on the quotients of the relevant coordinates.
Whenever a bound becomes 0, then obviously the corresponding row can be removed in the
loop in Step 3 of NonNegativeSolutions. Finally, Search is applied to an equivalent
system with the updated bounds, so after fixing the coordinates for the deleted rows, the
output must be same as if Search had been applied to the original input. �

Example 3.2.3. We give an example of a typical use of NonNegativeSolutions, which
comes from recognizing a partial character in a soluble group of order 500, which has 12
distinct irreducible rational characters; we only use the character values on 9 classes here.

Let A be the following 17× 9 integral matrix:

1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 1 −1 1 −1
1 1 −1 −1 1 1 1 1 1
1 −1 −1 1 1 1 −1 1 −1
4 4 4 4 4 4 4 −1 −1
4 −4 4 −4 4 4 −4 −1 1
4 4 −4 −4 4 4 4 −1 −1
4 −4 −4 4 4 4 −4 −1 1

20 20 20 20 20 −5 −5 0 0
20 −20 20 −20 20 −5 5 0 0
20 20 −20 −20 20 −5 −5 0 0
20 −20 −20 20 20 −5 5 0 0

100 100 100 100 −25 0 0 0 0
100 −100 100 −100 −25 0 0 0 0
100 100 −100 −100 −25 0 0 0 0
100 −100 −100 100 −25 0 0 0 0
410 −8 −206 −192 −90 10 −8 0 2


Let [v1, . . . , v16] be the first 16 rows of X and w the last row of X. We call Non-

NegativeSolutions on the vi and w, with ∞ for each initial bound. The first call to
UpdateBounds on the original input gives these initial bounds:

[102, 102, 160, 109, 25, 25, 40, 27, 5, 5, 8, 5, 1, 1, 2, 1].

The next call to UpdateBounds on the saturated column-Hermite form reduces the
bounds to:

[101, 102, 160, 108, 25, 10, 40, 10, 5, 5, 8, 5, 1, 1, 2, 1].

The next call to UpdateBounds on the column-LLL-reduced matrix reduces the bounds
to:

[1, 1, 1, 1, 0, 10, 0, 10, 0, 0, 0, 0, 1, 1, 2, 1].

After rows 5, 7, 9, 10, 11, 12 are removed (for which the bound is now 0), the reduced
bounds become:

[1, 1, 1, 1, 10, 10, 1, 1, 2, 1].

46

One more round of the loop (using the saturated column-Hermite form and the column-
LLL-reduced matrix) reduces the bounds to:

[1, 1, 1, 1, 2, 2, 1, 1, 2, 1].

The reduced combined matrix whose rows are then passed to Search is:

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
4 0 0 0 0 1 0 0
4 0 −4 0 4 1 0 0

100 0 0 0 0 0 1 0
100 0 0 0 0 0 0 1
100 −100 0 100 0 0 1 0
100 0 −100 0 100 0 0 1
410 −199 −107 200 108 2 2 2


This subalgorithm instantly finds that there is a unique non-negative solution vector for
this system. After inserting the zeros corresponding to the removed rows, we obtain the
final solution: (

1 1 0 0 0 0 0 2 0 0 0 0 0 1 2 1
)

The whole computation took less than 0.02 seconds. The Search subalgorithm was en-
tered 30 times, at all levels of recursion, so did very little work.

3.3. Computing Characters

We now describe the first important application of the algorithm of the previous section.
Suppose that ρ : G → GLn(F) is an ordinary representation and we wish to compute its
character χ. There is an obvious simple algorithm which evaluates ρ at each member of
a set of class representatives of G, but this of course can take a very long time in high
degree since there may be many matrix multiplications needed. We show how this naive
algorithm can be greatly improved.

The first obvious improvement is that we can first compute the traces of the genera-
tors of G (for which we already have the images under ρ) and then also products of the
generators and random products of reasonably short length. This often covers many of
the classes of G. After several trials with random products yielding nothing new, we can
then revert to evaluating ρ at the missing classes (using words in strong generators to
evaluate the words efficiently). We can also evaluate the character χ quicker by checking
orders of elements, as follows. The default method to evaluate χ(g) for g ∈ G involves
evaluating the class map for G at g: this computes the relevant conjugacy class which g
lies in. This can be expensive for larger groups, particularly if g lies in one of the more
‘obscure’ classes of the elements of higher order in G. We have implemented a simple trick
which helps enormously: for fixed χ, we compute the orders {o1, . . . , or} and corresponding
character values {v1, . . . , vr} such that for any element g ∈ G of order oi, the character
value χ(g) = vi (i.e., the character values must be constant for elements of the specific
order). Then for any g ∈ G, if g has an order oi, then χ(g) can be computed instantly as
vi. For most characters, this covers most of the classes of G (or at least most of those with
high order) and so speeds up the character evaluation greatly.

47

Now if F = Q, then we can use the non-negative solutions algorithm from the previous
section to speed up the algorithm greatly in most situations. We first compute IrrQ(G) and
set [χ1, . . . , χr] := IrrQ(G). Suppose then that at any point we have computed the values
of χ for class indices j1, . . . , jl (1 ≤ jc ≤ k). Let w = (a1, . . . , al) ∈ Zl be the corresponding
vector of these known values and let vi = (χi[j1], . . . , χi[jl]) be the vector of corresponding
values selected from χi, for 1 ≤ i ≤ k. Then we call NonNegativeSolutions on the vi
and w and if there is a unique solution (s1, . . . , sr), then we know that the character χ must
equal

∑r
i=1 siχi so we can stop immediately. The call to NonNegativeSolutions can

pass the value 2 for the argument MaxSolutions, so that if there is not a unique solution,
then the search will stop very quickly, and we then continue to gather more values of the
character via the methods in the previous paragraph. Each time a new character value is
found, we can check whether the associated linear system now has a unique solution, but
if the degree n is reasonably small (so that evaluating ρ is cheap), then we can of course
wait till the number of values builds up a bit before calling NonNegativeSolutions
again. This method works extremely well in practice in high degree, since it cuts down
the number of matrix multiplications dramatically. It is often the case that the degree
n and the traces of the images of the generators of G alone are enough to determine the
character uniquely. For example, in Ex. 3.7.3 below, the character of a degree-782 rational
representation of Fi23 is verified to be the irreducible character of degree 782 by using the
traces of the images of the generators alone.

One other obvious optimization in the case that F = Q is the following. Since the
character values of ρ are integers, they must be bounded in absolute value by the degree
n [Hup98, 3.18]. So if we let p be the first prime greater than 2n, then we may perform
all the matrix operations over the finite field Fp, using the symmetric range modulo p
to recover the integral traces with correct signs. Any required matrix multiplications can
thus be performed very quickly in practice via the ATLAS library and Strassen’s algorithm
(see p. 24), even for rather high degree (on a typical computer, the product of two such
1000× 1000 matrices takes under 0.5s).

Note also that the trace of AB for matrices A,B ∈ Mn(R) can be computed much
more efficiently than by simply computing C = AB and then Tr(C). If A = [ai,j] and
B = [bi,j], then

Tr(AB) =
n∑
i=1

n∑
j=1

ai,j · bj,i,

which involves O(n2) sums and products of elements of R instead of MM(n) sums and
products (where MM(n) denotes the complexity of matrix multiplication). We have im-
plemented this method in Magma (as the function TraceOfProduct(A, B)). The above
algorithm can then be improved even more as follows: as we compute successive elements
of G and their images under ρ, we can store the elements of G as [x1, . . . , xs] and also
the corresponding image matrices [ρ(x1), . . . , ρ(xs)]. Then whenever we consider any new
y ∈ G and corresponding ρ(y) we can also check whether the class of y ·xi for 1 ≤ i ≤ s has
not been covered, and if so, we compute Tr(ρ(y) · ρ(xi)) (using the fast trace-of-product
method) and thus have a new character value for the class of y ·xi. This can give us several
extra character values which are relatively quick to compute, avoiding matrix multiplica-
tions. In the case that F = Q, when the traces of the initial generators are not enough to

48

determine the character uniquely (via the associated non-negative linear system), then it
is still often the case that the traces of all products of the generators give enough values so
that the system does have a unique solution, thus allowing the character to be determined
without computing a single matrix multiplication.

3.4. The Integral Spin Algorithm

In the standard modular Meataxe, a fundamental subalgorithm is the so-called ‘spin’
procedure, which computes a basis for the invariant submodule generated some vectors
under the action of some algebra (typically described by explicit matrices). This is easy to
implement in the modular case with elementary linear algebra, because the growth of the
matrix entries is not an issue. But in the characteristic zero case, a corresponding algorithm
is much more difficult to make efficient, not just because of potential entry growth during
the course of the computation, but because the choice of the final invariant basis can have a
dramatic effect on the size of the entries in the matrices defining the reduced action on the
submodule. We now describe how to implement such an algorithm so that these problems
can be overcome in practice up to rather high dimension.

The ‘integral spin’ algorithm presented here computes the sublattice S of Zn generated
by some vectors under a given linear action φ on Zn, and the relevant reduced action on
a suitable reduced basis of S. There are two simple stages to the algorithm. In the first
stage, an invariant basis B is computed: this is done fairly easily by doing a ‘modular spin’
in parallel and only keeping the integral vectors which are independent modulo p. The
second stage, which is typically much more expensive, invests substantial effort to ensure
that the basis of the sublattice S is as reduced as possible, since this affects the quality of
the final representation.

Algorithm IntegralSpin({v1, . . . , vm}, φ(v, i), k)
Input:

• A set of vectors {v1, . . . , vm} lying in Zn.

• A linear ‘action’ function φ : Zn × {1, . . . , k} → Zn for a Z-algebra A acting on Zn

from the right and with k generators: φ takes a vector v ∈ Zn and a generator number
i with 1 ≤ i ≤ k and returns the result of acting on v by the i-th generator of A.

Output:

• A matrix B which is a reduced basis for the saturated invariant sublattice of Zn

generated by the vi under the action of φ.

• Matrices [X1, . . . , Xk] from Mr(Z) giving the reduced action of φ on B.

Steps:

1. Set [w1, . . . , ws] to a basis of the lattice spanned by [v1, . . . , vm].

Choose a prime p such that [w1, . . . , ws] are independent modulo p.

Set r := s and l := 1. [r is the current rank; l is the next vector to process.]

While l ≤ r and r ≤ n do:
{

For i := 1 to k do:

49

{
Set u := φ(wl, i).
If [w1, . . . , wr, u] is independent mod p then:
{

Set r := r + 1.
Set wr+1 := u.

}
}
Set l := l + 1.

}
2. Set B to the matrix in Mr×n(Z) whose rows are [w1, . . . , wr].

Set B := Saturation(B). [See p. 20.]

Set B := HermiteForm(B). [See p. 18.]

Set B := LLL(B). [See p. 21.]

Set B := Seysen(B). [See p. 22.]

3. For 1 ≤ i ≤ k, attempt to set Xi ∈Mr(Z) to the solution of the matrix equation

Xi ·B = φ(B, i).

If there is no solution for some i, then return to Step 2 and choose a new prime
different to those chosen before (this p must have been bad).

4. Return B and [X1, . . . , Xk].

Proposition 3.4.1. Algorithm IntegralSpin is correct.

Proof. Step 1 clearly computes a basis [w1, . . . , wr] for a sublattice of Zn which is invariant
under φ modulo p and Step 2 does not change the Q-span of the basis. If the basis is not
invariant under φ (over Q), then Step 3 will fail so the computation will be restarted
with a new prime. There can only be a finite number of primes for which there is failure
(they must divide the elementary divisors of the correct saturated invariant lattice). When
Step 6 succeeds, B must describe an invariant lattice and must have minimal rank for an
invariant lattice containing [v1, . . . , vm] (since it is such modulo p). Finally, the reduced
action matrices [X1, . . . , Xk] must be integral, by Prop. 1.7.11, since the lattice spanned
by the rows of B is saturated. �

Remarks 3.4.2. We note the following points on our implementation:

1. The prime p should be chosen just as in the modular algorithm for computing a Hom-
module (see p. 24), so the probability of hitting a bad prime is typically very low in
practice.

2. There are 4 types of linear action which we will use below in practice. The simplest one
is of course multiplication by an n× n matrix on the right, while the other 3 types of
action are permutation, induction and tensor. We will apply each of these kinds in the
context of condensation, and will explain the specific actions as they arise below. We
just note here that the permutation action on a vector simply permutes its coordinates;
obviously this is a lot faster than a general matrix action and needs very little memory

50

to store the action, and so is very efficient even for the high-degree permutation actions
which will occur. The coefficients of the resulting vector are the same, too, so there is
no growth of the entries at all in Step 1.

3. In Step 2, even if the initial matrix B has very small entries, the saturation algorithm
may produce a matrix with some large entries: typically, the last row will have rather
larger entries (possibly with many digits) than the other rows. Now applying the LLL
algorithm directly to the new saturated basis B can be extremely slow: the upper rows
with small entries will usually be reduced quickly, but the lower rows may involve an
extremely large number of steps to reduce. Instead, we compute the Hermite form H
of the saturated basis matrix first, and then apply LLL to H. In this case, the LLL
algorithm always seems to work with a uniform number of steps to reduce each input
row (include the final ones) and it does not slow down dramatically for the final rows.
Even though H will often have very large entries, this method is practically always
much faster and yields a basis with small entries (as small as the original non-saturated
invariant basis).

Note also that the modular Hermite algorithm (p. 18) is typically very fast when
the elementary divisors of the input matrix are trivial but can be much slower when
they are non-trivial. As a result, for the operations performed in Step 2, the call to
Saturation is usually the most expensive, since it calls the Hermite form algorithm
on a matrix which typically has non-trivial elementary divisors (coming from the initial
invariant basis), while the subsequent HermiteForm call is usually quite fast. This
behaviour will be seen in examples below.

4. Each matrix equation computation in Step 3 is done by a CRT-based modular algorithm
(solving the matrix equation over Q and then checking that the solution is integral),
which is fast, so this step is always relatively quick (and is certainly much easier than
computing the reduced basis).

5. This algorithm is useful when the input is already a basis of a submodule over Q under
the action, since the algorithm will find a reduced basis so that the resulting action
is integral and reduced. Thus it can be applied to the bases arising in the rational
Meataxe in the previous chapter (the general eigenspaces of an algebra element or an
endomorphism).

3.5. Condensation

Condensation is a very useful technique in module theory, whereby a large module for a
large algebra is “condensed” to a small module for a small algebra, and information in the
smaller module is more easily computed, hopefully yielding useful information about the
original large module. Condensation has been used extensively in constructing modular
representations (the original examples go back to Parker and Thackray in 1979 [Tha81]),
but in our situation, we only need a fairly basic use of the theory and techniques.

We first state the basic definitions and results which we will need. For more detailed
introductions to the basic concepts, we refer the reader to [Ryb90, Lux97, Mül04, Wil02].
In this section, let G be a finite group, F a field of characteristic zero and A the group
algebra FG. We will only use fixed-point condensation, which is as follows. Suppose K

51

is a fixed subgroup of G (called the condensation subgroup). Define

eK :=
1

|K|
∑
k∈K

k ∈ A.

Then it is easy to see that e is an idempotent of A:

e2
K =

1

|K|2
∑
k∈K

(k
∑
l∈K

l) =
1

|K|
∑
k∈K

1

|K|
∑
m∈K

m = eK .

After setting Ã = eAe and M̃ = Me, it is elementary to show that M̃ is an Ã-module.
Ã is called the condensed algebra of A and M̃ is called the condensed module of M .
The following standard results are mostly elementary.

Lemma 3.5.1. [Ryb90, Sec. 2] Suppose that A = FG and M is an A-module and e = eK
as above for some subgroup K of G.

1. If S is a submodule of M , then Se is a submodule of Me.

2. If S̃ is a submodule of M̃ = Me, then S̃ = Se for some submodule S of M .

3. If S is a simple submodule of M , then Se is either zero or simple (as an eAe-module).

4. If M is semisimple, then M̃ = Me is semisimple.

Proposition 3.5.2. [MNRW02, 3.2]. Let S, S ′ be simple A-modules, such that S̃ = Se 6= 0
and S̃ ′ = S ′e 6= 0 and let Ã = eAe. Then S ∼= S ′ as A-modules if and only if S̃ ∼= S̃ ′ as
Ã-modules.

Definition 3.5.3. If S̃ is a submodule of M̃ = Me, then the computation of a submodule
S of M such that Se = S̃ is called ‘uncondensing S̃’. Usually M̃ is represented in a
reduced form, so there is an associated uncondensing map ι : M̃ →M giving the natural
embedding of M̃ into M as vector spaces. We can thus simply compute S as the submodule
of M generated by ι(ṽ) where ṽ loops over an F -basis of S̃. See [MR99, 2.3] for more
discussion.

Lemma 3.5.4. (The Trace Formula) Let e = eK as above. Then there is a simple formula
(first stated in [SW97]) for computing the trace of a condensed matrix which gives the
action of ege on Me, as follows:

TrMe(ege) = TrM(ege) = TrM(gee) = TrM(ge) =
1

|K|
∑
k∈K

TrM(gk) =
1

|K|
∑
k∈K

χM(gk),

where χM is the character of M .

Corollary 3.5.5. Setting g to the identity of G in the above formula, one can precompute
the dimension of the condensed submodule S̃ = SeK for a submodule S and a potential
condensation subgroup K as

1

|K|
∑
k∈K

χS(k) = 〈χS ↓ K, 1K〉,

where χS is the character of S and 1K is the trivial character of K.

52

Remarks 3.5.6. One non-trivial problem with the use of condensation is the so-called
generation problem: given a set of elements for the algebra A, it is not clear in general
whether the corresponding condensed elements generate the condensed algebra Ã. Noeske
[Noe07] describes a method to determine whether one has enough generators of the con-
densed algebra; this was designed for modular representations. We will solve this problem
in characteristic zero by use of the non-negative solutions algorithm from Sec. 3.2.

3.6. Generic Condensation Environments

3.6.1. Introduction. We now introduce a simple mechanism by which we can encap-
sulate various kinds of condensation (for characteristic zero) in a generic object and then
apply the basic condensation operations generically in subsequent algorithms.

Definition 3.6.1. Let M be an FG-module for a field F of characteristic zero, and K a
subgroup of G. Call

C = (ImageMatrix,Uncondense,Action)

a condensation environment for the condensed module M̃ = MeK of M , if:

• ImageMatrix(g) is a function which takes g ∈ G and returns the matrix of eKgeK,
acting on the reduced M̃ .
• Uncondense(ṽ) is a function which takes ṽ ∈ M̃ and returns the vector v = ι(ṽ) ∈
M , where ι is the uncondensing map (as in Def. 3.5.3).
• Action(v, g) is a function which takes v ∈M and g ∈ G and returns vg ∈M under

the action of FG on M . (Note that typically the full matrix action of FG on M is
not constructed explicitly, and so this operation is done by some special technique
based on the particular kind of condensation.) This function will be passed to the
algorithm IntegralSpin from Sec. 3.4 to compute the final uncondensed module.

In the following subsections, we will show how to set up a condensation environment for
the three different kinds of condensation which we will use. These will then be applied in a
generic algorithm to compute irreducible representations automatically via condensation.

3.6.2. Permutation Condensation. The following algorithm sets up a condensa-
tion environment for the condensation of a permutation module of G over Q, defined by a
permutation representation φ : G→ P (recall that we are always using fixed-point conden-
sation). Constructing a generator of the condensed algebra Ã only involves counting the
lengths of intersections of K-orbits for the given condensation subgroup K, so is quite fast
in this case. The dimension d of the condensed module is the number of orbits of K. For
more information and for proof of correctness of the constructions used in the following
algorithm, see [MNRW02, 3.4] or [Wil02, 1.4].

Note that the entries of the matrices defining the condensed module will be positive
integers bounded by d, so will be reasonably small in practice.

Algorithm PermutationCondensationSetup(φ,K)
Input:

• φ : G→ P , a permutation representation of a finite group G.

• A condensation subgroup K of G.

53

Output:

• A condensation environment C for condensation of the permutation module QP at
K.

Steps:

1. Set χ to the character of φ.

Let the K-orbits of P be Ω1, . . . ,Ωd.

2. Set ImageMatrix := Function(g)
{

Return the matrix in Md(Z) whose (i, j)-th entry is
|Ωiφ(gk) ∩ Ωj|/|Ωj|.

}
3. Set Uncondense := Function(ṽ)
{

Set v := (0, . . . , 0) ∈ Zn, where n is the degree of P .
For i := 1 to d, for j ∈ Ωi do: set v[j] := ṽ[i].
Return v.

}
4. Set Action := Function(v, g)
{

Return vg [the natural permutation of the coordinates of v by g].
}

5. Set C := (ImageMatrix,Uncondense,Action) and return C .

3.6.3. Induction Condensation. Suppose that H is a subgroup of a finite group G
and ρH : H → GLn(F) is a representation of H. Let ρG be the induced representation
ρH ↑ G. Tools for condensing ρG at a subgroup K of G and thus decomposing ρG (without
explicitly constructing ρG) are described in [MR99]. We outline the main components here
(slightly more concretely within our framework) and the associated methods for our con-
densation environment. For more details and for proof of correctness of the constructions
used in the following algorithm, see the above reference.

Let MH be the FH-module corresponding to ρH and let MG = MH ↑ G. A special
transversal of G over H is first needed to define MG = MH ↑ G. Then we can set up the
explicit reduced form of the condensed module M̃G = MGe (where e = eK , as above) and
compute with it.

1. Let {gi : i ∈ I} be a set of H-K-double coset representatives in G and then for each
i ∈ I, let {kij : j ∈ Ii} be a set of right coset representatives for Hgi ∩K in K. Now
set

T := {gikij : i ∈ I, j ∈ Ii}.
Then T is a set of right coset representatives for H in G. If [v1, . . . , vd] is a basis of
MH as a vector space, then MG has a vector space basis:

B := [v ⊗ t : v ∈ [v1, . . . , vd], t ∈ T].

54

2. The action of G on MG is as follows. Suppose v ∈ MH , t ∈ T, g ∈ G. We compute
the image (v ⊗ t)g as follows. There is a unique t′ ∈ T such that Htg = Ht′, and so
there is some h ∈ H with tg = ht′. Then (v⊗ t)g = (vh)⊗ t′. This covers the action
of g on the basis B of MG and thus on all of MG by linear extension.

3. For each i ∈ I, set

Hi := H ∩ giKg−1
i , ei :=

1

|Hi|
∑
h∈Hi

h.

The action of ei maps MH to (MH)ei ⊆ MH , and, as a vector space, (MG)e is
isomorphic to the direct sum of all the (MH)ei. The action of e on MG is as follows.
For v ∈MH and gikij ∈ T , we have:

(v ⊗ gikij)e =
|Hi|
|K|

(
vei ⊗

(
gi
∑
j∈Ii

kij

))
.

Note that the RHS is independent of the particular j on the LHS. Again, this covers
the action of e on the whole basis of MG and thus on all of MG by linear extension.

4. Finally, it follows that (MG)e can be identified with the following subspace of MG:

W :=
⊕
i∈I

(
(MH)ei ⊗

(
gi
∑
j∈Ii

kij

))
.

The uncondensing map ι simply injects W back into MG.

We now apply the above for F = Q to set up an appropriate condensation environment
for induction condensation. This setup operation is generally more expensive than for
permutation condensation, but rarely takes a long time in our implementation, even when
the degree is very large. The entries in the condensed module are of the same size roughly
as the entries in the matrices defining ρH , and so are usually small when the degree of ρH
is low, since ρH can generally be reduced to have very small entries.

Algorithm InductionCondensationSetup(G,MH , K)
Input:

• A group G and a QH module MH for a subgroup H of G.

• A condensation subgroup K of G.

Output:

• A condensation environment C for condensation of the induced module MH ↑ G at K.

Steps:

1. Let {g1, . . . , gl} be a set of H-K-double coset representatives of G. Write I :=
{1, . . . , l}.

2. For 1 ≤ i ≤ l, let {ki,1, . . . , ki,li} be a set of Hgi ∩K right coset representatives in K.
Write Ii := {ki,1, . . . , ki,li}.

55

3. Set T := {gikij : i ∈ I, j ∈ Ii} and let fT : T ×G → T ×H be the map which, given
(t, g) ∈ T ×G, returns (t′, h) where t′ is the unique element of T with Htg = Ht′ and
h ∈ H with tg = ht′.

4. For 1 ≤ i ≤ l, set Hi := giHg
−1
i ∩K, and ei := 1

|Hi|
∑

h∈Hi h. Set

W :=
⊕
i∈I

(
MHei ⊗

(
gi
∑
j∈Ii

kij

))
and let {w1, . . . , wD} be a basis of W as a vector space (so D is the dimension of W).

5. Write MG := (MH)G. [The action algebra of MG is not explicitly constructed but
understood to lie in the background theoretically in the following.]

Set U := FD with standard basis [u1, . . . , uD] and let ι : U → MG be the embedding
given by ui 7→ wi (the uncondensing map, with image W).

6. Set gAction := Function(v, g) [Takes v ∈MG, g ∈ G and returns vg ∈MG.]
{

Write v =
∑

i∈I
∑

j∈Ii(vij ⊗ tij), with vij ∈MH , tij ∈ T .
Set (t′ij, hij) := fT (tij, g) for i ∈ I, j ∈ Ii.
Return

∑
i∈I
∑

j∈Ii

(
(vijhij)⊗ t′ij

)
.

}
7. Set eAction := Function(v) [Takes v ∈MG and returns ve ∈MG.]
{

Write v =
∑

i∈I
∑

j∈Ii(vij ⊗ gikij), with vij ∈MH .

Return 1
|K|
∑

i∈I |Hi|
∑

j∈Ii

(
vijei ⊗

(
gi
∑

j∈Ii kij

))
.

}
8. Set ImageMatrix := Function(g)
{

Return the matrix in MD(F) whose i-th row (for 1 ≤ i ≤ D) is
ι−1(eAction(gAction(ι(ui), g))).

}
9. Set Uncondense := Function(ṽ)
{

Return ι(ṽ).
}

10.Set Action := Function(v, g)
{

Return gAction(v, g).
}

11. Set C := (ImageMatrix,Uncondense,Action) and return C .

56

3.6.4. Tensor Condensation. Suppose we have representations ρ1 : G → GLn1(F)
and ρ2 : G → GLn2(F) of a finite group G and a field F . Let ρ be the tensor product
representation ρ1⊗ρ2. Tools for condensing ρ at a subgroup K of G and thus decomposing
ρ (without explicitly constructing ρ) are described in [LW98]. The authors concentrated
on the case that F is a finite field, but we again apply this to the case that F = Q to
construct a suitable corresponding condensation environment.

We first outline the basic setup. Suppose a semisimple A-module M has non-isomorphic
constituents S1, . . . , Ss and corresponding multiplicities m1, . . . ,ms. Then a symmetry
basis of M is a basis

B = B11 ∪ . . . ∪B1m1 ∪ . . . ∪Bs1 ∪ . . . ∪Bsms

of the underlying vector space of M , where Biα is a basis of the α-th simple submodule of
M isomorphic to Si, and such that the action of A on the submodule corresponding to Biα

is identical (not just equivalent) to the action of A on Si.

Now let M1 and M2 be A-modules corresponding to the input representations ρ1 and
ρ2, respectively. In the algorithm below, we first compute such a symmetry basis B for
M1 ↓ K (from the corresponding Si and mi). Similarly, we compute a symmetry basis

C = C11 ∪ . . . ∪ C1n1 ∪ . . . ∪ Cs1 ∪ . . . ∪ Csnt
of M2 ↓ K , where the constituents of M2 ↓ K are T1, . . . , Tt with corresponding multiplicities
n1, . . . , nt and such that Ti ∼= S∗i (the dual of Si); note that some ni may be zero. The
basis BT of the full tensor module MT = M1⊗M2 is then given by the concatenation of all
Biα⊗Cjβ, where 1 ≤ i ≤ s, 1 ≤ α ≤ mi, 1 ≤ j ≤ t, 1 ≤ β ≤ ni (unfolding the loops in that
order). The rest of the construction is now described in the following algorithm; for more
details and for proof of correctness of the constructions used in the following algorithm,
see the above reference.

Algorithm TensorCondensationSetup(ρ1, ρ2, K)
Input:

• Rational representations ρ1, ρ2 of a group G.

• A condensation subgroup K of G.

Output:

• A condensation environment C for the condensation of ρ1 ⊗ ρ2 at K.

Steps:

1. Let M1,M2 be the QG-modules corresponding to ρ1, ρ2 respectively.

Set d1 := Dim(M1), d2 := Dim(M2).

2. Set D1 := RationalMeataxe(M1 ↓ K).

Using D1, determine the pairwise non-isomorphic constituents S1, . . . , Ss of M1 ↓ K

with corresponding multiplicities m1, . . . ,ms.

Let U1 be the transformation matrix corresponding to a symmetric basis of M1 w.r.t.
the Si and the si and set M ′

1 := (M1)U1 .

57

3. Let Ti = S∗i for 1 ≤ i ≤ s.

Set D2 := RationalMeataxe(M2 ↓ K).

Using D2, determine Ts+1, . . . , Tt and n1, . . . , nt such that the pairwise non-isomorphic
constituents of M2 ↓ K are T1, . . . , Tt with corresponding multiplicities n1, . . . , nt (note
that some ni may equal 0 for 1 ≤ i ≤ s).

Let U2 be the transformation matrix corresponding to a symmetric basis of M2 w.r.t.
the Ti and the ni and set M ′

2 := (M2)U2 .

4. For 1 ≤ i ≤ s do:
{

If mi = ni = 0 then skip to the next i.
Set ei := 1

|H|
∑

h∈H Si(h)⊗ Ti(h).

Set qi to the echelonized basis matrix over Q of the rowspace of ei
and let Qi be the rows of qi (i.e., a basis for the rowspace of qi).

Set pi to the unique matrix over Q such that piqi = ei.
}
Set Q := ∪si=1 ∪

mi
α=1 ∪

ni
β=1Qi, where each copy of Qi corresponds to the tensor product

of the α-th copy of Si and the β-th copy of Ti.

Set d to the length of Q.

5. For A ∈ Md1(Q), let Aiαjγ denote the submatrix of A indexed by the (i, α)-th row
block corresponding to the α-th copy of Si in the symmetric basis of M1 and the
(j, γ)-th column block corresponding to the γ-th copy of Tj in the symmetric basis of
M2; similarly for Biβjδ ∈Md2(Q).

For X̃ ∈ Md(Q), let X̃iαβjγδ denote the submatrix of X̃ indexed by the (i, α, β)-th
row block and the (j, γ, δ)-th column block (corresponding to the decomposition of Q
above, which X̃ acts on).

Set ImageMatrix := Function(g)
{

Set X̃ to the zero matrix of Md(Q).
Set A := M ′

1(g), B := M ′
2(g).

For i := 1 to s, α := 1 to mi, β := 1 to ni,
j := 1 to s, γ := 1 to mi, δ := 1 to ni do:

{
Set C := Aiαjγ ⊗Biβjδ.

Set X̃iαβjγδ := qi · C · pj.
}
Return X̃.

}

6. For v ∈ Qd1d2 , let viαjβ ∈ Qc2i (where ci = Dim(Si)) denote the subvector of v with
coordinates corresponding to the component Biα ⊗ Cjβ of the basis BT of the full
tensor module MT .

Set Uncondense := Function(ṽ)
{

58

[Input ṽ ∈ Qd; output is ι(ṽ) ∈ Qd1d2 .]
Set v to the zero vector of Qd1d2 .
Set k := 1.
For i := 1 to s, α := 1 to mi, β := 1 to ni do:
{

Set ci := Dim(Si) and let ri be the number of rows in qi.
Let u be the subvector ṽ[k, . . . , k + ri − 1] ∈ Qri .
Set viαiβ := u · qi.
Set k := k + ri.

}
Return v.

}
7. Set Action := Function(v, g)
{

Let A be the d1 × d2 matrix corresponding to v (in row major order).
Set B := ρ1(g)tr · A · ρ2(g).
Return the vector of length d1d2 corresponding to B.

}
8. Set C := (ImageMatrix,Uncondense,Action) and return C .

Remarks 3.6.2. We note the following points on the implementation for rational repre-
sentations:

1. If ρ1 = ρ2, then we of course need only decompose ρ1 and compute its symmetry basis
and there are other basic optimizations which can be made. This case arises often (as
can be seen in examples later).

2. If the condensation subgroup K is cyclic with generator gK , then the decomposition
of the restricted modules can be found easily by use of the primary rational form
or generalized Jordan form of ρ1(gK) and ρ2(gK) respectively (we use the algorithm
described in [Ste97]). The constituents can be matched by simply comparing the powers
of irreducible polynomials which give the primary invariant factors of the matrices,
and the symmetry bases can be constructed from the corresponding transformation
matrices.

3. For the general case, where K is not cyclic, we have given a default method where we
compute the decomposition of each of the restricted representations via the rational
Meataxe. An alternative is to compute the characters of these restricted representa-
tions and decompose these w.r.t. IrrQ(K) and then compute irreducible rational rep-
resentations corresponding to these irreducible characters, using the algorithm Irre-
ducibleRationalRepresentations below (Sec. 3.8). Since K is very often rather
small in practice (order typically under 100; see below), it will in general be very easy
to compute the relevant irreducible representations of K. Then one can compute the
Hom-module from each constituent to M1 ↓ K and M2 ↓ K to construct each of the sym-
metry bases. This variant has also been implemented and we find that it is preferable
when at least one of the input representations has large degree (above 200).

59

4. For the action of the tensor product representation on a vector v ∈ Q(d1d2), v is written
as a d1× d2 matrix (in row major order), and then this matrix is multiplied on the left
by a d1 × d1 matrix and on the right by a d2 × d2 matrix. The (classical) complex-
ity of this operation is thus d1

2d2 + d1d2
2 arithmetic operations (using only classical

multiplication), which in general is significantly less than d1
2d2

2, which would be the
complexity of performing the standard vector-times-matrix multiplication in the full
tensor product.

5. The setup operation is typically much more expensive than for permutation and induc-
tion condensation. Also, the entries in the matrices defining the condensed module may
be rather large. Thus tensor condensation is generally less suitable when constructing
representations directly via the splitting method in high degree. But tensor condensa-
tion can also be used in the hybrid algorithm which will be described in Chapter 6: in
this situation, the entry size for the condensed module will not be an issue.

3.7. Automatic Condensation over the Rational Field

We now present the key algorithm AutomaticCondensation which constructs a
desired irreducible rational representation of a finite groupG via condensation by extracting
it as a constituent of a given virtual permutation, induced, or tensor representation σ of
G. The algorithm automatically chooses a suitable condensation subgroup K so that the
desired constituent of σ is not mapped to zero under condensation and the corresponding
constituent of the condensed module M̃ can be identified in a decomposition of M̃ . The
desired irreducible representation can then be constructed by applying the IntegralSpin
algorithm to the corresponding uncondensed vectors.

The following notation will be used in this section:

1. Write Trace(χ,K, g) = 1
|K|
∑

k∈K χ(gk) for character χ, K ≤ G and g ∈ G (using

the Trace Formula from Lem. 3.5.4).

2. Write CondDim(χ,K) = 〈χ ↓ K, 1K〉 for character χ and for K ≤ G (giving the
condensed dimension of χ w.r.t. K).

3. For fixed {x1 = 1, x2, . . . , xr} ⊆ G, and for a character χ, call

(Trace(χ,K, x1), . . . , Trace(χ,K, xr)) ∈ Zr

the ‘trace vector’ of χ w.r.t. K. Note that the xi need not be class representatives
of G.

The heart of the algorithm is the search for a suitable condensation subgroup K. For such
a K, let M̃ be the corresponding condensed module. The properties sought for K are:

1. The dimension of M̃ should be as small as possible, so that the rational Meataxe
can decompose it easily.

2. The simple constituent S̃ of M̃ corresponding to χ must not condense to zero.

3. The simple constituent S̃ of M̃ corresponding to χ must be uniquely identifiable via
traces. More precisely, if Ti gives the trace vector of the i-th constituent of M̃ (which
can be computed by decomposing the character of M into irreducibles) and the index
I corresponds to χ, then we require that TI can only be expressed in one way as a
non-negative linear combination of all the Ti.

60

The algorithm first searches for the best K, subject to these conditions. The search is
over a suitable list L of small subgroups of G. Typically, L should contain subgroups
which are small and easy to compute, such as the cyclic subgroups generated by all class
representatives and the Sylow subgroups and all their subgroups up to conjugacy (one
could also include all or a selection of the subgroups of G having order up to some bound
such as 500). After finding the best K, the algorithm sets up the condensed module using a
given generic Setup function (which calls one of the setup functions of the previous section
with information defining σ and the chosen K), and then calls the rational Meataxe to
extract the appropriate constituent, and uncondenses the submodule to construct the final
representation. Finally, a verification step at the end detects the potential problem where
the condensed algebra does not have enough generators. The full algorithm is as follows.

Algorithm AutomaticCondensation(G,ψ, Setup(K), χ)
Input:

• A finite group G, a rational character ψ of G, and a generic function Setup(K) which
takes a subgroup K of G and returns a condensation environment C for the conden-
sation at the subgroup K of some underlying virtual representation σ : G→ GLn(Q)
which affords ψ.

• A character χ ∈ IrrQ(G), such that χ is a constituent of ψ.

Output:

• A rational representation ρ of G (which is integral if σ is integral) affording χ.

Steps:

1. Set L to a suitable list of small subgroups of G which at least contains the trivial
subgroup (see the above discussion).

2. Set r := 20. Set x1 to the identity element of G and set [x2, . . . , xr] to r − 1 distinct
random elements of G.

3. Let

ψ =
k∑
i=1

mi · χi, χi ∈ IrrQ(G)

(with each mi > 0) be the decomposition of ψ into irreducible rational characters and
let I be the index such that χ = χI .

4. [Find condensation subgroup Kbest with smallest possible condensed dimension and
such that the desired constituent does not collapse to zero w.r.t. it and the trace vectors
[T1, . . . , Tk] corresponding to each condensed constituent can be uniquely identified.]

Set Kbest := Tbest := C best := 0, Dbest :=∞.

For each subgroup K in L do:

{
Set D := CondDim(ψ,K). If D ≥ Dbest then skip to the next K.

If CondDim(χ,K) = 0 then skip to the next K (K is invalid).

For 1 ≤ i ≤ k, set Ti := (Trace(χi, K, x1), . . . , Trace(χi, K, xr)) ∈ Zr.

61

Let [i1, . . . , it] be the indices from [1, . . . , k] such that Tij [1] > 0 for each j

(corresponding to all the constituents not mapped to zero).

[Check that the constituent for χ can be uniquely identified by traces.]

Set L := NonNegativeSolutions([Ti1 , . . . , Tit],mI · TI , 2).

If #L > 1 then skip to the next K (K is invalid).

[Now we have a valid K with new smallest dimension D.]

Set Kbest := K,Dbest := D,C best := C , Tbest := [T1, . . . , Tk].

If Dbest < MinDimBound then break.

}
Set K := Kbest,C := C best, [T1, . . . , Tk] := Tbest.

5. Set C := Setup(K). For i := 1 to r do: Set X̃i := C .ImageMatrix(xi).

6. Set Ã to the Q-algebra with generators [X̃1, . . . , X̃r], set M̃ to the corresponding
condensed Ã-module and set TraceInfo := 〈mI , TI〉.
Set [S̃1, . . . , S̃s] := RationalMeataxe(M̃, TraceInfo).

7. Let i be such that the r traces of the generators of the action on S̃i equals TI . If there
is none such, then go to Step 9 (condensed algebra was bad).

8. Set U := {C .Uncondense(ũ) : ũ ∈ Ũ}, where Ũ is a basis of S̃i w.r.t. the embedding
of S̃i into M̃ .

Set φ := Function(v, j) { Return C .Action(v, gj). }
Set B, [A1, . . . , An] := IntegralSpin(U, φ, n).

Set ρ to the representation of G given by ρ(gj) = Aj for each j.

If the character of ρ equals χ then return ρ.

9. The condensed algebra must have been bad (not enough generators). So set r′ :=
r + 10, choose random xr+1, . . . , xr′ ∈ G, extend each Ti with the traces for the new
coordinates, set X̃r+1, . . . , X̃r′ as in Step 5, then set r := r′ and go to Step 6.

10. Return [ρ1, . . . , ρl].

Theorem 3.7.1. Algorithm AutomaticCondensation is correct.

Proof. After basic initialization, the critical part of the algorithm is the loop in Step
4 which searches for the best condensation subgroup K (giving the smallest condensed
dimension) which satisfies the conditions listed on p. 60. Suppose that M̃ is the condensed
Ã-module corresponding to a potential K. The first condition on K applies Cor. 3.5.5
to check that the desired constituent of M corresponding to χ does not condense to zero
inside M̃ . The more complex condition on K involves the traces of the action of Ã on the
constituents of M̃ . For each i, Ti is set to the trace vector of χi w.r.t.K and since x1 = 1, the
first coordinate of Ti gives the dimension of the constituent of M̃ corresponding to χi, and
this is positive at least for i = I by the first condition on K (where I is such that χ = χI).
The call to NonNegativeSolutions checks that the trace vector of mI · χI can only
be expressed in exactly one way as a non-negative linear combination of Ti1 , . . . , Tit (the

62

trace vectors of the non-zero condensed constituents), so the homogeneous constituent of M̃
whose trace vector equals mI ·TI can be uniquely identified in a homogeneous decomposition
of the full condensed module M̃ corresponding to K. (The bound 2 is passed for the
maximum number of solutions desired, since we only need to know whether the solution is
unique or not.) Taking K to be the trivial subgroup of G clearly satisfies all the conditions,
so Kbest must be set to some subgroup K satisfying the conditions when the loop is exited.

Steps 5 to 6 clearly set up the condensed Ã-module M̃ w.r.t. the best condensation
subgroup K and decompose this via the rational Meataxe, using the trace information
matching the desired characters. Assume first that there are enough generators of Ã, so by
Lem. 3.5.1 and the condition that CondDim(χ,K) 6= 0, there must be a simple submodule
S̃i of M̃ which is the condensation of a submodule of the full module corresponding to σ
whose character is χ. Now TI (the trace vector of χ = χI) uniquely identifies S̃i because of
the condition on the unique solution in the preceding call to NonNegativeSolutions on
[Ti1 , . . . , Tit] and mI · TI for this K. So there must be a simple S̃i returned by the rational
Meataxe whose trace vector equals TI . (Either the rational Meataxe will return such a
constituent alone if the heuristic method using the trace information succeeds or simply a
full decomposition, and either case, the relevant constituent must be present and it alone
can have trace vector Ti.) Thus in Step 8, ρ must be set to a valid representation affording
χ so the check on the character of ρ must succeed and the output is correct.

On the other hand, if there are not enough generators of the condensed algebra Ã, then
it can happen that the condensed module M̃ decomposes more than it should. In such a
case, this must be detected because either the simple constituent S̃i with the appropriate
trace vector will not be found, or the character test on ρ will fail (the final representation
will typically be the sum of irreducible representations in this bad case and this can also
be detected in the integral spin before computing the full character). So in this case, the
algorithm adds more random generators of G and recomputes the condensed module with
the same K but with the enlarged condensed algebra Ã. Eventually the correct condensed
algebra must be generated and so the algorithm will terminate. �

Remarks 3.7.2. We note the following points on the implementation:

1. One can break out of the loop in Step 4 as soon as some K is found such that the
corresponding condensed dimension is less than some bound B, under the assumption
that the rational Meataxe will be fast for modules with dimension up to B. We take
B = 200 in the implementation.

2. The rather strict condition involving the call to NonNegativeSolutions in Step
4 is of critical important in practice. If K is a potential subgroup such that the
condensation of the desired constituent is not zero, while the condensed module M̃ has
small dimension (which often happens), then there is good chance that several distinct
elements of G will map to elements of eQGe having the same trace, so the trace vectors
of the constituents of the condensed module will have much repetition and will be very
similar on most coordinates. There is then a very good chance that there is more
than one non-negative solution to the associated linear system and so this K must be
rejected. Thus the use of NonNegativeSolutions is critical, and its efficiency (via
the pruning of bounds) is very important too, so we can quickly determine whether a
potential condensation subgroup K cannot be used.

63

3. Note that for computing Trace(χi, K, g) for fixed K and g but for differing χi in Step
4, we can first compute the class map values for each element of the coset gK once and
then for each χi, we can compute the traces more quickly. Clearly this involves a loop
over K and so as the size of K increases, the computation of the traces can become
expensive but a larger K typically implies a condensed module of smaller dimension
(and a corresponding speedup in setting that up and decomposing it by the rational
Meataxe), so using a larger K is preferable when χ has large degree, even when the
trace computations are non-trivial.

4. The case that the best K must equal the trivial subgroup does arise; for example,
when the endomorphism ring of the desired representation has a large centre and non-
trivial multiplicity (since the endomorphism ring of the condensed module must be the
same, there is often no non-trivial condensation subgroup without collapsing to zero).
In this case, in Step 5 we immediately set M̃ to the QG-module corresponding to
the full virtual representation (thus skipping the condensation machinery) and use the
Meataxe to extract the desired constituent (and the trace information uses the normal
characters). Because M̃ is a QG-module in this case, the algorithm SplitHomoge-
neousByMinimalField can be used if the splitting of the homogeneous module is
difficult.

5. For simplicity of exposition, we have presented the algorithm so that a single represen-
tation is requested and constructed. But in our implementation, the algorithm allows
several characters to be given, so that corresponding representations are constructed
(the conditions on K apply to all of the characters). This means that only one con-
densed module has to be constructed and split by the Meataxe (and that uses the
heuristic method with the trace information for each desired constituent). Thus sev-
eral representations can be efficiently constructed from the one virtual representation
via condensation.

6. Note that the character test in Step 8 can in fact be done modularly within Inte-
gralSpin: assuming the prime p is greater than the usual bound, then after the initial
modular spin in that algorithm, one can immediately compute the character modulo
p to verify that it is correct (still using the advanced algorithm of Sec. 3.3) before
constructing the integral representation. This means that the cost of the character test
is generally trivial in practice.

Example 3.7.3. Let G be the sporadic simple Fischer group Fi23, of order

4089470473293004800 = 218.313.52.7.11.13.17.23.

A minimal-degree faithful representation of G has degree 782, which can be realized over
Q. We computed such a representation as follows (table entry on p. 181).

A degree-31671 permutation representation from the online ATLAS [WWT+] was used
to define G. The corresponding permutation module M splits as 1 + 782 + 30888. Au-
tomaticCondensation was called with this permutation representation and the desired
character χ of degree 782.

After searching in 98 subgroups generated by the class representatives and elements
of Sylow subgroups (2.5s), a condensation subgroup K of order 243 was selected so that
the corresponding condensed module M̃ had dimension 185 (constructed in 2.7s, via 20

64

random elements of G). The constituents of M condense to submodules of dimension 1, 10,
174 respectively, and the dimension-10 condensed constituent S̃ corresponded to χ. Then
the rational Meataxe was called on M̃ with the corresponding trace information. That
first computed the primary invariant spaces of a random linear combination of the algebra
generators (1.2s); the invariant spaces had dimensions 1, 10, 174 corresponding to the full
split. It was then verified (in 0.1s) that the dimension-10 space was a submodule S̃ of M̃ .
The trace of the action of S̃ matched the desired trace information, so S̃ was returned
immediately.

The uncondensed vectors were passed to IntegralSpin, with the permutation action
of degree 31671. The initial basis with the modular spin took 36.4s. This yielded a
782× 31671 integral basis matrix B. The following operations were then done, each on an
integral matrix of the same shape:

• B was set to Saturation(B) in 185.1 secs.
• B was then set to HermiteForm(B) in 46.2 secs.
• B was then set to LLL(B) in 55.7 secs.
• B was then set to Seysen(B) in 46.3 secs.

Finally, the reduced action of the permutation action on B was computed in 22.2 secs, yield-
ing two 782×782 integral matrices defining the desired representation of G. The character
of the representation was then computed instantly (since the combination of irreducible
characters was unique, based on the dimension alone), verifying that the condensed algebra
had enough generators.

The whole computation took 596 seconds, and the images of the standard generators
in the resulting representation have integral entries whose absolute values have maximum
value 214 and average 4.2. Note that if the Seysen reduction step is omitted, then the
generator images have integral entries whose absolute values have maximum value 2576
and average 11.5, so the Seysen reduction is well worth doing to reduce the entries.

3.8. Constructing Irreducible Rational Representations

We can now present a completely automatic algorithm which, given a finite group G
and a set of characters from IrrQ(G), computes corresponding irreducible rational repre-
sentations of G. The returned representations are in fact always integral, which helps to
keep the size of the entries small in general. The algorithm is the critical ‘base engine’ on
which most of the later algorithms to compute representations are based.

The basic idea is to extract the representations as irreducible constituents of various
virtual representations of G, using the AutomaticCondensation algorithm from the
previous section. The virtual representations are selected by means of a priority queue of
potential representations to be decomposed. Each entry of the queue contains information
for a method for constructing a new (generally reducible) representation and the character
of that representation. The queue is sorted by difficulty, based on the degree of the virtual
representation, so smaller-degree representations are considered first. As a new potential
representation is removed from the head of the queue, the decomposition of its character is
computed, and if there are any irreducible characters in the decomposition corresponding
to representations which have not yet been found, then the method is applied to find such
representations.

65

More precisely, the priority queue contains triples of the form 〈ψ, t, I〉 where ψ is the
character of the virtual representation, t is a tag indicating the kind of representation (PERM,
IND or TENS), and I is other information depending on the kind. When condensation of a
virtual representation w.r.t. a condensation subgroup K is to be used, the algorithm calls
the appropriate condensation environment setup function from the previous sections. The
particular cases for a triple 〈ψ, t, I〉 are as follows:

• t = PERM: Here I is a permutation representation with character ψ, so the setup
function calls PermutationCondensationSetup on I and K.

• t = IND: Here I = 〈H,χH〉 is a pair such that H is a subgroup of G, χH ∈ IrrQ(H)
and ψ = χH ↑ G, so the setup function calls InductionCondensationSetup on ρH
(which affords χH) and K, after ρH has first been recursively constructed.

• t = TENS: Here I = 〈ρ1, ρ2〉, where ρ1, ρ2 are representations of G which have al-
ready been constructed and ψ is the character of ρ1 ⊗ ρ2, so the setup function calls
TensorCondensationSetup on ρ1, ρ2 and K.

We also define the degree of a triple 〈ψ, t, I〉 to be the degree of ψ and always select the
next triple with smallest degree which will yield a new representation.

Apart from using the automatic condensation algorithm on the above virtual repre-
sentations, the algorithm also immediately constructs the tensor product, exterior tensor
square or symmetric tensor square of representations when they are constructed, if such
representations afford one of the desired characters. (In the following, we use ‘Exteri-
orSquare’ and ‘SymmetricSquare’ to denote the latter two operations, acting on a character
or representation).

Note also that the algorithm in practice always returns integral representations, since it
only extracts constituents of integral representations (permutation or induction of integral
representations by recursion) and it always saturates the invariant basis when creating a
submodule. But since we do not consider the issue of inequivalence of integral representa-
tions in this thesis, we will continue to call the resulting representations rational, to make
it clear that we are only considering equivalence over Q.

Algorithm IrreducibleRationalRepresentations([χ1, . . . , χk])
Input:

• Distinct characters [χ1, . . . , χk] from IrrQ(G), for a finite group G.

Output:

• Irreducible rational representations [ρ1, . . . , ρk] of G affording [χ1, . . . , χk] respectively.
The representations will always be integral.

Steps:

1. Set SubgroupIndex := 100 (or some other initial value; determines the initial index
range of subgroups to be considered).

Set Q to an empty priority queue of triples (see above discussion).

Set ρi to 0 for 1 ≤ i ≤ k.

66

2. [Extend queue Q using higher index subgroups if necessary.]
While Q is empty, or the degree of the head of Q ≥ SubgroupIndex do:
{

Set L to a list of the subgroups of G (up to conjugacy) with
index in [SubgroupIndex . . . 2 · SubgroupIndex− 1],
sorted by index in G (with smallest index first).

Set SubgroupIndex := 2 · SubgroupIndex.
For H in L do:
{

[Include new representations obtainable from H in queue.]
Let f : G→ P be the permutation representation of G given by the action
of G on the right cosets of H and let ψ be the character of f and then

include 〈ψ, PERM, f〉 in Q.
Compute IrrQ(H) and then for each χH ∈ IrrQ(H) do:

Include 〈χH ↑ G, IND, 〈H,χH〉〉 in Q.
}

}
3. [Find smallest virtual representation in Q which will give something new.]

Set c := 0.
Sort Q by degree of first components, with smallest first.
While Q is non-empty, and the degree of the head of Q < SubgroupIndex do:
{

Remove T = 〈ψ, t, I〉 from the head of Q.
If there is an i with 1 ≤ i ≤ k such that ρi = 0 and χi is a component of

ψ (w.r.t. IrrQ(G)), then set c := i and break out of the loop.
}
If c = 0 (nothing new found) then go to Step 2.

4. [Now T = 〈ψ, t, I〉 must provide a representation for χc. Set Setup(K) to be the
function which takes condensation subgroup K and calls the appropriate function to
set up a condensation environment for ψ and K.]

If t = PERM then:
{

Set f := I [the permutation representation].
Set Setup := Function(K)
{ Return PermutationCondensationSetup(f,K). }

}
Else if t = IND then:
{

Write I = 〈H,χH〉.
Set [ρH] := IrreducibleRationalRepresentations([χH]).
Set Setup := Function(K)
{ Return InductionCondensationSetup(G, ρH , K). }

}
Else (t = TENS):
{

67

Write I = 〈ρ1, ρ2〉.
Set Setup := Function(K)
{ Return TensorCondensationSetup(ρ1, ρ2, K). }

}
5. [Create representation affording χc.]

If t = IND and ψ = χc then:
Set ρc := ρH ↑ G. [Exact induction; skip condensation]

Else:
Set ρc := AutomaticCondensation(G,ψ, Setup, χc).

6. [Consider the tensor product of ρc and each other existing representation.]
For each s with 1 ≤ s ≤ k and ρs 6= 0 do:
{

Set ψ := χc · χs.
If ψ = χt for some 1 ≤ t ≤ k then:
{

If ρt = 0 then set ρt := ρc ⊗ ρs.
}
Else:

Include 〈ψ, TENS, 〈ρc, ρs〉〉 in Q.
}
If ExteriorSquare(χc) = χt and ρt = 0 for some 1 ≤ t ≤ k then:

Set ρt := ExteriorSquare(ρc).
If SymmetricSquare(χc) = χt and ρt = 0 for some 1 ≤ t ≤ k then:

Set ρt := SymmetricSquare(ρc).

7. If at least one of ρ1, . . . , ρk is 0 then go to Step 2. Otherwise, return [ρ1, . . . , ρk].

Theorem 3.8.1. Algorithm IrreducibleRationalRepresentations is correct.

Proof. The correctness of the algorithm essentially follows from the correctness of the
preceding condensation algorithms which are called.

Step 2 expands Q so that it has information for all permutation or induced virtual
representations up to the current index limit (and that limit is increased while the queue is
empty). Step 3 finds a tuple T = 〈ψ, t, I〉 such that ψ includes as a component a character
χc for one the desired representations which is not already computed. Then Setup is as-
signed in Step 4 to the appropriate generic function to set up the condensation of the virtual
representation σ affording ψ, so AutomaticCondensation can call the setup function
for the particular condensation subgroup K which it chooses. Thus in Step 5, ρc must be
set to representation affording χc which is a constituent of the virtual representation σ: in
the case that induction is to be performed and ψ = χH ↑ G = χc, then clearly ρc can be set
immediately to ρH ↑ G; otherwise the automatic condensation algorithm is used. In Step 6,
the loop over s clearly checks whether a desired representation affording χt can be formed
by the exact tensor product of ρc with another existing representation immediately (the
correctness clearly follows from the check on the corresponding characters), and the loop

68

also inserts the information into the queue Q corresponding to all other potential tensor
products involving ρc and currently constructed representations.

As for termination, note that when Step 3 starts to search for a suitable T inQ, clearlyQ
will contain the information (not already considered) for at least all permutation represen-
tations of G of degree up to SubgroupIndex and all induced representations for subgroups
of index up to SubgroupIndex. In the worst case, the index limit variable SubgroupIndex

will eventually reach the order of G, so the regular permutation representation of G will
be inserted in the queue, and since this contains all irreducible representations of G, all
desired representations must eventually be constructed. �

Remarks 3.8.2. There are very many parameters and options in the implementation,
which are useful for handling different kinds of groups. We note the most important of
these.

1. One can set a limit on the degree of a virtual representation which will be considered,
so that, for example, χH ↑ G will not be considered if its degree is too large.

2. The variable SubgroupIndex can of course initially be set to a larger value, and suc-
cessively increased by a greater ratio, depending on G. The user can also pass in an
explicit list of subgroups to be used, or a list of indices, so that only subgroups whose
index in G is in this list are used.

3. Reaching index |G| and thus splitting the full regular representation is not as imprac-
tical as it sounds: for groups up to order a few thousand, say, it can be very fast. The
point is that the degree of the virtual representation can be very much larger than the
degree of the desired representations.

4. A basic issue is computing the relevant subgroups of G. In our implementation, we
compute the subgroups of a group G by the algorithm described in [CHSS05]. If it is
easy to compute all subgroups whose index in G is moderate (say up to index about
100000), then the algorithm is very effective. This covers a vast range of groups. If there
are no subgroups of reasonably small index, then this algorithm will fail in practice,
but the extension algorithms later in the thesis will handle this situation well.

5. When recursing in the induction case to construct a representation of a subgroup H,
the inner call uses the algorithm with default options, and thus potentially recurses
again to construct the representation of H via induction. This situation happens often
in our implementation and so multiple levels of recursion can occur.

6. The user can give irreducible rational representations as extra input. This can help
in that the tensor product of such representations with each other or with easily con-
structed representations within the algorithm may yield the desired representations.
The algorithm itself can also construct easy representations at the beginning, such as
linear representations; these may give some other representations for free. Going fur-
ther, for each absolutely irreducible linear character χ of G, one can instantly construct
a representation affording χ, and then compute the restriction to scalars of this rep-
resentation to Q to yield an irreducible rational representation of degree d, where d is
sQ(χ) times the degree of the character field Q(χ).

69

7. The user can also give explicit irreducible representations of subgroups of G, so that in-
duction condensation will be automatically applied to such representations, thus avoid-
ing the search for representations of subgroups to induce to G.

8. If the virtual representation with character ψ has very small degree (say under 100),
then one can use the rational Meataxe to decompose the full QG-module directly,
instead of using the condensation tools.

9. Note that induction condensation is very useful for condensing and thus decomposing
a monomial rational representation of G (where the corresponding representation of
H is linear); this occurs very often and the algorithm IntegralSpin will be applied
to a space having half the degree of the equivalent permutation representation, thus
potentially making the saturation, LLL and Seysen operations run much faster.

10. The advantage of using tensor condensation is that it sometimes yields representations
at little cost without needing a search in many subgroups of G for suitable permutation
or induced representations. It is easy to compute initially the tensor products of the
irreducible rational characters of G and check whether a desired representation occurs
in a reasonable tensor product and then compute the contributing representations first.
It seems that as the composition length of G grows, then useful tensor representations
occur more often (not only do the exact tensor products occur often, but condensation
of reducible tensor products becomes more worth using). For the large database of
quasi-simple representations presented later (see Chapter 9), we see that tensor prod-
ucts are only used occasionally for the construction of the final representation of G,
because G has composition length at most 2. But the algorithm often uses induction
of a representation ρH of a subgroup H and since H can have arbitrary composition
length, tensor products are used more often in constructing the representations of the
subgroups.

11. As each new representation is constructed, our implementation applies the algorithm
for entry reduction of an integral representation (Sec. 1.10) if its degree is less than 100
since this often makes the representation have even smaller entries (for higher degree,
it has less effect and may take a long time). Note that in the induction case, the
representation of H typically has very small degree (often less than 10) and so the
reduced version will be very sparse which helps control the entry size in the induced
representation.

12. Note that if we have a choice of different kinds of condensation of the same degree d,
then it is always better to use permutation condensation if possible, since it is much
faster to set up and the basis underlying the final integral spin tends to have smaller
entries (since it consists of only permutations of the original uncondensed vectors). So
in our implementation, permutation condensation of degree d is preferred over induction
condensation of degree d. Since tensor condensation is the most expensive method, it
is weighted so that it is preferred even less when comparing degrees. Thus whenever
we compare entries of the queue Q while sorting Q, we first multiply the degree of
the full character of each entry by a weight W , depending on the type of the relevant
condensation. The current implementation uses W = 1 for permutation condensation,
W = 1.2 for induction condensation and W = 2 for tensor condensation.

70

Example 3.8.3. LetG = Sz(8). The irreducible rational representations ofG have degrees

1, 28, 64, 91, 105, 195.

All of these representations are easily computed in one go by calling IrreducibleRa-
tionalRepresentations on all the irreducible rational characters. There are 4 calls to
AutomaticCondensation, in this order (note how the degree of the virtual representa-
tion increases each time):

1. The degree-64 representation is extracted from a degree-65 permutation representa-
tion of G (condensation dimension 2; 0.1s).

2. The degree-195 representation is extracted from the induction to G of a degree-6
representation of a degree-65 subgroup (condensation dimension 12; 2.7s).

3. The degree-91 and -105 representations are both extracted from a degree-520 per-
mutation representation of G (condensation dimension 12 for both; 1.2s).

4. The degree-28 representation is extracted from the induction to G of a degree-2
representation of a degree-560 subgroup (condensation dimension 88; 1.0s).

The degree-105 and -195 representations have 2-digit entries in their defining matrices
while the other representations have 1-digit entries. The total time taken is only 5.6s.

Example 3.8.4. Let G be the perfect group of order 115248 with centre of order 7 and
label ‘L3(2) 21 72 C 71’ in the notation of [HP89]. G has inequivalent irreducible rational
representations of the following degrees:

1, 6, 6, 7, 8, 8, 32, 42, 48, 48, 96, 96, 96, 126, 126, 168, 168, 252, 294, 336, 336, 504.

The degree-32 and one of the degree-48 representations have Schur index 2, while all of
the others have Schur index 1. All of these representations can be computed by call-
ing IrreducibleRationalRepresentations on all the irreducible rational characters.
Most of the representations are computed very easily (each in less than a second) by au-
tomatic condensation of small-degree permutation or induced representations (and one of
the degree-126 representations can be constructed by condensation of the tensor product
of representations of degree 6 and 42). The only really non-trivial calls of Automatic-
Condensation are the following (out of a total time of 73.1s):

1. Degree 336 (16.7s): computed by condensation of the induction to G of a represen-
tation ρH of degree 12 for an index-56 subgroup H (ρH computed recursively in only
0.1s via the exact tensor product of the restriction of scalars to Q of absolutely irre-
ducible linear representations of H). The condensation subgroup had order 16, the
condensed module M̃ had dimension 48 (setup 0.5s) and the condensed constituent
S̃ had dimension 24 (Meataxe time 0.8s, needing a maximal order basis to split the
endomorphism ring). The integral spin was as follows: initial basis via modular spin
with degree-672 induced action in 0.2s, saturation in 3.0s, Hermite form in 1.9s, LLL
reduction in 0.4s and Seysen reduction in 8.9s. The resulting representation’s defin-
ing matrices have absolute maximum entry 288, with average 10.5. (Without using
Seysen reduction the absolute maximum entry is 28966, with average 457.1.)

2. Degree 504 (48.8s): computed by condensation of the induction to G of a represen-
tation ρH of degree 18 for an index-49 subgroup H (ρH computed recursively in 0.3s
via a degree-168 permutation representation of H). The condensation subgroup had

71

order 98, the condensed module M̃ had dimension 12 (setup 0.1s) and the condensed
constituent S̃ had dimension 6 (Meataxe time 0.02s). The integral spin was as fol-
lows: initial basis via modular spin with degree-882 induced action in 0.4s, saturation
in 2.1s, Hermite form in 2.5s, LLL reduction in 1.3s and Seysen reduction in 33.5s.
The resulting representation’s defining matrices have absolute maximum entry 91,
with average 2.7 (Without using Seysen reduction the absolute maximum entry is
2407, with average 20.7.)

Example 3.8.5. The first table in Chapter 9 describes our database of irreducible ordinary
representations of quasi-simple groups up to degree 250 (matching the classification of
Hiss & Malle [HM02]). There are 669 representations in total, and the representations are
always realized over a minimal field. Of these, 353 are rational representations, of which
323 were computed by the algorithm IrreducibleRationalRepresentations (the tag
‘IRR’ in the method field indicates that this algorithm was used; see Chapter 8 for more
information). The different kinds of condensation used by the algorithm for these 323
representations are as follows:

• 196 representations were computed by permutation condensation [IRR perm].
• 124 representations were computed by induction condensation [IRR ind].
• 3 representations were computed by tensor condensation [IRR . . .⊗ . . .].

The 29 other rational representations were computed by other algorithms described later.

Example 3.8.6. One of the higher-degree irreducible rational representations which was
constructed by IrreducibleRationalRepresentations is the degree-1485 rational
representation of G = A12 (table entry on p. 183; this representation was subsequently
used in constructing the degree-3344 representation of HN). The algorithm proceeded as
follows. After inserting many possibilities into the priority queue, the best choice used au-
tomatic condensation of the induction to G of a degree-42 representation ρH of an index-66
subgroup H. First ρH was constructed by a recursive call in only 1.4s (from a degree-252
permutation representation of H), then AutomaticCondensation selected a subgroup
K of order 256, with a corresponding condensed module M̃ of dimension 33 (0.8s). The
rational Meataxe split out the desired dimension-16 submodule S̃ in 0.2s. The modular
spin with parallel operations on the integral vectors then took 33s, and the saturation,
Hermite form, LLL and Seysen operations on each 1485×2772 integral matrix took 1018s,
69s, 28s and 910s respectively. Computing the reduced action took 40s, for a total time of
2126s. The resulting representation is integral, with both image matrices having at most
2-digit entries and density 45%.

Some other examples of higher-degree rational irreducible representations which can be
constructed by this algorithm (all with small integral entries) are:

• The degree-825 representation of HS in 72s (p. 181).
• The degree-1300 representation of 2F4(2)′ in 1.0h (p. 183).
• The degree-1750 representation of McL in 1.4h (p. 183).
• The degree-2024 representation of M23 in 1.3h (p. 184).
• The degree-2024 and -2227 representations of Co2 in 1.2h and 6.1h (p. 184).

We thus see that IrreducibleRationalRepresentations can be very effective for
representations of very high degree and even for groups which are very large.

72

3.9. Constructing Absolutely Irreducible Representations

We now present an algorithm to construct an absolutely irreducible representation af-
fording a given character χ, by first forming the corresponding irreducible rational represen-
tation and then computing the reduced action on a reduced basis of a suitable eigenspace.
The major challenge is to control the size of the entries in the result. First we give a
heuristic subalgorithm to compute a suitable reduced basis of the eigenspace, such that
the denominators of the resulting representation are as small as possible.

Algorithm ReducedBasisForAction([v1, . . . , vr])
Input:

• A basis [v1, . . . , vr] of a subspace S of F n where F is a number field.

Output:

• A reduced basis [w1, . . . , wr] of S.

Steps:

1. Write F = Q(α), let f be the minimal polynomial of α and let d = DegQ(f).

Let φ : F n → Qdn be the natural Q-vector space isomorphism, viewing F as a Q-vector
space with basis [1, α, . . . , αd−1].

2. Let SQ be the (dr)-dimensional subspace of Qdn generated by

{φ(vi · αj) : 0 ≤ j ≤ d− 1, 1 ≤ i ≤ r}.

Set L := (l1, . . . , ldr) to a LLL-reduced basis of the saturation of SQ, sorted with the
shortest vectors first.

3. Set Wbest := 0, Ebest := [∞ : 1 ≤ i ≤ r].

For c := 1 to 10 do:
{

If c = 1 then set U := L; otherwise set U to a random shuffle of L.
Write U = [u1, . . . , udr].
Let 1 ≤ i1 < i2 < . . . < ir ≤ dr be minimal such that

(w1, . . . , wr) = (φ−1(ui1), . . . , φ
−1(uir)) is an F -basis.

Let M be the matrix whose rows are φ(wi · αj) for 0 ≤ j ≤ d− 1, 1 ≤ i ≤ r.
Set E := ElementaryDivisors(M).
If E < Ebest (using lexicographical order backwards) then:
{

Set Wbest := (w1, . . . , wr).
Set Ebest := E.
If E = [1, . . . , 1] then break out of the loop.

}
}
Return Wbest.

73

Proposition 3.9.1. Subalgorithm ReducedBasisForAction is correct.

Proof. Clearly Step 2 sets SQ to the image under φ of S regarded as a vector space over Q
and since the saturation and LLL operations only perform invertible row transformations
over Q, the vectors l1, . . . ldr must form a Q-basis of SQ. Thus in each execution of the loop
in Step 3, there exist vectors ui1 , . . . , uir whose inverse images under φ are F -independent,
and Wbest will be set to one of these, so the returned result is an F -basis of S. �

Remarks 3.9.2. The point of computing the elementary divisors each time is that for
a given choice of W = (w1, . . . , wr), if E is the list of elementary divisors of the corre-
sponding integral matrix M , then by Prop. 1.7.11, the largest (last) entry d of E gives
the denominator introduced into the reduced action matrix corresponding to a matrix X
acting on M by multiplication on the right; in a moment we will apply this to the case
that X is the expansion under BF/Q [Def. 1.6.1] of a matrix with entries in F . Having a
small maximum elementary divisor d not only gives a small denominator, but tends also
to reduce the numerators which occur also in the coefficients of the number field elements.
If the initial basis L is sparse (close to orthogonal), then the first try often gives d = 1 and
we break out of the loop immediately and the number field entries in the reduced action
is usually sparse with small entries.

Based on this special basis reduction algorithm, the following algorithms allow the
construction of an absolutely irreducible representation.

Algorithm SplitByEigenspace(M, e)
Input:

• An irreducible QG-module M of dimension n.

• A matrix e ∈ EndQG(M) with minimal polynomial f(x) ∈ Q[x] such that f is irre-
ducible over Q.

Output:

• A submodule SF of MF = MF of dimension n

Deg(f)
, where F is the number field

Q(α) with the minimal polynomial of α equal to f .

Steps:

1. Set F to the number field Q(α) where the minimal polynomial of α is f .

2. Set [v1, . . . , vd] to a basis of the nullspace of (e− α) ∈Mn(F).

Set [w1, . . . , wd] := ReducedBasisForAction([v1, . . . , vd]).

3. Set SF to the submodule of MF = MF whose basis as a vector space is [w1, . . . , wd]
and return SF .

Algorithm AbsolutelyIrreducibleRepresentation(χ)
Input:

• An absolutely irreducible character χ ∈ Irr(G) for a finite group G.

74

Output:

• A representation ρ : G→ GLn(F) affording χ, such that F is a minimal field for χ.

Steps:

1. Set χQ to sQ(χ) ·GalSumQ(χ) where C = Q(χ) (so χQ equals the element of IrrQ(G)
which contains χ as a constituent).

Set [ρQ] := IrreducibleRationalRepresentations([χQ]).

2. Set E to the endomorphism ring of ρQ.

Set e to a generator of a maximal subfield of E which is isomorphic to F = Q(α).

3. Let MQ be the QG-module corresponding to ρQ.

Set MF := SplitByEigenspace(MQ, e).

4. Let ρ : G→ GLn(F) be the representation corresponding to MF .

Embed Q(χ) in F via Lem. 1.5.4 so that the character of ρ equals χ, then return ρ.

Theorem 3.9.3. Algorithms SplitByEigenspace and AbsolutelyIrreducibleRep-
resentation are correct.

Proof. Algorithm SplitByEigenspace applies Lem. 1.5.3 directly. For algorithm Ab-
solutelyIrreducibleRepresentation, ρ : G → GLn(F) must afford an F/Q-Galois
conjugate χ′ of χ and F is minimal for χ′ by Cor. 1.5.5, so FindConjugate is passed cor-
rect input and the returned representation must afford χ and be realized over the minimal
field F . �

Remarks 3.9.4. We note the following points on AbsolutelyIrreducibleRepresen-
tation and its implementation:

1. If the Schur index s of χ is 1, then the field F is essentially unique but if s > 1, then it
is not unique, of course. As an option, one can specify a particular field F to be used
in Step 3, based on an element of the endomorphism ring. In our implementation, we
also have an option so that the rational representation ρQ may be passed in, since it
may be first constructed by other means, of course.

2. The quality of the resulting representation depends very strongly on how reduced
(close to orthogonal) the initial reduced integral basis L is, in the subalgorithm Re-
ducedBasisForAction. If the basis is sparse and highly reduced (which often
happens when the rational representation ρQ is very sparse), then the resulting com-
plex representation will tend to have high quality. But it is often the case that the
basis L cannot be reduced much, even when the rational representation ρQ is sparse
(and hardly ever when ρQ is only moderately dense and its degree is above 100). So
the major limitation of the algorithm is that even after much searching in Reduced-
BasisForAction for the best reduced basis, the corresponding reduced action over
F may still have very large entries (and take a long time to compute). See Ex. 3.9.7
below for an example.

3. The embedding of Q(χ) in F in Step 4 typically takes very little time. Just as for the
general algorithm in Sec. 3.3 for computing the character of a representation, we can

75

of course first evaluate traces of ρ evaluated at the generators of G, then products of
these and general random elements, and when enough class representatives are found
which determine the correct images for the embedding, then the algorithm can exit
early instead of having to evaluate ρ at all the class representatives. In practice, this
algorithm typically only takes a second or two even in high dimensions, since only a
very small number of evaluations are needed to determine the correct embedding.

Example 3.9.5. Let G = 6.A7 and let χ be one of the absolutely irreducible characters of
G of degree 36; χ has character field F = Q(ζ3) and Schur index 1. In [DD10, Sec. 2], the
authors found it difficult to construct a representation affording χ using their methods. But
we can construct it easily using AbsolutelyIrreducibleRepresentation in under 3
seconds, as follows (table entry on p. 163). The initial call to IrreducibleRational-
Representations on the irreducible rational character containing χ yields a degree-72
representation ρQ over Z in 2.6s (derived from the induction to G of a degree-8 integral rep-
resentation of a subgroup of index 21), with absolute maximum entry 7. It then takes only
0.3s to do the remaining Steps 2 to 4 of AbsolutelyIrreducibleRepresentation, as
follows:

• The element e in the endomorphism ring of ρQ is instantly found, with minimal
polynomial x2 + x+ 1; e has density 36.6% and absolute maximum entry 6.
• The dimension-36 nullspace N ⊂ F 72 of (e − α) ∈ M72(F) is computed in Step 2

of SplitByEigenspace.
• In Step 4 of ReducedBasisForAction, S ∈M72×144(Z) is set to the saturation

of the expansion of N .
• The LLL-reduced basis L of the rows of S has vectors in Z144 whose norms range

from 9 to 52, so the basis is rather sparse. The loop in Step 7 immediately finds
that the lexicographically-first subset of L which yields an F -independent set has
maximum elementary divisor 1, so the loop is exited immediately and then the
reduced action on the basis is computed.
• The computation of the embedding of Q(χ) in F needs an evaluation at one con-

jugacy class (not covered by the generators).

The resulting images of the generators have density 84% and 74% respectively and all
entries have the form a+ bζ3, with a, b ∈ Z, |a|, |b| ≤ 17 and the denominator of all entries
is 1 since the maximum elementary divisor of the basis in ReducedBasisForAction
was 1.

Example 3.9.6. For the first table in Chapter 9 describing irreducible representations
of quasi-simple groups up to degree 250 there are 669 representations in total. Of these,
there are 316 irrational representations and 117 of these were computed by the algorithm
AbsolutelyIrreducibleRepresentation since it returned a representation with very
small entries (the tag ‘AIR’ in the method field indicates that this algorithm was used; see
Chapter 8 for more information). The different kinds of condensation used in the initial
call to IrreducibleRationalRepresentations in Step 1 for these 117 representations
are as follows (with the corresponding tag in the table given in brackets):

• 19 representations were computed by permutation condensation [AIR perm].
• 97 representations were computed by induction condensation [AIR ind].
• 1 representation was computed by tensor condensation [AIR . . .⊗ . . .].

76

A large example is the degree-216 representation over Q(
√
−1) of 2.J2 for which the char-

acter is rational, but has Schur index 2 (table entry on p. 175). The absolute maximum
numerator is 187 and the denominator LCM is 1 (the density of both generators is 38%).

Example 3.9.7. Let G be the sporadic simple group J3. A minimal-degree faithful rep-
resentation of G has degree 85 and can be realized over the quadratic field F = Q(

√
−19).

Let χ be one of the corresponding characters. If we call AbsolutelyIrreducibleRep-
resentation on G and χ to construct a representation ρ affording χ, then the initial
construction of the corresponding degree-170 irreducible rational representation ρQ is not
difficult (via condensation of a degree-14688 permutation representation) and takes 206s.
But when the rest of the algorithm constructs an absolutely irreducible representation
ρ : G → GL85(F) affording χ (in 79s), the resulting image matrices have entries with 73-
digit numerators (and denominator 1); further searching in ReducedBasisForAction
hardly improves this. So this is a case where the algorithm cannot construct a reasonably
reduced representation. But we will later see that the hybrid algorithm of Chapter 6 can
construct a representation affording χ with very small entries and in much less time; see
Ex. 6.4.1 (p. 138).

Similar examples are the degree-80 faithful irreducible representations of 41.L3(4) and
42.L3(4), which are both realized over a minimal field of degree 4. The algorithm Ab-
solutelyIrreducibleRepresentation can only produce representations with 93-digit
and 89-digit numerators (denominator 1) respectively, taking about an hour in each case.
Again, the hybrid algorithm will easily construct appropriate representations with small
entries in very little time (the results are on p. 167).

3.10. Constructing Irreducible Representations over a Given Field

The following algorithm computes F -irreducible representations of a group G for any
given number field F which is normal over Q. This algorithm will have important appli-
cation in the extension-based algorithms later.

Algorithm IrreducibleRepresentationsOverField([χ1, . . . , χk], F)
Input:

• Characters [χ1, . . . , χk] of a finite group G and a field F which is normal over Q, such
that χi ∈ IrrF (G) for 1 ≤ i ≤ k.

Output:

• F -representations [ρ1, . . . , ρk] such that ρi : G→ GLni(F) affords χi for 1 ≤ i ≤ k.

Steps:

1. For 1 ≤ i ≤ k, set ψi to the element of IrrQ(G) which contains χi.

2. Collect distinct elements of [ψ1, . . . , ψk] and then call IrreducibleRationalRep-
resentations on these to obtain rational representations σ1, . . . , σk which afford
ψ1, . . . , ψk respectively.

3. For i := 1 to k do:
{

Set r := Deg(χi), n := Deg(σi), d := n
r
.

77

If d = 1 then set ρi := (σi)
F and skip to the next i.

Let M be the QG-module corresponding to σi.
Search for an e ∈ EndQG(M) with minimal polynomial fe ∈ Q[x] of degree d such that

fe has a root in F (first try each element of a basis B, and then 100 linear
combinations with coefficients in [−10 . . . 10] of the elements of B).

If such an e is found then:
{

Set MS := SplitByEigenspace(M, e) (written over S = Q(β), fe(β) = 0).
Let σS be the representation corresponding to MS.
Let χS be the character of σS and let φ be the embedding of Q(χS) into

Q(χi) (a subfield of F) so that χS equals χi under this embedding
(as in Lem. 1.5.4).

Embed S into F so that the embedding equals φ on the subfield Q(χS) and
then let ρi : G→ GLr(F) equal σS lifted to F via this embedding.

}
Else:
{

If χi is absolutely irreducible then:
{

Set σ := AbsolutelyIrreducibleRepresentation(χ).
Set ρi to a representation over F which is equivalent to σ by Fieker’s

algorithm [Subsec. 2.3.4].
}
Else:
{

Set m := DegQ(F) · r
n

and Mm := ⊕mi=1M .
Search for an e ∈ EndQG(Mm) which generates a subfield S isomorphic

to F by exhaustive search with increasing integral coordinates w.r.t. a basis.
Set MS := SplitByEigenspace(Mm, e).
Let σS be the representation corresponding to MS.
Let χS be the character of σS and let φ be the embedding of Q(χS) into

Q(χi) so that χS equals χi under this embedding (as in Lem. 1.5.4).
Embed S into F so that the embedding equals φ on the subfield Q(χS) and

then let ρi : G→ GLr(F) equal σS lifted to F via this embedding.
}

}
}

4. Return [ρ1, . . . , ρk].

Theorem 3.10.1. Algorithm IrreducibleRepresentationsOverField is correct.

Proof. After Step 2, for each i with 1 ≤ i ≤ k, σi affords ψi, where ψi is the irreducible
rational character containing χi. We now show that for each i, the body of the loop in
Step 3 sets ρi to an F -representation affording χi. Fix such an i.

78

First note that since F is normal over Q, GalSumF/Q(χi) equals an integer multiple
of ψi, and it it is easy to see that for any integer m ≥ 1, any character in IrrF (G) which
is a constituent of m · ψi must be an (F/Q)-conjugate of χi. Thus for any constituent of
(m ·σi)F (for m ≥ 1) which has degree r = χi(1), its character must be an (F/Q)-conjugate
of χ.

Suppose first that the first case is taken in the main if-statement, so an endomorphism
e is found with minimal polynomial fe of degree d = n

r
(n = ψi(1), r = χi(1)), where

fe has a root in F , and e generates a subfield which is isomorphic to S which can be
embedded into F . Then by Lemma 1.5.3, the constructed σS has degree n

d
= r and under

any choice of embedding of S into F such that the character of σS embeds into Q(χi),
(σS)F has degree r and so will have character (F/Q)-conjugate to χi by the observation of
the previous paragraph. Thus under a suitable choice of embedding, ρi = (σS)F affords χi.

The else-part of the main if-statement is executed when no such subfield S can be found
after some searching (it may not exist in general). In the case that χi is absolutely irre-
ducible, then clearly AbsolutelyIrreducibleRepresentation will return σ affording
χ over some field and Fieker’s algorithm will rewrite this to be over F . For the final case,
there must exist some representation ρ1 over F which affords χi, by the assumptions on
the input. Now if ρQ is the restriction of scalars representation of ρ1 from F to Q, then ρQ
is a homogeneous rational representation of degree r · DegQ(F) and must have character
m · ψi, where m = r

n
· DegQ(F) (by Prop. 1.6.2), and the endomorphism ring of ρQ must

contain a subfield isomorphic to F . By construction, the character of the representation
corresponding to Mm equals the character of ρQ, so the search for the subfield S in the
endomorphism ring of Mm must eventually succeed. The remaining statements are similar
to the first case above and clearly set up a corresponding F -representation ρi which affords
χi. �

Remarks 3.10.2. We note the following points on the implementation:

1. This algorithm couples well with a single call to IrreducibleRationalRepresen-
tations when there are several representations to construct, since that algorithm does
only one search to construct all the representations (and some may be easily derived
from others via tensor products).

2. It is worth checking first for each χi whether a representation can be constructed by
direct induction from a representation from a subgroup (and one can then call the
algorithm recursively on a smaller degree character for a proper subgroup).

3. When more than one desired F -representations are constituents of the same irreducible
rational representation, then after the first one is constructed, the other ones can of
course just be computed as conjugates, instead of doing the body of the loop in Step 3
again each time.

4. The former case in Step 3 nearly always happens for the applications we have made
of this algorithm: one can nearly always find an endomorphism generating a subfield
of the right degree which can be embedded into F . One should also use the basis of
a maximal order of the endomorphism ring to find endomorphisms with small entries.
The second case arises occasionally when a Schur index sQ(χi) is non-trivial; an example
of this situation will be seen later in Ex. 6.4 (p. 140). One could also use methods based

79

on solving conics instead of Fieker’s algorithm to find suitable endomorphisms in the
last case where χi is not absolutely irreducible.

Examples of the use of this algorithm will be given later where it is needed in the
extension-based algorithms, where several irreducible representations over a given field F
may need to be computed, where F is intermediate between Q and a minimal field for an
absolutely irreducible representation.

3.11. Rewriting a Representation over a Minimal Field

A simple modification of AbsolutelyIrreducibleRepresentation also yields the
following straightforward algorithm to rewrite a given absolutely irreducible representation
over a minimal field.

Algorithm RewriteOverMinimalField(ρ0)
Input:

• An absolutely irreducible representation ρ0 : G→ GLn(F0) of a finite group G afford-
ing χ, where F0 is not necessarily minimal for χ.

Output:

• An equivalent representation ρ : G → GLn(F) affording χ, such that F is a minimal
field for χ.

Steps:

1. Let ρQ be the restriction of scalars representation of ρ0 from F0 to Q (using BF0/Q, as
in Prop. 1.6.2).

Let MQ be the QG-module corresponding to ρQ.

Set [S1, . . . , Sm] := RationalMeataxe(MQ).

2. Set E to the endomorphism ring of S1.

Set e to a generator of a maximal subfield F of E.

Set M := SplitByEigenspace(S1, e).

Let ρ : G→ GLn(F) be the representation corresponding to M .

Embed Q(χ) in F via Lem. 1.5.4 so that the character of ρ equals χ, then return ρ.

Proposition 3.11.1. Algorithm RewriteOverMinimalField is correct.

Proof. Since ρ0 is absolutely irreducible, MQ must be homogeneous and so equal the sum
of m copies of a simple QG-module. Thus the character of MQ equals mχQ for some χQ ∈
IrrQ(G), so after Step 1, the character of S1 must be χQ. Then we can apply Cor. 1.5.5 again
and are in the same situation as algorithm AbsolutelyIrreducibleRepresentation,
so Steps 2 and 3 proceed the same as in that algorithm. �

Remarks 3.11.2. 1. This algorithm works extremely well in practice when the minimal
field F does not have very large degree, thus avoiding the non-trivial number theory
which is needed in Fieker’s method.

80

2. Instead of the call to SplitByEigenspace, we will give an alternative method below
(p. 128) which can be used when the degree is large or SplitByEigenspace does not
give a result with small entries.

3.12. Conclusion

We summarize the main features of the condensation-based splitting approach. Some of
the key advantages are the following:

1. For computing irreducible rational representations of rather high degree (say up to
degree 1000), this method yields an integral representation with very small entries
in practice, even when the virtual representation σ from which the constituents are
extracted has degree up to about 100,000.

2. The method is completely automatic and guarantees that the resulting representa-
tion(s) are always realized over a minimal field (because the corresponding rational
representations are irreducible). It does not require an initial choice of a suitable
subgroup H which is required by the extension-based algorithms (in the following
chapters).

3. When one needs several irreducible F -representations of G, then the splitting ap-
proach can often construct them together easily (e.g., several representations can be
extracted from the one virtual representation, and tensor products can yield represen-
tations for free) and this can be much more efficient than using the extension-based
methods below separately for each representation.

Some of the limitations are the following:

1. If G has no proper subgroups of moderate index, then one cannot find a representa-
tion σ which it is feasible to split, so this method fails.

2. If χ has very high degree (say over 1000), then the operations on integral matrices to
compute the reduced basis in the integral spin algorithm (saturation, Hermite form,
LLL, Seysen) become very expensive.

3. If the final representation ρ cannot be realized over Q, then it may be impossible to
find a reduced basis of the eigenspace over the number field so that ρ has reasonably
reduced entries, even when the degree is rather small. So this method often fails to
construct irrational representations with reasonably small entries.

81

Chapter 4

Irreducible Extension

4.1. Introduction

In this chapter we start to describe the extension approach, considering first the case
of irreducible extension. We show how a well-known algorithm for irreducible extension,
based on linear algebra, can be made very efficient. Several important techniques which
are developed here will be again used in the next chapter in the algorithm for general
extension.

4.2. Existing Methods

Let χ be an absolutely irreducible character of a finite group G. Suppose that H is
a subgroup of G such that χH = χ ↓ H is also absolutely irreducible and suppose that
ρH : H → GLn(F) affords χH , where F = F (χ). Then ρH can be uniquely extended to a
representation ρ : G → GLn(F) affording χ, so that ρ ↓ H = ρH . We call this operation
irreducible extension.

Minkwitz presented the following explicit formula for irreducible extension, which in-
volves looping over the subgroup H.

Theorem 4.2.1. [Min96, Thm. 1] Let χ ∈ Irr(G) and let H be a subgroup of G such that
χH = χ ↓ H is absolutely irreducible and suppose that ρH : H → GLn(F) affords χH . Let
E = F (χ) and define a representation ρ : G→ GLn(E) of G by:

ρ(g) :=
χ(1)

|H|
∑
h∈H

χ(h−1g)ρH(h) for g ∈ G.

Then ρ affords χ and ρ ↓ H = ρH . Thus given a representation ρH affording χH , one can
construct a representation ρ affording χ with ρ ↓ H = ρH by evaluating the above sum for
elements {g1, . . . , gk} of G where G = 〈H, g1, . . . , gk}.

The obvious practical limitation of this formula is that it requires the evaluation of ρH
at every element of H, so it can only be used when H is rather small. Grassl constructed
some representations up to degree 124 using this formula for some large groups [Gra06],
but the computations took a very long time for larger examples (e.g., a degree-78 abso-
lutely irreducible representation of Fi22 was constructed as the extension of a degree-78
representation of G2(3) in about 40 hours).

Plesken & Souvignier [PS98, 3.1] proposed an alternative method which does not re-
quire looping over the subgroup H, but involves writing the image of g ∈ G as a linear
combination of n2 images of elements of H under ρH . An equivalent formulation based on
linear algebra was given by Dabbaghian-Abdoly as follows.

82

Theorem 4.2.2. [DA05, 2.2–2.3] Let χ ∈ Irr(G) and let H be a subgroup of G such that
χH = χ ↓ H is absolutely irreducible and suppose that ρH affords χH . Let n be the degree of
χ. By a theorem of Burnside there exist w1, . . . , wn2 ∈ H such that {ρH(w1), . . . , ρH(wn2)}
is a basis for the full matrix algebra Mn(F). Then ρH can be extended uniquely to a
representation ρ of G affording χ and the entries of ρ(g) for g ∈ G are determined by the
equations:

χ(wkg) = Tr(ρH(wk)ρ(g)) for k = 1, . . . n2.

Furthermore, on average, selection of at most 2n2 random elements of H yield a corre-
sponding basis (or equivalently, yield enough relations from the above formula involving
traces to determine ρ(g) uniquely for any g ∈ G).

4.3. Using a Normalized Subgroup

W. Unger [Ung10] noted that the linear irreducible extension method can be greatly
improved by using a subgroup L of H which is normalized by an element of g outside of
H (this idea was motivated by the use of normalizers in [Wil99]). The basic idea is given
in the following lemma, and immediately suggests the auxiliary algorithm which follows.

Proposition 4.3.1. [CR81, 9.24] Let χ1, χ2 be characters for G which are afforded by
ρ1 : G → GLn1(F) and ρ2 : G → GLn2(F) respectively. Then DimF (HomFG(ρ1, ρ2)) =
〈χ1, χ2〉G (the inner product of χ1 and χ2).

Lemma 4.3.2. Suppose that χ is a character of G (not necessarily irreducible), F is
a field over which χ may be realized, H is a subgroup of G, g ∈ G, G = 〈H, g〉 and
ρH : H → GLn(F) affords χH = χ ↓ H . Suppose also that L is a subgroup of H such
that Lg = L (i.e., g normalizes L). Let ρL = (ρH) ↓ L and define a new representation
ρ′L : L→ GLn(F) by

ρ′L(x) := ρL(xg).

Then if ρ is any extension of ρH to G which affords χ, then

ρ(g) ∈ HomFL(ρL, ρ
′
L).

Also, the dimension of this Hom-module as an F -vector space equals 〈χ ↓ L, χ ↓ L〉L (the
norm of χ ↓ L w.r.t. L).

Proof. For any x ∈ L, we have

ρ′L(x) = ρL(xg) = ρ(xg) = ρ(g−1xg) = ρ(g)−1ρL(x)ρ(g),

so ρ(g) is in HomFL(ρL, ρ
′
L). The statement on the dimension follows from Prop. 4.3.1. �

Remarks 4.3.3. Note that taking L to be the trivial group reduces to the original method:
in this case, HomFL(ρL, ρ

′
L) has dimension n2 with basis consisting of the unit matrices,

where n is the degree of χ.

Algorithm ExtensionImageSetup(G, ρH)
Input:

• A finite group G and a representation ρH : H → GLn(F) for a maximal subgroup H
of a group G and a field F (where ρH is not necessarily irreducible over F).

83

Output:

• An element g ∈ G \H and matrices [A1, . . . , Al] ∈Mn(F) such that for any represen-
tation ρ : G→ GLn(F) with ρ ↓ H = ρH , ρ(g) must equal an F -linear combination of
the Ai.

Steps:

1. Set L to a subgroup of H with largest possible order such that NG(L) 6⊆ H and set g
to an element of NG(L) \H.

2. Set ρL to (ρH) ↓ L and define a new representation ρ′L : L→ GLn(F) by

ρ′L(x) = ρL(xg).

3. Set [A1, . . . , Al] to an echelonized basis of HomFL(ρL, ρ
′
L) (as matrices acting on the

standard basis of the natural module corresponding to ρH). Return g and [A1, . . . , Al].

Remarks 4.3.4. We note the following points on the implementation:

1. It is highly desirable to minimize the dimension of the Hom-module associated to L,
since this directly affects the cost of later algorithms. So instead of stopping at the first
valid L, one could loop over all subgroups of S and for each potential L for which there
is a normalizing element outside H, one could compute the corresponding dimension
as 〈χ ↓ L, χ ↓ L〉L and choose an L for which the corresponding dimension is minimal.
However, this may be very expensive for larger groups (mainly because computing χ ↓ L
involves setting up the fusion of classes of L in H) so in such a case, we simply choose
the first valid L (proceeding from biggest to smallest) and stop immediately, as in the
algorithm.

2. The other major issue is the cost of computing the normalizer NG(L). For permutation
groups, Magma has an efficient backtrack search algorithm, so it is not a major issue
here. But for matrix groups, computing the normalizer is a much harder problem, and
is currently impossible if one cannot compute a base and strong generating set (BSGS)
for G. So we will later describe an advanced version of this algorithm (in Subsec. 5.4.8)
which does not need a BSGS for G and so will be suitable for the large sporadic simple
groups which have to be defined in practice by large-degree matrix groups over finite
fields.

3. The Hom-module can be computed efficiently using the algorithm described on p. 23,
even when F is a number field. In this chapter, ρH will always be irreducible, but
in the next chapter this algorithm will be applied to a representation ρH which is
not necessarily irreducible over F but may be a block diagonal sum of irreducible
F -representations. In this situation, the restriction of ρH to L preserves the block
structure, so we note that the computation of the basis of homomorphisms can be sped
up greatly by exploiting the block structure of ρL (and the resulting matrices can also
be returned in block form).

4.4. The Irreducible Extension Algorithm

We can now present the improved version of the linear algebra-based algorithm to
extend an irreducible representation of a subgroup H to one for G. We first separate

84

out a subalgorithm LinearTraceReduction to gather linear relations based on random
elements of H; since this subalgorithm will also be used in the next chapter in the case of
general extension, it does not require that the character χ of G is irreducible.

Algorithm LinearTraceReduction(χ, ρH , g, [A1, . . . , Al], MaxTries)
Input:

• A character χ (not necessarily irreducible) of a finite group G.

• A representation ρH affording χ ↓ H , where H is a subgroup of G.

• An element g ∈ G with G = 〈H, g〉.
• Matrices [A1, . . . , Al] ∈ Mn(F) such that for any representation ρ : G → GLn(F)

which affords χ with ρ ↓ H = ρH , ρ(g) must equal an F -linear combination of the Ai.

• A stopping limit MaxTries (which may equal ∞ if ρH is absolutely irreducible).

Output:

• Matrices [A0, A1, . . . , Ak] ∈Mn(F) such that for any representation ρ : G→ GLn(F)
which affords χ with ρ ↓ H = ρH , ρ(g) must equal A0 plus an F -linear combination of
[A1, . . . , Ak]. (The algorithm proceeds until k = 0 or there are MaxTries consecutive
random elements of H which give no new independent relations.)

Steps:

1. Set C := 0 and set A0 := 0 ∈Mn(F). Set k := l.

2. Loop forever:
{

Set h to a random element of H and B := ρH(h).
Set c0 := χ(h · g) and ci := Tr(B · Ai) for 1 ≤ i ≤ k.

[This implies the linear relation
∑k

i=1 ci · xi = c0.]
If ci = 0 for all i with 1 ≤ i ≤ k then:
{

Assert that c0 = 0 (as a check; this relation yields nothing).
Set C := C + 1.
If C = MaxTries then break out of the loop.
Skip to the top of the loop.

}
Let l be maximal such that cl 6= 0.

[The relation can be written xl = 1
cl

(c0 −
∑l−1

i=1 cixi).]

Set A0 := A0 + c0
cl
Al.

For i := 1 to l − 1 do: set Ai := Ai − ci
cl
Al.

Set [A1, . . . , Ak] := [A1, . . . , Al−1, Al+1, . . . Ak] and set k := k − 1.
If k = 0 then break out of the loop.

}
3. Return [A0, A1, . . . , Ak].

85

Algorithm IrreducibleExtension(χ, ρH)
Input:

• An absolutely irreducible character χ for a finite group G.

• A representation ρH : H → GLn(F) affording χ ↓ H and such that χ ↓ H is absolutely
irreducible, where H is a maximal subgroup of G and F is a field with F (χ) = F .

Output:

• A representation ρ : G→ GLn(F) of G affording χ, such that ρ ↓ H equals ρH .

Steps:

1. Set g, [A1, . . . , Al] := ExtensionImageSetup(G, ρH).

2. Set [A0, A1, . . . , Ak] := LinearTraceReduction(χ, ρH , g, [A1, . . . , Al],∞).

Assert that k = 0.

3. Define ρ : G→ GLn(F) via ρ(h) = ρH(h) by h ∈ H and ρ(g) = A0 and return ρ.

Theorem 4.4.1. Algorithms LinearTraceReduction and IrreducibleExtension
are correct.

Proof. By Lem. 4.3.2, ExtensionImageSetup is correct and the input to LinearTrac-
eReduction is correct. For the correctness of LinearTraceReduction, first write
X = A0 +

∑k
i=1 xi · Ai for indeterminates x1, . . . , xk. It it easy to see that the follow-

ing condition is an invariant of the main loop: for any representation ρ : G → GLn(F)
which affords χ with ρ ↓ H = ρH , ρ(g) must equal X for some assignment of the xi to
elements of F . The condition is initially satisfied because of the input condition on the
initial value of [A1, . . . , Ak] and the fact that A0 = 0. Within the loop, each time a linear

relation
∑k

i=1 ci · xi = c0 is constructed, it clearly gives a necessary condition on the xi (cf.
Thm 4.2.2). If the relation is non-zero, then it can be written in the form:

xl =
1

cl
(c0 −

l−1∑
i=1

cixi),

so the term xl · Al in the sum defining X can be expanded as follows:

X = A0 +
l−1∑
i=1

xi · Ai +
1

cl
(c0 −

l−1∑
j=1

cjxj)Al +
k∑

i=l+1

xi · Ai

= A0 +
c0

cl
· Al +

l−1∑
i=1

xi · (Ai −
ci
cl
· Al) +

k∑
i=l+1

xi · Ai.

Thus after replacing A0 by A0 + c0
cl
Al, Ai by Ai − ci

cl
Al for 1 ≤ i < l, and then deleting

Al and decreasing k, the newly defined X based on the new Ai clearly preserves the loop
invariant. This invariant implies that the matrices returned by LinearTraceReduction
satisfy the condition on the output. For termination, note that if the bound MaxTries is
finite, then LinearTraceReduction trivially terminates (this situation will be used

86

in the general extension algorithm). Otherwise, we can assume that ρH is absolutely
irreducible, so by Thm. 4.2.2, we will eventually reduce to the case that k = 0 (the
initial basis can be considered as equivalent to a full basis of the image of ρH with some
associated initial linear relations and so the expected number of tries is at most 2n2 on
average). Thus A0 will give the unique image of g defining ρ. This proves the correctness
of IrreducibleExtension. �

Remarks 4.4.2. We note the following points on the implementation:

1. The main advantage of this algorithm over previous forms of the linear algebra-based
algorithm is that if there are k initial image matrices, then they effectively give n2 − k
initial independent linear relations on the n2 coordinates in the image matrix of g, so
there are only k more independent relations to be found instead of n2.

2. The algorithm as stated requires that H is a maximal subgroup of G. But if there is an
arbitrary proper subgroup H of G for which χ ↓ H is absolutely irreducible, then one
can simply apply the algorithm iteratively up a chain of subgroups to H to G for which
each subgroup is maximal in the next one; the intermediate representations must all be
absolutely irreducible too. In our implementation, we can either compute the maximal
subgroups of G very quickly using the Magma implementation of the algorithm given
in [CH04], or for the very large quasi-simple groups, we can use the words provided in
the online ATLAS [WWT+].

3. If H is normal in G, then we may let L = H and g be one of the given generators of G
which is outside H. Also, since ρH is absolutely irreducible, its endomorphism ring is
trivial and the Hom-module must have dimension 1. So the algorithm has very little
to do (one trace relation will determine the scalar by which the single basis element
must be multiplied to obtain the image of g).

4. In the above simple presentation of the function LinearTraceReduction, ρH(h) is
evaluated for each random h ∈ H. As usual, one can use words in the strong generators
of H instead of the original generators of H, but this still means that potentially several
products of matrices (which are images of the strong generators) are needed for each
evaluation of ρH . Thus it is more efficient to use the product replacement algorithm
[CLGM+95] in parallel on both the elements of H and their corresponding images in
ρH . By using the accumulator variant, which needs two products per random element,
we can then generate each new random h ∈ H and the corresponding ρH(h) with only
two matrix products.

5. Each time the subalgorithm LinearTraceReduction computes Tr(B · Ai), it can
use the fast method for computing the trace of a product of two matrices efficiently (see
p. 48). This avoids very many matrix multiplications, which yields a huge reduction in
time if the number of image matrices is large.

6. In the LinearTraceReduction algorithm, as presented, each time a new indepen-
dent linear relation in the xi is found, one variable and the corresponding matrix is
removed. This means that the subsequent relations only have to be constructed from
one less matrix and will be in terms of one less variable, which means the construction
of the actual relations speeds up as the algorithm proceeds. However, the reduction
step (removing the matrix and corresponding variable) can be expensive. It involves l
multiplications of a scalar by a matrix and l matrix additions. Typically, l will equal

87

k or be close to it, so when k is large, the cost of this reduction is comparable to the
cost of computing a new linear relation. We have found that it is best to delay the
reductions and wait until r = dk/2e linear relations have accumulated; then if these
relations are echelonized (which takes little cost compared with all the other matrix op-
erations), it is easy to see that the above reduction can be done with r scalar products
and matrix additions, which typically halves the time taken for all the reductions.

7. The cost of rewriting the representation so that it is defined on the original generators
of G can be non-trivial when the degree is large. For an arbitrary finite group G, we
can simply define a representation ρ1 on the generators {h1, . . . , hs} of H and g and
then evaluate ρ1 on the original generators of G (using words in strong generators as
usual to make things more efficient). However, this involves computing a BSGS for G
which may be very expensive and there is a better method if G is a well-known group
with standard generators. Wilson introduced the concept of ‘standard generators’ for
generators of sporadic simple groups [Wil96]; he and others provided black-box algo-
rithms for their construction, given arbitrary generators of the group. E. O’Brien has
implemented this within Magma as the function StandardGenerators(G, S) [O’B06,
Sec. 7.6]; the function also works for several classes of classical groups and their cov-
ers. We can thus apply this to a definition of G with generators {h1, . . . , hs, g} and
then evaluate the resulting words defining the standard generators of G at the im-
ages [ρH(h1), . . . , ρH(hs), A0 = ρ(g)]. This is very efficient in general and avoids the
construction of a BSGS for G.

8. Under the assumption that the entries of the matrices defining ρH are small, then the
entries of the matrices defining ρ tend to be rather small too. This can be seen from

Minkwitz’s formula (Thm. 4.2.1): if we set D = |H|
χ(1)
∈ Z>0, then clearly the common

denominator introduced into the matrices defining ρ must be a divisor of D. Also, the
numerators will increase by at most a factor of the order of |H| ·B, where B bounds the
values of χ, excluding χ(1) (since χ(1) cannot occur in the sum for g /∈ H). So if |H|
is moderate, the number of digits in the entries of ρ can never be dramatically more
than for those of ρH . As will be seen in examples below, the growth in coefficients
when moving from ρH to ρ is typically small in practice. Usually the denominator
introduced is much smaller than D and is sometimes 1. (As an example, if one restricts
an integral representation ρ of G to H to obtain absolutely irreducible ρH , then the
unique extension of ρH back to G must equal ρ which is integral.) The very attractive
consequence is that we can construct representations of very high degree with small
entries via irreducible extension, assuming that the representation ρH of H has small
entries, and this is often easy to achieve because H is smaller than G.

9. Suppose the given generators of G are {g1, . . . , gr}. Given any subgroup H1 for which
irreducible extension is applicable for χ, we can first attempt to conjugate H1 by an
element of G to another subgroup H so that one of the gi is in H. In practice, for
several trials (typically up to 1000), we simply choose random r ∈ G and test whether

any gri is in H1. If so, then we let H be (H1)r
−1

, and use H instead of the original H1 for
the subgroup. This has the great practical advantage that for the final representation
ρ of G affording χ, the image matrix for gi of G will be ρH(gi), so will be very often
sparse or be written over a subfield of F , assuming that the representation ρH of H is
such. This means that storing the final representation can save a lot of space: since

88

nearly all groups in the database in Part II have two standard generators, the space
taken is often virtually halved (very often, one of the generators is monomial or at
least very sparse). As an example, for the degree-126 representation of 3.McL (p. 171),
the field F is Q(α), where the minimal polynomial of α is x4 − x3 − 2x2 − 3x + 9,
g1 has order 2 and ρ(g1) is a monomial matrix with the only non-zero entries being 1
and ±β, where β = 1

6
(−α3 − 2α2 + 2α + 3) (of order 3 in F). Furthermore, for some

of the representations which have been constructed, one of the standard generators
of G (say g1) has order 2 and one can conjugate H so that g1 ∈ H and ρH(g1) is
diagonal, with only ±1 on the diagonal; in this case it is very nice to store (and view)
the representation in this form! See Ex. 4.5.2 below, for example.

4.5. Examples

Here are a few non-trivial examples which use the irreducible extension algorithm.
Several more instances of irreducible extension can be seen in the tables in Part II of the
thesis (those entries with ‘IE’ in the ‘Method’ field; see Chapter 8 for more information).

Example 4.5.1. Let G = L3(5). G has a class of 10 degree-96 conjugate irreducible repre-
sentations which is missing from the database in [Nic06]. Let χ be one of the corresponding
characters, which has entries in Q(ζ31) and Schur index 1. The minimal-degree character
field of χ can be written as F = Q(α), where α has minimal polynomial

x10 − 9x9 + 38x8 − 116x7 + 285x6 − 531x5 + 747x4 − 804x3 + 679x2 − 390x+ 125.

We computed a representation ρ : G → GL96(F) affording χ, as follows (table entry on
p. 168). We set H to a maximal subgroup of G of index 31 (there are two such classes
but either will do). Now χH = χ ↓ H is absolutely irreducible, so irreducible extension
can be used. A representation ρH : H → GL96(Q) was first constructed as the direct
induction to H of a degree-4 rational representation of an index-24 subgroup of H (in
0.14s). Then IrreducibleExtension was applied to χ and ρH . The largest possible
normalized subgroup L had order 400 and for the associated g ∈ G \ H with Lg = L
there were 24 initial image matrices (3.8s). Then it took 50 random elements of H to
find 24 independent linear relations to obtain the unique image of g (4.4s). Finally, the
rewriting of the representation on the standard generators g1, g2 of G took 3.4s and yielded
ρ : G→ GL96(F). The total time taken was 12.1s.

It was easy to conjugate H at the beginning so that g1 ∈ H; consequently ρ(g1) is very
sparse (at most two non-zero entries per row, all of which are ±1), while ρ(g2) has density
84.8% and its entries have denominator LCM 209375 = 55 ·67 and numerator coefficients of
up to 6 digits. Note that the larger entries cannot be avoided if we write the representation
over the minimal field F (F has reduced discriminant 56 · 31 · 672). But if we rewrite this
representation over the cyclotomic field Q(ζ31) (by simply mapping the entries from F into
that field), then the image of g2 has denominator LCM 25 and the numerator coefficients
are all 0, ±1 or ±2.

Example 4.5.2. Let G = U5(4), of order 53443952640000. A minimal-degree faithful
representation of G has degree 204. Let χ be the corresponding character, which has
character field Q and Schur index 2. We computed a representation ρ affording χ as
follows (table entry on p. 174). G has a maximal subgroup H of index 66625 with shape

89

28+8.3.L2(16), such that χH = χ ↓ H is absolutely irreducible, so irreducible extension can
be used. A subgroup H2 of H of index 51 was then found such that it had an irreducible
character χH2 of degree 4 with χH2 ↑ H = χH (the search for the suitable subgroup took
47s). It then took AbsolutelyIrreducibleRepresentation only 0.6s to construct
a representation ρH2 : H2 → GL4(F) affording χH2 , where F = Q(i). This could then
be immediately induced to H to obtain ρH : H → GL204(F), affording χH . Finally,
IrreducibleExtension was applied to χ and ρH . The largest normalized subgroup L
of H had order 12240, yielding 16 corresponding image matrices and then the desired
representation ρ : G→ GL204(F) affording χ was constructed (8.7s). The field F is clearly
a minimal field for χ.

Let g1, g2 be the standard generators of G. It was easy to conjugate H at the beginning
so that g1 ∈ H; in fact, ρ(g1) is diagonal with only ±1 on the diagonal, while ρ(g2) has
density 71.4% with denominator LCM 8 and absolute maximum numerator 2, and only 19
distinct entries, such as 1

8
(i+ 2). The whole computation took about 57s.

Example 4.5.3. Let G = Co1, which has order 4157776806543360000. G has an abso-
lutely irreducible rational representation of degree 8855, which we constructed via irre-
ducible extension (table entry on p. 187). Let χ be the corresponding character. By choos-
ing H to be the third largest maximal subgroup of G, equal to 211:M24 (index 8292375), we
have that χH = χ ↓ H is absolutely irreducible. A representation ρH : H → GL8855(Q) was
constructed as the direct induction to H of a degree-5 representation of an index-1771 sub-
group of H (18s to find the subgroup of H for induction, and 17s to construct the degree-5
representation by IrreducibleRationalRepresentations). The largest normalized
subgroup L of H had order 141557760 and this yielded 10 initial image matrices (9633s;
mostly dominated by the modular Meataxe when computing the homomorphisms by the
modular algorithm from p. 23). Then 42 random elements of H yielded enough linear rela-
tions to determine the unique image of the normalizing element g (327s; the multiplication
of images of ρH was very fast since the matrices were very sparse). Finally, rewriting the
representation on the standard generators of G took 2229s (5 and 12 products respectively
for each generator, in terms of the matrices defining the images of the two generators of
H and g). The total time taken was about 3.5 hours. The matrices defining the resulting
representation have density 41.7% and 34.1% respectively, with entry denominator LCM
16 and all numerators in the range -7 to 7.

90

Chapter 5

General Extension

5.1. Introduction

Let χ be an absolutely irreducible character of a finite group G. The major limitation
of the irreducible extension algorithm is that it is very often the case that there is no
subgroup H of G such that χ ↓ H is absolutely irreducible, so the algorithm simply cannot
be used. The algorithm presented in this chapter removes this limitation completely: it
can extend a representation ρH affording χ ↓ H to a representation of G which affords χ,
where there are no conditions on ρH . We call this general extension from χH to G.

Schulz described an algorithm for general extension, based on a generalization of
Minkwitz’s formula [Min96] when the multiplicity of each constituent is 1 [Sch02, 2.2];
since this algorithm involves looping over H, it is again obviously limited to the case that
H is rather small.

The algorithm presented here involves setting up and solving a system of polynomial
equations. The basic situation is as follows. Suppose that χ is an absolutely irreducible
character of a finite group G, H is a subgroup of G and g ∈ G with G = 〈H, g〉, and
we also have a representation ρH : H → GLn(F) which affords χH = χ ↓ H . We wish
to compute a representation ρ : G → GLn(F) affording χ, with ρ ↓ H = ρH (and we
assume that χ can be realized over F). Just as in the previous irreducible extension
algorithm, suppose that we know matrices [A0, A1, . . . , Ak] such that the matrix ρ(g) must

equal X = A0 +
∑k

i=1 xi · Ai for some assignment of the xi to elements of F . We can
construct relations in G involving g and generators {h1, . . . , hr} of H and evaluate these
at the matrices X and {ρH(h1), . . . , ρH(hr)} respectively, yielding polynomial relations on
the xi which give necessary conditions for the possible solutions. For example, if g2 = h
for some h ∈ H, then we can form the corresponding matrix equation X2 − ρH(h) = 0,
yielding one polynomial equation for each entry of the matrix on the LHS of the equation.
Some of the practical difficulties with this approach are:

1. As the degree n of the representation grows, the required operations on n×n matrices
with polynomial entries becomes very expensive.

2. There may be a large number of variables x1, . . . , xk and the maximal degree d of
a relation in the xi variables (which will equal the degree of g in the corresponding
group relation involving g) may grow large. There are

(
k+d−1
d

)
monomials of degree

d in k variables, and this number grows very quickly as d increases.

3. After collecting several polynomial relations on the xi, we need to know whether
there are enough relations so that a solution to the polynomial system yields a valid
image matrix for ρ(g).

91

4. Solving the polynomial system itself can be very difficult when there are several
variables.

Previous presentations of this kind of algorithm have been restricted to limited situations,
particularly for characteristic zero. Wilson sketched some basic techniques and gave some
simple manual examples in [Wil99]. Plesken & Souvignier [PS97] mentioned a similar
method which was suitable only for representations of small degree; they gave a few basic
improvements but they were mainly interesting in proving finitely-presented groups infinite,
so did not pursue the method in detail.

Despite the above challenges, we will describe a heuristic algorithm which is very ef-
fective for constructing representations of very large degree. Since the algorithm involves
solving non-linear polynomial equations, we need some non-trivial concepts from Alge-
braic Geometry and Commutative Algebra, and we use Gröbner bases in practice. The
key feature which we develop is an effective termination criterion so that one can generate
a relatively small number of low-degree polynomial relations efficiently and know when
there are enough relations to determine a correct result.

5.2. Theory

Let F be a field and F [x1, . . . , xn] be the ring of multivariate polynomials over F . We
first note some basic concepts from Algebraic Geometry and Commutative Algebra which
will be needed. To save space, we refer the reader to standard texts such as [CLO96, BW93],
and assume that the following objects and associated facts are familiar:

1. An (affine) variety V , the variety VF (I) of an ideal I of F [x1, . . . , xn] and the ideal
IF (V) of a variety V , and the fact that I ⊆ IF (VF (I)) for an ideal I, but equality
need not occur. [CLO96, Ch. 1, §4, §5]

2. A Gröbner basis of an ideal I of F [x1, . . . , xn], w.r.t. the grevlex (graded-reverse-
lexicographical) or lex (lexicographical) monomial order for R. [CLO96, Ch. 2]

3. The Zariski closure of a subset of affine space, irreducible varieties, and prime
ideals and the fact that a variety V is irreducible over F if and only if IF (V) is a
prime ideal. [CLO96, Ch. 4, §4, §5]

4. A rational map between two irreducible affine varieties and a birational map
from one variety to another (a rational map with a rational inverse map; this has to
be understood in the extended sense that the composition, in either order, need only
be defined on a non-empty Zariski open subset). [CLO96, Ch. 5, §5]

5. Projective space Pk and projective varieties. [CLO96, Ch. 8]

6. The dimension of a variety V (equivalent to the transcendence degree of the function
field of V) and the fact that the dimension of V equals the dimension of the ideal
I = IF (V) (which also equals the degree of the Hilbert polynomial of I, or the Krull
dimension of the affine ring F [x1, . . . , xn]/I). [CLO96, Ch. 9, §5]

7. Isomorphic varieties and the fact that they have the same dimension [CLO96, Ch. 9,
§5]

8. A maximally independent set modulo an ideal I of F [x1, . . . , xn] (a subset S of
{x1, . . . , xn} such that I ∩ 〈S〉 = ∅ and the cardinality of S is maximal) and the
fact that the dimension of I equals the cardinality of a maximally independent set

92

modulo I. (Intuitively, such a S is a set of ‘free variables’ for the system of polynomial
equations corresponding to I.) [BW93, 9.3], [CLO96, Ch. 9, §5, Cor. 4]

Theorem 5.2.1. (The Projective Extension Theorem) [CLO96, Ch. 8, §5, Def. 4,
Thm. 6] Let I = 〈f1, . . . , fl〉 be an ideal of F [t1, . . . , tD, x1, . . . , xm], where F is an alge-
braically closed field and the fi are (t1, . . . , tD)-homogeneous polynomials (homogeneous in
the ti variables). Set

V := VF (I) ⊂ PFD−1 × AF
m

and set

Ĩ := {f ∈ F [x1, . . . , xm] : for 1 ≤ i ≤ D, ∃ei ≥ 0 with teii f ∈ I},
called the projective elimination ideal of I. If

π : PFD−1 × AF
m → AF

m

is the projection onto the last m coordinates, then

π(V) = VF (Ĩ).

(The point of the theorem is that we have equality in the last statement, so π(V) is itself
an algebraic variety, and not just that π(V) ⊆ VF (Ĩ) as sets.)

We can now present our main theorem which characterizes the set of possible image
matrices in an extension from a representation of a subgroup H to G.

Theorem 5.2.2. Suppose that G is a finite group, H < G and g ∈ G with G = 〈H, g〉,
χ ∈ Irr(G) and F is a field such that χ can be realized over F and ρH : H → GLn(F)
affords χH = χ ↓ H . Let V be the set of all possible A ∈ Mn(F) such that ρ(g) = A for
any extension ρ : G→ GLn(F) of ρH to G which affords χ. Then V can be characterized
as follows:

1. Let ρ1 be any fixed F -representation which affords χ, with ρ1 ↓ H = ρH and set
A1 := ρ1(g). Then

V = {TA1T
−1 : T ∈ CGLn(F)

(ρH(H))}.

2. Let D = DimF (EndFH(ρH)) (which equals the norm of χH w.r.t. H, by Prop. 4.3.1).
Then V is an irreducible affine variety over F of dimension D − 1.

Proof. For the first point, first note that such a ρ1 exists, since if ρ0 is any representation
over F which affords χ, then ρ0 ↓ H is equivalent to ρH so one may conjugate ρ0 to some
ρ1 so that ρ1 ↓ H = ρH . For the chosen fixed ρ1, A1 = ρ1(g) is a fixed constant matrix
which is in V . Write C = CGLn(F)

(ρH(H)) (the centralizer of the matrix group image of

ρH). If ρ is any other F -representation of G which affords χ, with ρ ↓ H = ρH , then clearly
ρ = (ρ1)T , where T ∈ C, so ρ(g) = TA1T

−1 ∈ V . Conversely, for any T ∈ C, defining ρ(g)
to be TA1T

−1 clearly gives an extension of ρH . This proves the first point.

The second point is much more difficult to prove. By the first point, V can be defined by
a rational parametrization (involving rational functions), but we need to prove that it is
identical to an affine variety, which is the set of solutions to a set of polynomial equations.
The non-trivial thing to prove is that V itself is an affine variety; the irreducibility and
dimension conditions then follow fairly easily.

93

Keep the same fixed A1 from above. Let E = EndFH(ρH) and D = DimF (E) and let
[e1, . . . , eD] be an F -basis for E. Then the centralizer C = CGLn(F)

(ρH(H)) of ρH equals

the unit group of E and a general element of C can be written as

T (s1, . . . , sD) =
D∑
i=1

siei, si ∈ F,

where T (s1, . . . , sD) is invertible. Now since conjugation by a non-zero scalar matrix has
no effect, conjugation by T (s1, . . . , sD) can be considered to be a projective operation, so
the tuple of si values can be viewed as lying in the projective space PFD−1 and there is
also a corresponding symbolic matrix T (t1, . . . , tn) which is homogeneous in the ti inde-
terminates. Similarly, we can let X(x1,1, . . . , xn,n) be the n × n matrix with the (i, j)-th
entry equal to xi,j, where the xi,j for 1 ≤ i, j ≤ n are n2 extra indeterminates. Since we
desire X(x1,1, . . . , xn,n) to correspond to a generic element of V , consider the system of n2

polynomial equations given by the matrix equation:

X(x1,1, . . . , xn,n) · T (t1, . . . , tD) = T (t1, . . . , tD) · A1, [E1]

where each polynomial is in the multivariate polynomial ring F [t1, . . . tD, x1,1, . . . , xn,n]
(recall that A1 is a constant matrix). Each solution to this system of equations is a tuple
of the form:

(s1, . . . , sD, c1,1, . . . , cn,n) ∈ PFD−1 × AF
n×n.

The potential problem is that there could conceivably be a solution to the polynomial
system [E1] in which the T matrix would be not invertible, and such a solution would not
correspond to an element of V . But this situation does not arise for the following reason.
Suppose that (s1, . . . , sD, c1,1, . . . , cn,n) is a solution of [E1]. Let C = X(c1,1, . . . , cn,n) and
let S = T (s1, . . . , sD). Since the si coordinates are in the projective space PFD−1, S is non-
zero. Now if S were not invertible, then its rows would generate a non-zero proper subspace
of F n which is invariant under right multiplication by both A1 (since CS = SA1 by [E1])
and by ρH(h) for all h ∈ H (since S is an endomorphism of ρH by construction) and thus
also by ρ1(x), for all x ∈ G. But this contradicts the irreducibility of χ, which ρ1 affords.
We thus have that if (s1, . . . , sD, c1,1, . . . , cn,n) is a solution of [E1], then T (s1, . . . , sD) is
invertible and hence

X(c1,1, . . . , cn,n) = T (s1, . . . , sD) · A1 · T (s1, . . . , sD)−1. [E2]

Thus the point set of the variety V[E1] ⊂ PFD−1 × AF
n×n of the ideal I[E1] generated by

the polynomials given by [E1] equals the set of solutions of [E2]: for each non-zero tuple
(s1, . . . , sD) ∈ (F ∗)D, there exists an element in V[E1] and vice versa.

We next show that if we remove the si coordinates from the elements of V[E1], then we
still have an algebraic variety. Define the projection

π : PFD−1 × AF
n×n → AF

n×n

by
(s1, . . . , sD, ci,j) 7→ (ci,j).

and let Vπ denote the image of V[E1] under π. We claim that Vπ is a variety over F and
equals VF (Iπ). First let F̄ be an algebraic closure of F . Then π naturally extends to a
map π̄ : PF̄ D−1 × AF̄

n×n → AF̄
n×n. Let Ī[E1] be the ideal of F̄ [t1, . . . tD, xi,j] generated by

94

the polynomials given by [E1], let V̄[E1] be the variety over F̄ of Ī[E1], and let V̄π denote
the image of V̄[E1] under π̄. Then by the Projective Extension Theorem (Thm. 5.2.1), V̄π
equals the variety over F̄ of the projective elimination ideal of Ī[E1], so V̄π itself is a variety
(i.e., no new points arise in the Zariski closure of V̄π). It is not difficult to move the result
back to F . Write Iπ = I(Vπ) over F . Suppose there is a point p in VF (Iπ) but not in
Vπ. By the previous paragraph, a point in VF (Iπ) must also be V̄π, so there must be a
preimage (s1, . . . sD, ci,j) of p under π̄ with s1, . . . , sD ∈ F̄ and some sk 6∈ F , but with all
ci,j ∈ F . So the corresponding C = C(ci,j) has entries in F and is similar to A1 over F̄ .
Moving to the rational forms of C and A1 over F , there must be invertible U ∈ Mn(F)
with C = UAU−1. But U must then be in the centralizer of ρH over F , with corresponding
s1, . . . , sD values all in F . Contradiction. Thus Vπ is a variety over F and equals VF (Iπ).

We now show that Vπ can be defined by a rational parametrization. Define the partial
map

f0 : PFD−1 99K PFD−1 × AF
n×n

by

(s1, . . . , sD) 7→ (s1, . . . , sD, ci,j)

where ci,j = (T (sD) · A1 · T (sD)−1)[i,j]. Then f0 is defined on a Zariski open subset and is
trivially injective. Thus V[E1] is the partial image of f0 and combining the 2 injective maps

f0 and π gives an injective map f = f0 ◦ π from PFD−1 to Vπ. We can also take the affine
part AF

D−1 of PFD−1 with first coordinate equal to 1. The natural embedding ι of AF
D−1

in PFD−1 is birational. Combining this with f yields an injective map g = ι◦f from AF
D−1

onto the variety Vπ. This map g thus presents the variety Vπ as a rational parametrization
over the infinite field F , so by [CLO96, Ch. 4, §5, Prop. 6], Vπ is irreducible.

Finally, we see that the map g = ι ◦ f = ι ◦ f0 ◦ π is birational. First, ι and f0

are easily seen to be birational. If we restrict π to V[E1], then π becomes injective, since
distinct elements in the domain having the same image under π would yield matrices T1

and T2 with T1T
−1
2 non-scalar and centralizing both ρH and A1, again contradicting the

irreducibility of χ. Thus there is a unique inverse under π for any element of Vπ and so
π restricted to V[E1] is birational. Thus g is birational and since two irreducible varieties
which are birationally equivalent have the same dimension [CLO96, Ch. 9, §5, Cor. 7] we
have that AF

D−1 and Vπ have the same dimension, which is D−1, thus proving the second
point of the theorem. �

Corollary 5.2.3. Let G,H, g, χ, F, ρH , V,D be as in the previous theorem. Suppose that I
is a prime ideal of F [x1,1, . . . , xn,n] of dimension D−1 with VF (I) ⊇ V . Then VF (I) = V
and so if A is any matrix in VF (I), then defining ρ : G → GLn(F) by ρ(h) = ρH(h) for
h ∈ H and ρ(g) = A yields a valid representation ρ of G affording χ with ρ ↓ H = ρH .

Proof. Since VF (I) and V are both irreducible algebraic varieties over F of equal dimen-
sion and I ⊆ IF (V) (since VF (I) ⊇ V) then by [BW93, 7.57]1 we must have that the ideals
are equal and thus the corresponding varieties over F are also equal. The second statement
follows by the actual definition of V in the Theorem. �

1There is a misprint in the statement of that Lemma: the first ‘dim(J)’ should be ‘dim(I)’.

95

5.3. The Heuristic Algorithm

We can now present our heuristic algorithm for general extension. This is broken into
three parts, as follows:

1. The first subalgorithm ElementOfVariety attempts to find an element of the
variety of a given ideal I over a characteristic zero field F . The basic idea is to set
some variables to constants until there is a unique solution over F . Since the ideal
will be positive-dimensional in general, finding a solution point with entries in F (i.e.,
without extending the field) is a hard problem in Arithmetic Geometry in general,
but this simple method works effectively for the applications we encounter.

2. The heart of the general extension algorithm generates polynomial relations in the
variables occurring in the symbolic matrix X which represents the image of a fixed
g ∈ G, where G = 〈H, g〉. We will call a relation in G of the form (gh)e = 1, for some
h ∈ H and e > 1 a group order relation, since it involves finding elements of small
order defined by products of g and elements of H. The main algorithm successively
generates such group order relations for increasing e (starting with 2) and collects the
corresponding polynomial relations. In this way, the degree of g in each word stays
as low as possible early on, so the degrees of the corresponding polynomials start
low also and simplifications of the polynomial system as the algorithm proceeds may
make higher-degree relations feasible later (this phenomenon is discussed in detail
below). The second subalgorithm ExtendRelations finds a group order relation
for the given order e if possible and extends the polynomial relations accordingly. A
primitive version is first presented here; a much more efficient version will be given
in Subsec. 5.4.6 below.

3. Finally, the main algorithm GeneralExtension uses the above subalgorithms in
a simple way. The algorithm first computes initial image matrices via a normalized
subgroup and uses linear reduction with the character to reduce the number of im-
age matrices, just as in the irreducible extension algorithm. The only difference is
that the linear reduction stops when no more reduction is possible (since the linear
reduction will not reduce to a unique solution if χH is not absolutely irreducible).
Then the algorithm calls ExtendRelations to generate polynomial relations on
the symbolic matrix defined by the remaining image matrices until there are enough
relations and then it calls ElementOfVariety to find a solution of the polynomial
system which yields a valid image for g, from which the representation affording χ
can be constructed.

Subalgorithm ElementOfVariety(I)
Input:

• An ideal I of F [x1, . . . xk], where F is Q or a number field.

Output:

• An element (a1, . . . , ak) ∈ F k of VF (I) or ‘Fail’ if none is found.

96

Steps:

1. Let d be the dimension of I and let S = {xi1 , . . . xid} be a maximally independent set
modulo I (using, for example, the algorithm in [BW93, Table 9.6]).

2. Choose non-zero constants c1, . . . , cd ∈ F so that the ideal J := 〈I, xi1−c1, . . . , xid−cd〉
has dimension 0. If a Gröbner basis of J (with any monomial order) consists of linear
polynomials only, then return the unique element of VF (J).

3. Compute the lexicographical Gröbner basis G of I. Select an f(xi, xj) in G such that
f(xi, xj) involves variables xi, xj only and has total degree 2, and xi ∈ S, xj /∈ S. If
no such f(xi, xj) exists, then return ‘Fail’. Otherwise, determine whether the conic
C defined by f(xi, xj) = 0 has a rational point (c1, c2) ∈ F 2. If there is no such point
then return ‘Fail’. Otherwise set

J := 〈I, xi − c1, xj − c2〉,
and return ElementOfVariety(J).

Subalgorithm ExtendRelations(g, ρH , [A0, A1, . . . , Ak], B, e)
Input:

• An element g ∈ G for a finite group G and a representation ρH : H → GLn(F) of H,
a subgroup of G.

• Matrices [A0, A1, . . . , Ak] ∈Mn(F) and a set B ⊂ F [x1, . . . , xk] of relation polynomi-

als such that for any extension ρ of ρH to G, ρ(g) must equal A0 +
∑k

i=1 ci · Ai for
some (c1, . . . , ck) ∈ VF (I), where I = 〈B〉.

• An integer e > 1.

Output:

• A new set of relation polynomials B′ such that I ′ = 〈B′〉 ⊇ I and for any extension ρ

of ρH to G, ρ(g) must equal A0 +
∑k

i=1 ci · Ai for some (c1, . . . , ck) ∈ VF (I ′).

Steps:

1. Set T to some default value (typically 1000). For T tries, choose a random element
h ∈ H until t = (h · g)e ∈ H. If no such h is found, return B.

2. Set X := A0 +
∑k

i=1 xi · Ai ∈Mn(F)[x1, . . . , xk].

3. Set A := (ρH(h) ·X)e − ρH(t) and set S to the set of all entries of A.

4. Set B′ to the interreduction of (B ∪ S) and return B′. [The interreduction of a set of
polynomials is computed by repeatedly reducing each polynomial to normal form w.r.t.
the other polynomials until no more reductions are possible.]

Algorithm GeneralExtension(χ, ρH)
Input:

• An absolutely irreducible character χ for a finite group G.

97

• A representation ρH : H → GLn(F) affording χ ↓ H , where H is a maximal subgroup
of G and F is a field with F (χ) = F .

Output:

• A representation ρ : G → GLn(F) affording χ, such that ρ ↓ H = ρH . Or possibly
‘Fail’ is returned, if not enough relations found.

Steps:

1. Set MaxLinearTries to some default value (typically 100).

Set MaxOrder to some default value (typically 100).

Set StableCount to some default value (typically 3).

2. Set g, [A1, . . . , Al] := ExtensionImageSetup(G, ρH). [See p. 83.]

Set [A0, A1, . . . , Ak] := LinearTraceReduction(χ, ρH , g, [A1, . . . , Al], MaxLinearTries).

3. Set D := 〈χH , χH〉H , where χH = χ ↓ H . In the following, let Finished(I) for an
ideal I denote the condition that I is prime and the dimension of I equals D − 1.

Set B := {}, c := 0 and e to the smallest divisor of |G| with e > 1.

Loop forever:
{

Set Bnew := ExtendRelations(g, ρH , [A0, A1, . . . , Ak], B, e).
If Bnew 6= B then set B := Bnew, set c := 0 and go to the top

of the loop (use the same e while something new).
Set c := c+ 1 and if c < StableCount then go to the top of the loop.
Set I := 〈B〉. If Finished(I) then break out of the loop.
Set c := 0 and set e to the smallest integer greater than e which divides |G|.
If e > MaxOrder then break out of the loop.

}
4. If not Finished(I) then compute a presentation of G on the generators {g, h1, . . . , hr}

(where h1, . . . , hr are generators of H), and successively evaluate each relation on

(X, ρH(h1), . . . , ρH(hr)) (where X = A0 +
∑k

i=1 xi · Ai ∈ Mn(F)[x1, . . . , xk]) and in-
clude the corresponding relation polynomial in the ideal I (one can stop if Finished(I)
becomes true at any point).

5. If not Finished(I) then for each conjugacy class representation c of G which is not
in H, compute a word w such that c = w(g, h1, . . . , hr) and include the relation
polynomial w(X, ρH(h1), . . . , ρH(hr)) − χ(c) (where X is as above) in the ideal I
(again, one can stop if Finished(I) becomes true at any point).

6. Set (c1, . . . , ck) := ElementOfVariety(I). If ‘Fail’ is returned, then return
‘Fail’.

7. Set A := A0 +
∑k

i=1 ciAi, define ρ : G → GLn(F) by ρ(h) = ρH(h) for h ∈ H and
ρ(g) = A and return ρ.

98

Theorem 5.3.1. Algorithm GeneralExtension is correct (i.e., if it does not return
‘Fail’, then the returned ρ is valid extension of ρH to G affording χ and is written over
F).

Proof. Let V be the set of all possible images of g over F under an extension of ρH to G
affording χ. By Thm. 5.2.2, V is an irreducible variety over F of dimension D − 1. We
need only show that the algorithm terminates and that if ‘Fail’ is not returned in Step
8, then the matrix A assigned in Step 9 must lie in V .

Step 2 does the same setup of the image matrices as IrreducibleExtension, except
that LinearTraceReduction will return without reducing to a unique image matrix
A0 if ρH is not absolutely irreducible. Now for the matrices [A0, A1, . . . , Ak] assigned at
the end of Step 3, define φ : F k → F n×n by

(c1, . . . , ck) 7→ A0 +
k∑
i=1

ciAi.

Then φ is a morphism (polynomial map) from the variety F k to the variety F n×n, and
since [A1, . . . , Ak] are linearly independent over F , φ is an embedding. Then by Lem. 4.3.2,
V ⊂ F n×n is a subvariety of φ(F k) and each call to Subalgorithm ExtendRelations in
Step 3 clearly adds only relation polynomials from F [x1, . . . , xk] to B which match group
relations in G so that it always holds that any f ∈ B vanishes on φ−1(v) for all v ∈ V , so
we always have that φ(VF (〈B〉)) ⊇ V .

The loop in Step 3 clearly terminates. For each possible order e, if there are StableCount
calls of ExtendRelations for e with no change to B, then e is increased. Now B can-
not change indefinitely, since that would imply an infinite sequence of strictly increasing
ideals, which contradicts the ascending chain condition on ideals of multivariate polyno-
mial rings over a field [CLO96, Ch. 2, §5, Thm. 7]. So either the ideal I generated by B
eventually satisfies the primality and dimension condition and the loop is exited, or there
is termination of the loop when e exceeds the bound MaxOrder.

Assume first that the ‘Finished’ condition on the ideal I = 〈B〉 of F [x1, . . . , xk] is
satisfied at the end of Step 3 (so Steps 4 and 5 are skipped). Then at Step 6, I is prime
and has dimension D − 1 so if we let W = VF (I), then φ(W) is a subvariety of φ(F k)
which contains V . As W is irreducible and has dimension D− 1, we have that φ(W) = V
by Cor. 5.2.3.

If either of the bodies of Steps 4 and 5 is entered, then again relation polynomials are
inserted into I which give necessary conditions for a solution, based on the presentation
of G or the character values. All the relations inserted in Step 4 force an element of
φ(W) to be a valid image of g under some extension to G of ρH and Step 5 forces such a
representation to afford the character χ also. So trivially φ(W) = V in this situation also.

Subalgorithm ElementOfVariety clearly finds an element of W if it does not fail:
in Step 2 of that subalgorithm, the extension ideal of I w.r.t. S (obtained by moving
the variables of S into a rational function field) must be zero-dimensional [BW93, 1.122,
7.47] and since F is infinite, it is elementary to find constants c1, . . . , cd such that the
corresponding denominators do not vanish and so that the ideal J is zero-dimensional; in
such a case, the variety of J over F is finite and has cardinality one if and only if all the
Gröbner basis elements are linear. If the conic method is used, then forcing the relevant

99

coordinates to match the solution to the conic clearly reduces the dimension of the ideal
by 2, so the recursive call will terminate.

Thus the matrix A constructed in Step 7 must lie in φ(W) = V . This proves that the
returned ρ is a valid representation of G which affords χ. �

Remarks 5.3.2. The whole of the next section will be devoted to a detailed description
of several major improvements to the basic algorithm which make it much more practical.
But we first give some simple remarks on the algorithm and a small example to illustrate
its basic working.

1. The input representation ρH may be any representation of H affording χ ↓ H , but
in practice one should of course pass in a block diagonal form of ρH with irreducible
blocks so that ExtensionImageSetup and LinearTraceReduction can exploit
the block structure. It is often the case that the latter two subalgorithms dominate
the time (even for very large examples), so it is worth improving things here as much
as possible. The irreducible components over F can be computed by the algorithm
IrreducibleRepresentationsOverField.

2. The parameter MaxLinearTries determines when LinearTraceReduction should
give up trying further random elements of H; 100 seems a reasonable default but it
can be varied, depending on the expense of a single try. In IrreducibleExtension,
the linear reduction is guaranteed to reduce to a unique solution (with no variables
left), but this will not happen here if ρH is not absolutely irreducible. The initial linear
reduction is usually very much worth doing, since it reduces the number of variables,
and this can make a critical difference when constructing the polynomial relations later,
as will be seen below.

3. Rewriting the final representation on the original generators of G is done in exactly
the same way as for IrreducibleExtension (see p. 88). As pointed out before, this
can be non-trivial but for the large representations which we computed, we were able
to use the method involving words in the standard generators which is very efficient
(examples of this will be seen for the large sporadic group representations below).

4. Steps 4 and 5 are included to guarantee that there are enough polynomial relations to
give a correct solution, but these steps are practically never needed in our implemen-
tation. We have found that for every time we have used the algorithm, it is easy to
find enough group order relations of very small order to generate the same ideal as that
given by a full presentation in Step 4. Also, Step 5 ensures that all character values
of χ are covered by polynomial relations, but what happens practically always is that
either ρH can extend only to a unique representation affording χ (and not a distinct
conjugate of χ) or the initial call to LinearTraceReduction hits enough elements of
the form gh with h ∈ H such that the corresponding character values produce enough
conditions so that any solution to the polynomial system can only give a representation
which affords χ itself.

5. Suppose that the irreducible constituents of ρH over F are all absolutely irreducible
and occur with multiplicity 1 and ρH has the corresponding block diagonal form (this
situation happens very often in practice). Then clearly every element of the centralizer
of ρH is a block-diagonal sum of non-zero scalar matrices. It is then easy to see that for
any image matrix A ∈Mn(F) of the corresponding variety V over F from Thm. 5.2.2,

100

the (i, j)-th entry of A has the form
tli
tlj
ci,j for some constants ci,j ∈ F , 1 ≤ li, lj ≤ D,

and any (t1, . . . , tD) ∈ (F ∗)D, and the corresponding ideal I = IF (V) is generated by
linear polynomials and polynomials of the form xA · xB − dA,B for non-zero constants
dA,B ∈ F ∗ (so these polynomials have recursive degree 1 in each variable, even though
they are not necessarily linear). Thus in the subalgorithm ElementOfVariety, the
Gröbner basis will consist of such polynomials only and it is always trivial to find
an element of the variety with values lying in F (practically any non-zero evaluation
choice for the maximally independent variables will give a maximal ideal). The whole
algorithm GeneralExtension thus always succeeds in this case, and so returns a
representation written over a minimal field F , if F is such for χ. A very simple example
of this occurs in Ex. 5.3.3 below, but in nearly all the larger examples we present, ρH
satisfies the above condition too, so the corresponding relation ideal has the simple
form too (with recursive degree 1 in all variables). An example of this situation with
several variables occurs when constructing the degree-3588 representation of Fi23 (see
p. 118).

When this simple situation does not occur, it is still common that for each irre-
ducible component σ of ρH , either of these conditions hold:
• The dimension of the endomorphism ring of σ is 2 and the multiplicity of σ is 1;
• σ is absolutely irreducible and occurs with multiplicity 2.

In such a case, we have found that the conic method always succeeds for all the examples
which we have encountered. An example where the conic method is needed is given in
Ex. 5.5.3 below.

6. It is in fact easy to extend the subalgorithm ElementOfVariety so that it always
succeeds and returns an element of the variety, but potentially with coordinates in some
proper extension field of F . If Step 3 of that subalgorithm fails, then the subalgorithm
can simply put the zero-dimensional ideal J from Step 2 into normal position [BW93,
8.81] and let E be the appropriate extension field and so after lifting to E, the variety
of J will be non-empty and an element of this with values in E can be returned (and
this would yield a valid representation affording χ, written over E). But since we focus
on computing representations over minimal fields in this thesis, the algorithm as stated
avoids extending the input field F .

7. Just as in the irreducible extension algorithm, we first conjugate H if possible so that
one of the given generators of G is in H, so that the corresponding image matrix is
usually sparse or has entries in a subfield, etc., so the final representation is more
compact (see p. 88). Examples of this will be seen below.

Example 5.3.3. Let G = 〈g1, g2〉 ∼= A6, where g1 = (1, 2)(3, 4, 5, 6), g2 = (1, 2, 3) and let
χ be one of the irreducible rational characters of G of degree 5. Let H = 〈h1, h2〉, where
h1 = (1, 3, 5)(2, 4, 6), h2 = (1, 6, 4, 3)(2, 5); H is a subgroup of G of order 24 (shape 2.22.3)
and χH = χ ↓ H splits as 1 + 1 + 3. Corresponding irreducible representations σ1, σ2, σ3 of
H are easily constructed and are defined by:

σ1(h1) =
(

1
)
, σ1(h2) =

(
1
)

σ2(h1) =
(

1
)
, σ2(h2) =

(
−1

)
101

σ3(h1) =

 0 0 1
1 0 0
0 1 0

 , σ3(h2) =

 −1 0 0
0 0 1
0 −1 0


Let ρH = σ1 ⊕ σ2 ⊕ σ3 (the block diagonal sum). We can extend ρH to a representation ρ
affording χ using GeneralExtension, as follows.

• In Step 2, a subgroup L = 〈(2, 3)(5, 6), (2, 5)(3, 6)〉 of H and g = (1, 4)(2, 6, 3, 5) ∈ G
are immediately found with g ∈ G \ H and Lg = L; L has order 4 and g has order
4, with g2 = hs ∈ H, and there are 7 initial image matrices [A1, . . . , A7]. Then 3
linear relations are found in LinearTraceReduction, so there are 4 new image
matrices [A1, A2, A3, A4] with a constant matrix A0 such that the image ρ(g) must
equal X = A0 +

∑4
i=1 xiAi for some assignment of the xi variables. Writing this out,

we get:

X =


−1

2
0 0 0 x1

0 0 x2 −x2 0
0 x3 −1

2
−1

2
0

0 −x3 −1
2
−1

2
0

x4 0 0 0 1
2

 .

• In Step 3, first D is set to 1 + 1 + 1 = 3 (the dimension of the endomorphism ring
of ρH). The loop starts with e = 2, and the group relation g2 = hs ∈ H in G yields
the corresponding polynomial relation X2 − ρH(hs) = 0. The ideal generated by the
entries of the LHS of this equation is

I = 〈x1x4 −
3

4
, x2x3 +

1

2
〉.

Clearly I is prime and has dimension 2 ({x3, x4} is a maximally independent set for I,
for example), so the loop can be exited immediately and the algorithm skips to Step
6.

• In Step 6, by including the 2 polynomials x3 − 1, x4 − 1 in the ideal, we obtain the
solution vector (c1, c2, c3, c4) = (3

4
,−1

2
, 1, 1) ∈ Q4.

• Finally, in Step 7 we set A = A0 +
∑4

i=1 ciAi, so:

ρ(g) = A =


−1

2
0 0 0 3

4

0 0 −1
2

1
2

0

0 1 −1
2
−1

2
0

0 −1 −1
2
−1

2
0

1 0 0 0 1
2


• Applying the resulting ρ on the original generators g1, g2, we obtain:

ρ(g1) =
1

8


2 −6 −3 3 3

−4 4 −2 2 2

4 4 2 6 −2

−4 −4 6 2 2

4 4 2 −2 6

 , ρ(g2) =
1

8


2 −6 −3 −3 −3

4 −4 2 2 2

−4 −4 −2 6 −2

4 4 2 2 −6

4 4 −6 2 2



102

Notice the structure of the symbolic matrix X at the end of Step 2 and the corresponding
ideal I of relations after Step 3. The square block diagonal submatrices with dimensions
1, 1, 3 respectively are constant, so these portions of ρ(g) are unique. For any valid image
matrix A, the only possible operations to modify it to another valid image matrix are:

• Multiply row 1 by a non-zero scalar s1 and divide column 1 by s1,
• Multiply row 2 by a non-zero scalar s2 and divide column 2 by s2,
• Multiply rows 3 to 5 by a non-zero scalar s3 and divide columns 3 to 5 by s3.

These operations correspond to the components of the endomorphism ring of ρH and do
not modify the blocks on the diagonal.

5.4. Major Improvements to the Basic Algorithm

We now outline several major improvements to the basic GeneralExtension algorithm;
most of these involve the subalgorithm ExtendRelations. Every single improvement
described here was absolutely necessary for the construction via general extension of several
of the representations of very high degree of the sporadic groups.

5.4.1. The Polynomial and Ideal Operations. If B is the list of relation polyno-
mials at any point in the algorithm, then whenever any new polynomials are created at
any point, they should be reduced to normal form modulo B. This should be done not
only when new polynomials are added to B, but especially after every intermediate product
when a group order relation is being evaluated at the symbolic matrix X = A0+

∑k
i=1 xi ·Ai

and the appropriate images of ρH .

Reducing every polynomial modulo B can cut down on the number of monomials
enormously. The greatest reduction would occur if one could work in the residue class ring
R = F [x1, . . . xk]/〈B〉, but to compute with elements of that ring would require computing
a full Gröbner basis for the ideal generated by B each time it changes, which should be
avoided until the set of relation polynomials becomes stable. Thus our implementation
only uses the current basis B of the ideal to reduce by, instead of a full Gröbner basis,
but this still can give a very significant reduction. When evaluating a group relation of
degree d in the xi variables, then there are potentially

(
k+d−1
d

)
monomials in each relation

polynomial, as noted above. But if these polynomials are reduced modulo B, then the
number of monomials in each polynomial may be reduced to a number of the order of
HI(d), the d-th coefficient in the Hilbert series of I = 〈B〉, and this number will often be
much smaller.

As an example, when constructing the degree-2480 representation of the Lyons group
below (p. 116), after order-3 group relations had been used, there were 6 variables and the
leading monomials of the polynomials in the current set B were {x2

1, x1x2, x1x
2
3, x

4
2, x5x6}.

The next group relation which would reduce the polynomial system further had to be an
order-7 group relation. Now an inhomogeneous polynomial of degree 7 in 6 variables can
have up to 1716 monomials, but the new relation polynomials were constructed modulo B
and there were only 62 distinct monomials occurring in all the polynomials. So even this
relation of rather high degree could be managed quite easily.

One can also generate more relation polynomials for B without evaluating group re-
lations by successively computing a partial Gröbner basis as the algorithm progresses, as

103

follows. Let DegreeGroebnerBasis(B,M) denote the well-known simple variant of
Buchberger’s algorithm which:

• Takes as input a set B of polynomials in F [x1, . . . , xr] and a positive integer M ;
• Computes a partial Gröbner basis of the ideal I generated by B by following Buch-

berger’s algorithm, except that all S-polynomial pairs of degree greater than M are
ignored;
• Interreduces and minimizes the resulting set of polynomials B′ and returns B′

(which generates I, even if it is not a full Gröbner basis for I).

The output of this algorithm does not necessarily equal the set of polynomials from a
complete Gröbner basis of I which have degree up to M (it would if the input polynomials
were all homogeneous, but this is never the case in the context of the general extension
algorithm). Now whenever B is extended in ExtendRelations, by letting m be the
maximum degree of the elements of B and then calling DegreeGroebnerBasis with B
and M = m+ 1, the output B′ will generate the same ideal as B and will not be too hard
to compute because of the degree bound, but also:

• B′ may contain polynomials which have smaller degree than those in B (because
of non-trivial collapsing arising from the partial Gröbner basis computations) and
in this case: (1) there may be some linear polynomials (so the number of image
matrices and variables can immediately be reduced; see below) or (2) at least the
normal forms of subsequent polynomials reduced modulo B′ may have far less
monomials.
• B′ will typically contain many polynomials of degree m + 1, so when group order

relations of higher degree are used, the normal forms of the new generated polyno-
mials will have less monomials than otherwise, since they will be reduced by these
extra polynomials.

It is thus much better in practice to use this algorithm instead of just interreducing the new
set of polynomials whenever it is extended: even a partial Gröbner basis of B contains more
information than the original set B. We have implemented an efficient implementation of
Faugère’s F4 algorithm [Fau99] in Magma, and the truncated degree-M variant is easily
implemented with some simple modifications.

To compute the dimension of an ideal I, our implementation uses the recursive search
algorithm given in [BW93, Table 9.6]; this algorithm returns the dimension d and a
maximally-independent set S of variables of cardinality d. As it stands, this algorithm
has exponential complexity in the number of variables, and so can be hopeless if the di-
mension of the current ideal I is much larger than the target value D − 1 (this may occur
near the start when very few polynomial relations have been gathered). However, it is
easy to modify this algorithm so that one can give a lower bound L so that the algorithm
will return as soon as it finds an independent set of variables of cardinality d ≥ L. We
have implemented this and use L = D − 1 (since the dimension of the relation ideal I at
any point must be at least D − 1). Consequently, if the dimension of the current ideal
is too large, then that is typically discovered immediately. Note also that an alternative
method to compute the dimension is to compute the degree of the Hilbert polynomial via
the algorithm in [BS92].

104

To test whether an ideal I is prime, we use the approach described in [GTZ88], [EHV92]
or [BW93, 8.7] with some heuristic optimizations: the basic technique is that if I has
dimension d and S is a maximally-independent set of cardinality d, then by moving the
variables of S into a rational function field F we can reduce the problem to testing whether
the corresponding zero-dimensional ideal over F is prime (which can done efficiently by an
evaluation technique) and recursing on a suitable saturation of the ideal; the dimension
must eventually decrease, ensuring termination [BW93, 8.8]. The prime testing is thus not
a major issue for the ideals which arise in the algorithm.

5.4.2. Removing Linear Relations Progressively. Suppose that at any point, the
set B of polynomial relations contains a polynomial of total degree 1. Then one matrix and
symbolic variable can be removed (just as in the algorithm LinearTraceReduction),
as follows. Suppose the linear polynomial has the form:

xl = c0 +
l−1∑
j=1

cjxj,

where cj ∈ F . Since the symbolic matrix X is written as A0 +
∑k

i=1 xi ·Ai, one can simply
replace A0 with A0 + c0 · Al and replace Ai with Ai + ci · Al for 1 ≤ i < l, then remove Al
from [A1, . . . , Ak] and decrease k and redefine X (see the proof of Thm. 4.4.1 for the details

in a similar situation). At the same time, xi should be replaced by c0 +
∑i−1

j=1 cjxj in each

polynomial of B (equivalently, each polynomial can be reduced to normal form modulo
this polynomial, assuming that xi is greater than the other variables w.r.t. the monomial
order). This reduction should be done successively for each linear polynomial in B.

We have found that this reduction always helps greatly and should be done immediately
when possible: as noted above, when we generate polynomial relations of degree d from the
k image matrices, there are up to

(
k+d−1
d

)
monomials in the polynomials, so reducing k can

reduce this number dramatically. Note that this situation is in contrast to the irreducible
extension algorithm: recall that for that algorithm it is not necessarily advantageous to
reduce the system as soon as each new linear relation is found, since a single reduction of
the system can be expensive compared to the collection of more linear relations (see p. 87).

5.4.3. Representing the Symbolic Matrix. Suppose X represents the symbolic
matrix

(A0 +
k∑
i=1

xi · Ai) ∈Mn(F [x1, . . . , xk]),

corresponding to the image of g, as the algorithm progresses. In our first implementation,
we did actually represent X by an element of Mn(F [x1, . . . , xk]), i.e., by a matrix whose
entries lie in the multivariate polynomial ring F [x1, . . . , xk]. This made the implementa-
tion simple, since Magma easily supports the required matrix operations over multivariate
polynomial rings. However, multiplication of multivariate polynomials can be very expen-
sive, particularly when there are large number of variables, let alone large matrices over
such polynomials!

It is better to represent the symbolic matrix as an element of (Mn(F))[x1, . . . , xk]. In
our implementation, we represent such a matrix by a list of pairs of the form 〈mi, Ai〉 where

105

mi is a monomial in the x1, . . . , xk variables and Ai ∈ Mn(F). Multiplying two such ma-
trices involves multiplying all pairs and then collecting the pairs with the same monomials
and adding the corresponding matrices, etc. One should reduce all the product monomials
modulo the current relations (as in Subsec. 5.4.1 above) before collecting them. This has
the effect that all the matrix multiplications only involve matrices over F , so multivari-
ate polynomial arithmetic is avoided and a fast modular matrix multiplication algorithm
over F can be used. One can also use parallelism in multiplying all the pairs. So this
representation of the symbolic matrix X leads to a great speedup in our implementation.

Note also that the matrices are often very sparse initially (arising from the Hom-module
basis for the restriction to the subgroup L) but typically become denser after removal of
linear relations which arise from both the call to LinearTraceReduction and from
subsequent order relations. Our implementation uses both sparse and dense representations
for the image matrices, switching appropriately between these representations according
to the density of each matrix.

5.4.4. Using the Action on a Smaller Matrix. Suppose again that X represents
the symbolic matrix A0 +

∑r
i=1 xi · Ai, corresponding to the image of g. The simple

subalgorithm ExtendRelations finds h, t ∈ H with (hg)e = t for e > 1 and then
computes the n2 polynomial relations coming from the matrix equation:

Y = (ρH(h) ·X)e − ρH(t) = 0.

As n grows larger (in the hundreds, let alone thousands), this obviously becomes impracti-
cal to manage. Also, there tends to be a lot of redundancy: the number of distinct entries
of Y after normalization (multiplying each polynomial by a scalar to make it monic) tends
to be much less than n2.

The following idea avoids this problem. Choose a positive weight w < n (take w = 10
by default if n > 10) and then choose a w × n matrix W with small random entries
in F (typically, random values from {−1, 0, 1}). Then the relations can be based on the
multiplicative action of the symbolic matrices on W instead of full products of the symbolic
matrices. That is, we can compute the wn polynomial relations coming from the matrix
equation:

W · (ρH(h) ·X)e −W · ρH(t) = 0.

Each term of the LHS of this equation should of course be computed by successively
multiplying each intermediate w×nmatrix by each new matrix on the right. This procedure
thus avoids computing any full matrix product of two n× n matrices.

Clearly, the polynomial relations coming from the above matrix equation involving
the action on W are just F -linear combinations of all the possible polynomial relations
coming from the entries of Y . In practice, this seems sufficient to yield essentially the
same relations. But the time and memory improvement is typically of the order of n/w,
which is very significant when n is very large. For cases such as constructing the minimal-
degree faithful representations of the Baby Monster group (n = 4371) and Fischer F ′24

group (n = 8671) via general extension, where we used w = 10, the improvement was
critical (see p. 119 and p. 121 respectively).

Recall that in the function LinearTraceReduction, the product-replacement ran-
dom algorithm was used on the images of elements of H to avoid recomputing ρH(h) from

106

scratch for each h (see p. 87). In contrast, in ExtendRelations it is better to recom-
pute ρH(h) for each h using the standard method of words in the strong generators of H,
since it may be necessary to generate many random elements of H until an h is found
with (gh)e ∈ H for the given e, and there are other elements of H at which ρH must
be evaluated. Thus, unlike the situation in LinearTraceReduction, it is better not
to compute all the corresponding image matrices under ρH in parallel while generating
random elements of H. We have also added a variant to the kernel code in Magma for
computing W · ρH(h), as follows. If MH is the FH-module corresponding to ρH , then the
existing Magma function Representation(MH) returns a map f so that f(h) gives ρH(h)
for h ∈ H (using the standard method of words in the strong generators). The new vari-
ant is called by f(W, h), where W is a w × n matrix W , and returns W · ρH(h): again,
instead of multiplying the full matrices out first, it evaluates the appropriate action on the
w × n matrices by each successive matrix determined by the relevant word in the strong
generators and their inverses, and thus avoids any multiplication of n × n matrices after
the initial setup of ρH .

Finally, for huge H, it may be too hard even to compute a BSGS for H and write an
arbitrary element of H as a word in the strong generators of H. So the algorithm can just
try elements of H such h1, h2, h1h2, etc. until the product by g has reasonably small order
so such elements of H can be used for group order relations. This technique was used for
constructing the degree-8671 representation of Fi′24 where we only needed to use the group
relations g2 = 1 and (gh2)8 = 1, where h2 was the second standard generator of H (see
p. 121).

5.4.5. Using Inverses in Relations. Suppose that for the normalizing element g ∈
G, we have g2 = s ∈ H. Then we after we initially include the polynomial relations coming
from the relation g2 = s in B, we can reduce the degree of subsequent relations by splitting
a relation into a LHS and RHS and using a symbolic image for g−1 which does not need
inverses of the Ai. First note that

g−1 = gs−1 = s−1g.

Then suppose we have t = (h · g)e ∈ H. Let er be b e
2
c and el be e− er, so e = el + er. Then

(h · g)el = (h · g)−er · t
= (g−1 · h−1)er · t
= (g · s−1 · h−1)er · t
= (g · u)er · t [where u = (h · s)−1]

= (g · u)er−1 · g · (ut).
Thus if X is the symbolic matrix representing the image of g, then we can use the polyno-
mial relations coming from the matrix equation:

(ρH(h) ·X)el = (X · ρH(u))er−1 ·X · ρH(ut).

We have separated out the final gu in the RHS so that (ut) can be placed together (both
u, t ∈ H) so one can multiply by the single matrix ρH(ut) over F .

We thus have an equivalent relation but the degree in the variables is el = d e
2
e instead

of e, which makes a huge difference in practice in the number of monomials occurring in
the polynomials.

107

Combining this idea with the action on a smaller matrix W , our implementation always
computes the relations via the matrix equation:

W · (ρH(h) ·X)el = W · (X · ρH(u))er−1 ·X · ρH(ut).

This idea can be extended to the case that g3 ∈ H (so g−1 can be written in terms of
g2 and elements of H) and so on.

5.4.6. The Advanced ExtendRelations subalgorithm. Combining all of the
ideas in the 5 previous subsections, we can now present an advanced version of the subal-
gorithm ExtendRelations which is a lot more efficient than the original simple formula-
tion (and matches our implementation fairly closely). In the last step of this new version,
the algorithm performs the linear reduction as described in Subsec. 5.4.2 and then returns
not only B′ but the new [A0, A1, . . . , Ak] as well. So the original GeneralExtension
just has to be modified so that in Step 3, [A0, A1, . . . , Ak] and k are updated to the value
returned by the new ExtendRelations.

Subalgorithm ExtendRelations(g, ρH , [A0, A1, . . . , Ak], B, e) [ADVANCED]
Input and Output as for original ExtendRelations (p. 97) except that the new poly-
nomial relation set B′ and new [A0, A1, . . . , Ak] are returned.
Steps:

1. For T tries, choose a random element h ∈ H until t = (h · g)e ∈ H. If unsuccessful,
return B, [A0, A1, . . . , Ak].

2. Set X := A0 +
∑k

i=1 xi · Ai ∈Mn(F)[x1, . . . , xk].

3. Choose a positive weight w ≤ n (default 10) then a random w × n matrix W with
small random entries in F . In the following, compute U ·ρH(h), etc. for any h ∈ H by
the above method with successive action on w×n matrices (see p. 106), thus avoiding
computing ρH(h) explicitly.

4. If e > 2 and g2 ∈ H then:
{

Set s := g2 and u := (h · s)−1.
Set er := b e

2
c, el := e− er [so (hg)el = (gu)er−1 · g · (ut)].

Set U1 := W .
For i := 1 to el do:

Set U1 := ((U1 · ρH(h)) ·X) mod B.
Set U2 := W .
For i := 1 to er − 1 do:

Set U2 := (((U2 ·X) mod B) · ρH(u).
Set U2 := ((U2 ·X) mod B) · ρH(ut).
Set A := U1 − U2.

}
Else:
{

Set U := W .
For i := 1 to e do:

108

Set U := ((U ·X) mod B) · ρH(h).
Set A := U −W · ρH(t).

}
5. Set S to the set of all entries of A and set T := B ∪ S.

Set d to the maximum of the total degrees of the elements of T .

Set B′ := DegreeGroebnerBasis(T, d+ 1).

6. While B′ contains a linear polynomial fl do:
{

Write the normalized fl as xl − (c0 +
∑l−1

j=1 cjxj).
Set A0 := A0 + c0 · Al.
Set Ai := Ai + ci · Al for 1 ≤ i < l.
Remove Al from [A1, . . . , Ak] and remove fl from B′.

Replace xl by c0 +
∑i−1

j=1 cjxj in f for all f ∈ B′.
Replace xj by xj−1 for l < j ≤ k in f for all f ∈ B′.
Set k := k − 1.

}
7. Return B′ and [A0, A1, . . . , Ak].

5.4.7. The Quality of the Final Representation. The algorithm as stated does
not consider the quality of the output (the size of the entries in the matrices), in that the
final representation will depend on the choice of the solution point from the variety V .

In our implementation we have added another step before Step 6 which first reduces
the basis given by the final matrices [A1, . . . , Ak] (as an F -vector space) and applies the
corresponding transformation to the relation polynomials. The reduction method is very
similar to that used in the algorithm ReducedBasisForAction (p. 73): expand the F -
basis over Q, saturate it and apply LLL and then select a reduced F -basis corresponding
to a suitable subset of this expanded Q-basis. After this reduction, the default choice of
±1 for the constants which the independent variables are set to in ElementOfVariety
tends to yield a representation with very small entries in practice.

For some of the very high-degree representations described below, we have made a
particular choice of constants for the solution point (after the above reduction), so as to
keep the final entry numerators and denominators as small as possible. The next chapter
gives an alternative way of reducing the result, which makes the particular choice of the
point in the variety unimportant.

5.4.8. Finding a Normalized Subgroup in Large Matrix Groups. When the
group G is so large that it has to be defined by a high-degree matrix group representation
over a finite field in practice (such as some of the sporadic simple groups), it can be very
difficult to compute a suitable subgroup L of H and g ∈ G \ H with Lg = L, since the
computation of normalizers is very difficult for such matrix groups.

We outline here a method which we have used to handle this situation, assuming that
G is defined by an irreducible modular matrix representation.

109

1. First select a proper subgroup S of H (typically a maximal subgroup) and then search
for a subgroup E of G which includes S but is not contained in H. This can be
done (avoiding the computation of a BSGS) by repeatedly choosing a random element
t ∈ G\H of very small order and setting E = 〈S, t〉 and testing whether E is reducible
(via the modular Meataxe); if so, then E must be a proper subgroup of G, since G is
irreducible.

2. Let π be some homomorphism from E to a smaller-degree representation. Usually
one can use the representation given by some element of the composition series of
the natural E-module (small enough so that one can compute effectively with this
representation, but large enough to avoid too much collapsing).

3. Finally, let Eπ = π(E), Hπ = π(H), find a subgroup Lπ of Hπ and gπ ∈ Eπ, with
(Lπ)gπ = Lπ, gπ /∈ Hπ (either by recursion or by using a simple loop over the subgroups
of Hπ) and then map all of these back via π−1 to L and g respectively in the original
matrix representation of G. Since the kernel of π is a normal subgroup, it is clear that
Lg = L and g /∈ H.

We have used this method when computing these irreducible representations via extension:

• The degree-248 and -4123 representations of the Thompson group (p. 115).
• The degree-1333 representation of the Janko Group J4 (p. 116).
• The degree-1938 representation of 2E6(2) (p. 184). (Here L had order 174182400

and there were 27 initial image matrices.)
• The degree-2480 representation of the Lyons group (p. 116).
• The degree-4371 representation of the Baby Monster group B (p. 119).
• The degree-64 and degree-128 representations of 2.An for n = 13, 14, 15, 16, 17

(p. 171, etc.). Non-trivial modular matrix representations2 are used to define
these groups since permutation representations are too large. Now for each group
G = 2.An, instead of searching for the subgroup E as above, one can of course just
let π be the (non-faithful!) degree-n permutation representation of G with image
equal to An and then proceed as in Step 3 above.

5.5. Examples

This section contains some basic examples of general extension. Later sections in this
chapter describe in detail how general extension was used to construct representations of
the very large sporadic groups.

Example 5.5.1. Let G = 6.M22 and let χ be one of the minimal-degree faithful characters
of G; χ has degree 66, Schur index 1 and character field F = Q(α), where α has minimal
polynomial x4 − 5x3 + 8x2 − 7x+ 7. A typical call to AbsolutelyIrreducibleRepre-
sentation on χ constructs an F -representation affording χ in about 1370s, with entries
having 32-digit numerators and common denominator 1, so this is an example where it is
hard to construct an absolutely irreducible representation with small entries.

As a better alternative, we computed a representation ρ affording χ using general ex-
tension, as follows (table entry on p. 166). Let H be the maximal subgroup of G with shape
2.24.3.A6 (order 34560, index 77). Then χH = χ ↓ H splits over F as 30+36. Note that the

2Provided by D.F. Holt for n = 15, 16, 17.

110

degree-36 representation is not absolutely irreducible, but both of these representations can
be realized (minimally) over Q(ζ3), which is a subfield of F . Representations over F afford-
ing these characters were constructed by IrreducibleRepresentationsOverField in
only 3.4s. Then GeneralExtension was called with χ and these representations of H.
A normalized subgroup L ≤ H of order 2160 and g ∈ G \ H with Lg = L and g2 ∈ H
was instantly found, with 18 initial image matrices. Linear reduction reduced this to 12
matrices and then the single group relation g2 = h1 ∈ H yielded 6 linear polynomial rela-
tions and an ideal in 6 variables of dimension 2 which was the required dimension, since
the norm of χH equals 3 (1.4s). Then a solution matrix was instantly constructed and the
rewriting of the representation to be defined on the standard generators g1, g2 of G took
1.4s, so the whole of GeneralExtension took only 2.8s total. Since we could initially
conjugate H so that g1 ∈ H, ρ(g1) is very sparse (at most 3 non-zero entries per row), while
ρ(g1) has density 67.2% and absolute maximum numerator 17 and common denominator
32; typical entries are 1

32
3(α3 − 12α2 + 16α− 7), 1

8
(−α3 + 3α2 − 2α + 2).

Example 5.5.2. Let G be the sporadic simple Suzuki group Suz and let χ be the minimal-
degree faithful character of G; χ has degree 143 and is rational with Schur index 1. We
computed a representation ρ affording χ using general extension, as follows (table entry on
p. 171). Let H be the largest maximal subgroup of G, which equals G2(4) (index 1782);
χH = χ ↓ H splits as 65 + 78 and rational representations affording these characters were
found in 10s (via IrreducibleRationalRepresentations). Then GeneralExten-
sion was called with χ and these representations of H. The subgroup L ≤ H of order
604800 was instantly found with 9 corresponding image matrices. Linear reduction reduced
this to 2 image matrices, then the initial square group relation reduced the system to the
single relation x1x2 = 3

8
, from which an image of g was easily constructed (0.4s). Finally,

the representation was rewritten to be defined on the standard generators of G in 1.5s to
obtain ρ : G → GL143(Q), which has absolute maximum 2-digit numerators and denomi-
nator LCM 4. So the general extension algorithm took only 2.4s after the representations
of H were set up. We also conjugated ρ to an integral representation in 0.8s; the result
has 2-digit entries.

Example 5.5.3. In this example, the conic method is needed in the subalgorithm Ele-
mentOfVariety. Let G = 3.O′N:2, which is the automorphism group of H = 3.O′N. A
minimal-degree faithful representation of G has degree 684 and is realized over the qua-
dratic field F = Q(

√
−6). Let χ be one of the corresponding characters. We computed

such a representation by general extension, as follows (table entry on p. 201). We had
already computed the absolutely irreducible representation σ342 : H → GL342(F2) where
F2 = Q(β) with defining polynomial x4 + 2x2 + 4 (table entry on p. 178). Since F is
a subfield of F2, we could immediately compute the restriction to scalars representation
σ684 : H → GL684(F) of σ342 from F2 to F (via Prop. 1.6.2); σ684 is irreducible over F ,
but not absolutely irreducible. When we applied GeneralExtension to χ and σ684,
there were 2 initial image matrices, no linear trace reduction, and the initial square group
relation yielded one quadratic polynomial relation (354s; time totally dominated by Ex-
tensionImageSetup). The single relation was:

x2
1 − 2x2

2 + αx1x2 +
1

2401
(α + 5) = 0 [α =

√
−6].

111

A rational point (1
49

(−2α+ 1), 3
49

) ∈ F 2 on the corresponding conic was then computed in
0.2s and this yielded a suitable image matrix over F . The total time was 359s (starting
with the precomputed σ324).

5.6. General Extension Without Explicit Use Of The Character

We now describe a practical variant of GeneralExtension where the character χ
does not need to be used explicitly by the algorithm. This variant is useful when G is so
large that is not practical to compute the conjugacy classes of G or work with characters
of G explicitly. All that is needed to be known about χ explicitly on the computer is the
decomposition of χH = χ ↓ H into irreducible characters for some subgroup H of G so
that a suitable ρH affording χH can be set up first. Very often, basic theory or a manual
inspection of the ATLAS [CCN+85] reveals how χ decomposes w.r.t. a given maximal
subgroup H; we have done exactly this for several of the representations of the very large
sporadic groups.

The first simple modifications to the original algorithm (p. 97) are the following: in Step
2, simply set k to l and initialize A0 to zero instead of calling LinearTraceReduction,
and omit Step 5. There is thus never any use of χ explicitly in this variant of the algorithm.

Now suppose that ρH is the fixed input representation which affords χH . Let C be
the number of representations of G of degree n = χ(1) which are extensions of ρH (it is
generally easy to determine C in practice by examining the Galois-conjugacy class of χ,
inspecting the character table of G, H, etc.). If C > 1, then algebraic relations from words
involving elements of G and H may be insufficient to determine a unique representation (up
to equivalence) which affords χ and extends ρH . But this can be easily handled by loosening
the condition that the relation ideal I must be prime over the target field F , while keeping
the same dimension condition. When the algorithm reaches the correct dimension and
includes linear relations for the maximally-independent variables in ElementOfVariety,
so that the corresponding ideal J is zero-dimensional, there will be a finite number s of
points in VF (J) (instead of the usual single element when I is prime and J is maximal).
Now s ≥ C always, so while s > C, there are not enough relations yet to determine all
degree-n extensions of ρH , so the algorithm must proceed further to gather more relations.

When s = C, any solution to the polynomial system must yield a valid degree-n
extension of ρH to G. So if the characters of all extensions of ρH to G are only the
conjugates of χ, then we can just use any solution and then find the desired conjugate of
the resulting representation. But there may also be degree-n extensions of ρH to G whose
characters are not conjugate to χ. In each case, by evaluating traces of images of the
generators and small-length products of these, we can determine enough of the character
of any computed representation to identify it, and so we can select the solution which
gives a representation affording the particular character we desire (and there are at most
C possible solutions which must be considered).

There is one other important optimization for this variant of the algorithm. Let F be
the minimal field over which χ is to be realized. Now the minimal field S over which ρH is
written may be a proper subfield of F (e.g., very often S = Q while F 6= Q). In this case,
since χ is not explicitly used in the algorithm, all computations up to Step 3 can be done
over S instead of F , and the main loop of Step 3 can be exited when the relation ideal I
becomes prime over S (but not necessarily prime over F) and has the correct dimension.

112

Then VS(I) will be empty (since otherwise it would imply a representation affording χ,
realizable over S), but VF (I) must be non-empty, so a solution over F can be found,
yielding the desired representation over F . An illustration of this is given in Ex. 5.6.2
below, and a very large example which also benefits from this situation is the construction
of the degree-2480 irreducible representation of the sporadic Lyons group for which a
minimal field is F = Q(

√
−11): here the relevant representation of H is irreducible and

written over Q and the final relation ideal I is prime over Q but has two prime components
over F ; see p. 116 for details.

Several of the high-degree representations of the sporadic simple groups were con-
structed by this variant algorithm, as will be seen in the subsequent sections of this chap-
ter. But it can also be useful for any degree size when ρH is absolutely irreducible, since it
often runs faster than the irreducible extension algorithm of the previous chapter. Instead
of gathering k independent linear relations for the k initial image matrices, the variant
algorithm may compute the unique image matrix for g more quickly by constructing and
solving a suitable polynomial system (via one or two group relations). The first of the
following examples demonstrates this situation.

Example 5.6.1. Let G = 3.U9(2), of order 976419878163325334323200 (∼ 9 × 1023). G
has two conjugate minimal-degree irreducible representations of degree 171, which can be
realized over F = Q(ζ3); let χ be one of the corresponding characters.

Let H be the maximal subgroup of G of order 150698880 and index 6479277604208640
which is equal to 3.J3. Now χH = χ ↓ H is absolutely irreducible and we had already
computed a representation ρH affording χH (p. 173), so we could compute a representation
affording χ by applying IrreducibleExtension to χ and ρH ; we originally did exactly
this before we had developed the general extension algorithm. But the initial computation
of the character table of G in Magma took 9.6 days! After that, IrreducibleExtension
on χ and ρH took only 155s, using a normalized subgroup L of order 3456, with 32 initial
image matrices.

Alternatively, we were able to construct a representation affording χ more quickly by
using the above variant of GeneralExtension without explicit use of the character
χ (table entry on p. 173), thus avoiding the computation of the character table for G
completely. This time we only used the given ρH and the knowledge that it extends to an
irreducible representation of G over F . With the same L as above, the general extension
algorithm again started with 32 image matrices and then used group order relations with
orders 4, 4, 6, 10 respectively. Using the order 4, 4, 6 relations only determined a zero-
dimensional ideal in 2 variables whose lexicographical Gröbner basis is:

{ x1 −
6
5
x3

2 +
1
10

(−ζ3 − 1)x2, x4
2 +

1
12

(ζ3 + 1)x2
2 +

1
144

ζ3 }.

The variety of this ideal over F has cardinality 4:

{±(
1

60
(ζ3 − 1),

1

6
(ζ3 − 1)), ±(

1

60
(ζ3 + 2),

1

6
(−2ζ3 − 1))}.

But there should only be 2 solutions, since the Galois orbit of χ has cardinality 2, so
2 of these solutions must not give a valid image for g. But after an order-10 relation
was included, the relation ideal collapsed to being generated by a single polynomial in 1
variable: x2

1 + 1
10
ζ3, with variety {± 1

60
(ζ3−1)} over F . Each solution gives a valid extension

of ρH , which affords χ or its conjugate. This time it took only 56.0s to compute the solution

113

image and 13.4s to rewrite the representation on the original generators of G, for a total
of 69.4s, so using this method was in fact faster than IrreducibleExtension, even after
the character table had been computed.

The degree-170 irreducible representation of G = U9(2) can be handled similarly (ra-
tional character with Schur index 2; table entry on p. 172). Here we used H = J3 (index
6479277604208640 again) and GeneralExtension with G and the direct sum of the two
conjugate degree-85 representations of H over F = Q(ζ3), again without using the charac-
ter explicitly (or having to compute the character table of G). The normalized subgroup L
had order 1152, there were 48 initial image matrices, and group order relations with orders
4, 4, 4, 6, 10, 17 produced the dimension-1 ideal generated by:

{x1x2 +
1

35020800
}

The total time taken for the general extension was 85s. Note that before the order-17
relation was used, the ideal contained the above polynomial and also one quadratic relation
x2

3 + 1
70041600

. So the algorithm had to go all the way to an order-17 relation to produce a
linear polynomial which was the correct factor of the above polynomial. Despite the very
high order, this was easily handled since the polynomials were always reduced modulo the
current relations.

The degree-121 and -122 representations of S10(3) and 2.S10(3) respectively (p. 170) were
computed in a similar way. The order of the latter group is about 1026 and it is currently
hopeless to compute its conjugacy classes or character table in Magma. Our general
extension algorithm was in fact first developed to compute these particular representations!

Example 5.6.2. The degree-783 representation of 3.Fi′24 (realized over the character field
F = Q(ζ3)) was computed by general extension without explicit use of the character (table
entry on p. 181). Here the subgroup H was equal to Fi23 (index 920808) and the restriction
to H splits as 1 + 782 over Q. The normalized subgroup L ≤ H was equal to 2.Fi22 and
there were 6 initial image matrices; then group order relations of orders 8, 8, 9 reduced this
to a system with 3 variables and the corresponding ideal I of Q[x1, x2, x3] generated by:

x1x2 −
25

7452
, x2

3 +
1063

13248
x3 +

681073

175509504
.

I has dimension 1 and is prime over Q, but over F = Q(ζ3) the second polynomial has the
two roots:

1

13248
(729ζ3 − 167),

1

13248
(−729ζ3 − 896),

which yield the two conjugate representations of G.

In the rest of this chapter, we give detailed descriptions of how we constructed several
of the high-degree ordinary representations of the larger sporadic groups by the general
extension algorithm (most of them with the variant method without explicit use of the
character). The order followed is roughly the order of difficulty (and the order in which
they were constructed). Most of the representations above degree 1000 had never before
been explicitly constructed.

114

5.7. The degree-248 and -4123 representations of the Thompson Group

Let G be the sporadic simple Thompson group, of order

90745943887872000 = 215.310.53.72.13.19.31.

We computed the degree-248 and -4123 irreducible rational representations of G, which
are the first two faithful representations of G by degree (table entries on p. 176 and p. 186
respectively). The degree-248 modular matrix representation over F2 was used to define G.
It is too difficult to compute the classes or character table of G in practice in Magma, so
we used the variant of the general extension algorithm without explicit use of the character
(Sec. 5.6) in both cases.

LetH be the second largest maximal subgroup ofG, which equals 25.L5(2) (the so-called
‘Dempwolff group’, of index 283599225). A suitable subgroup L of H and g ∈ G \H with
Lg = L were constructed by the advanced method of Subsec. 5.4.8 (p. 109), as follows. Let S
be the largest maximal subgroup of H (shape 2.24+4.A8, index 31). Random search yielded
an r ∈ G of order 2 so that the subgroup E = 〈S, r〉 of G was a reducible matrix group
(2424 tries; 71s). Now E was equal to 2.28.A9 (order 92897280; another maximal subgroup
of G), so it could be mapped via a homomorphism π onto a permutation representation
Eπ of A9. Then instantly a subgroup of π(S) normalized by an element of Eπ was found
and then these were mapped back, thus yielding L < H and g ∈ G \ H with Lg = L; L
had order 1290240 and g had order 8, with g2 ∈ H.

To find the relevant representations of H, we could use the permutation representation
of H degree 7440 (with matching standard generators). The degree-248 representation
σ248 of H was first computed in 105s by inducing a degree-8 representation of an index
31 subgroup; the degree-8 representation was constructed using IrreducibleRational-
Representations.

The degree-248 representation of G was then computed by using general extension
without use of the character, applied to G and σ248, using the above L and g. There were
only 3 image matrices, then the initial square relation and order relations for order 3 and
13 produced a maximal relation ideal in only 4.0s, yielding a unique solution for the image
of g. Then it took only 0.6s to rewrite the representation so that it was defined on the
standard generators.

Now let χ be the degree-4123 irreducible rational character of G; χH = χ ↓ H splits over
Q as 155 + 248 + 3720. The degree-155 and -3720 representations of H were constructed
by exact induction of linear representations in 53s. General extension was then applied
without explicit use of the character to G and the direct sum of the 3 representations of
H, using the same L and g. There were 33 initial image matrices (2892s; the restriction
to L and Lg was trivial the generators of H had been extended to include those of L and
Lg before constructing the representations of H). The initial square group relation yielded
28 degree-2 polynomial relations (426s), then an order-3 group relation gave 19 linear
relations, reducing to 14 variables (132s). Next, an order-7 group relation gave 10 more
linear relations, reducing to 4 variables and 2 degree-2 relations (490s); the ideal was then
equal to 〈x1x4+ 1

512
, x2x3+ 9

16384
〉, which is prime with dimension 2, so the relation gathering

could stop. Using the point (1
32
, 3

128
,− 3

128
,− 1

16
) from the variety, the image matrix for g

was constructed in 2.5s. Let the standard generators of G be g1, g2. Since g1 was in H,
ρ(g1) was trivial to construct and is sparse. The construction of ρ(g2) took 48s; the density

115

is 92.6%, the absolute maximum numerator is 91 (average 4.1) and the denominator LCM
is 512. The total time taken was 4643s (1.3h).

5.8. The degree-1333 representation of the Janko Group J4

Let G be the sporadic simple Janko group J4, of order

86775571046077562880 = 221.33.5.7.113.23.29.31.37.43.

A minimal-degree faithful ordinary representation of G has degree 1333. Let χ be one
of the corresponding characters; the character field is F = Q(

√
−7). We constructed a

representation ρ : G→ GL1333(F) affording χ by general extension (table entry on p. 183).
A degree-112 representation over F2 was used to define G; since it is too difficult to compute
with characters explicitly, we again used the general extension algorithm with no explicit
character for G.

Let H be the largest maximal subgroup of G, which equals 211:M24; χH = χ ↓ H splits
over F as 45+1288. The degree-45 representation was constructed by irreducible extension
of the degree-45 representation of M24 to H (3s), and the degree-1288 representation was
constructed by direct induction of a linear representation of a subgroup of index 1288 (2s).

For the general extension, the normalized subgroup L ≤ H and element g ∈ G\H with
Lg = L was again constructed by the advanced method of Subsec. 5.4.8; the resulting L
had order 33030144 (10s), which yielded 8 initial image matrices (996s). The square group
relation gave 6 degree-2 polynomial relations (4s), then an order-3 group relation gave 6
linear relations and one degree-2 relation (84s), reducing the number of variables to 2. The
ideal now had the required dimension 1 and was generated by the single polynomial:

x1x2 −
1

256
.

Setting x1 = x2 = 1
16

gave a valid image matrix for g and then the rewriting of the
representation to be defined on the standard generators g1, g2 of G took 223s, yielding
ρ : G→ GL1333(F). The first image matrix ρ(g1) is sparse, while the second image matrix
ρ(g2) has density 85.6%, with denominator LCM 128 and absolute maximum numerator
14 (average 0.8). The total time taken was 1354 seconds.

5.9. The degree-2480 representation of the Lyons Group

Let G be the sporadic simple Lyons group, of order

51765179004000000 = 28.37.56.7.11.31.37.67.

A minimal-degree faithful ordinary representation of G has degree 2480. Let χ be one of the
corresponding characters; the character field F = Q(χ) equals Q(

√
−11). We constructed

a representation ρ : G→ GL2480(F) affording χ, as follows.

A degree-111 representation over F5 was used to define G. Let H be the maximal sub-
group of G equal to the non-split extension 53.L3(5) (order 46500000, index 1113229656),
which can be constructed using words from the online ATLAS. Then χH = χ ↓ H is also
absolutely irreducible, so a representation for χ can be computed via irreducible extension
from a representation affording χH .

116

We first computed a representation ρH : H → GL2480(Q) affording χH as follows. Let
H2 be the largest maximal subgroup of H (order 1500000, index 31 in H, shape 25.55.A5,
with a faithful degree-150 permutation representation). Now χH restricted to H2 splits as:

80 + 240 + 240 + 480 + 480 + 480 + 480

(all absolutely irreducible over Q with Schur index 1). Corresponding representations were
computed in 549s using the IrreducibleRationalRepresentations algorithm; they
were all integral with 1-digit entries. Then the default general extension algorithm was
applied to χH and the block-diagonal sum of these representations of H2. A subgroup L2

of H2 of order 50000 normalized by an element h of H \ H2 was found in a few seconds;
this yielded 136 initial image matrices for h. Linear reduction via χH reduced this to
112 image matrices. One square group relation and two order-3 group relations reduced
it to 42 image matrices and a corresponding prime relation ideal of dimension 6 which
was non-trivial but manageable (the lexicographical Gröbner basis consisted of 441 degree-
2 polynomials!). Since this was the required dimension for the ideal (since there were
7 absolutely irreducible representations of H2), a particular solution for the image of the
normalizing element h could then immediately be constructed, and then the representation
was rewritten on the generators of H2. The resulting representation ρH : H → GL2480(Q)
has entries with a maximum of 2 digits and denominator LCM 54. The total time for the
construction of ρH was 4519s.

Since G is too large to compute with characters explicitly, the irreducible extension
algorithm could not be used to construct the representation of G, so we used the general
extension algorithm with no explicit character. To compute suitable L ≤ H and normal-
izing element g, we again used the advanced method of Subsec. 5.4.8. Let S be the largest
maximal subgroup of H (order 1500000, index 31). Random search yielded an r ∈ G of
order 2 so that the subgroup E = 〈S, r〉 of G was a reducible matrix group (787 tries;
12s). Here E was equal to G2(5) (order 5859000000; another maximal subgroup of G).
This could first be mapped to a degree-7 matrix representation over F5, and then to the
(faithful) permutation representation Eπ of degree 3906. It was then easy to find a suitable
subgroup Lπ of the image Sπ of S and normalizing element gπ ∈ Eπ and map these back
to L ≤ H (order 50000) and g ∈ G \H in the degree-111 representation over F5 (23s).

The extension from ρH to G with this L and g could finally be done, as follows. The re-
striction of ρH to L and Lg took 10872s and the relevant Hom-module computation yielded
136 initial matrices (18204s). The square group relation gave 121 degree-2 polynomial re-
lations (4712s), then an order-3 group relation gave 23 linear relations and 634 degree-2
relations (4272s), reducing the number of variables to 88. Another order-3 group relation
gave 82 linear relations and 3 degree-2 relations (272s), reducing the number of variables
to 6. At this point, there were now 6 variables, but the relation ideal had dimension 3 (and
dimension 0 was needed because ρH was absolutely irreducible). Group order relations for
orders 4, 5 and 6 did not change the ideal of relations (610s). Finally, an order-7 group
relation gave 5 linear relations and 1 degree-2 relation (493s) and so there was now only
one variable and the corresponding ideal had dimension 0 and was prime over Q, generated
by the single polynomial:

x2
1 −

2

25
x1 +

69

15625
.

117

Setting x1 = 1
125

(−2α + 5) in F = Q(α) (where α =
√
−11) yielded a valid image matrix

for g. Finally, computing the corresponding images of the standard generators g1, g2 of
G took 41s (via the sparse ρH) and 1274s respectively to yield the final representation
ρ : G → GL2480(F) affording χ. (As usual, we had first conjugated H so that the first
standard generator g1 was in H.)

The density of ρ(g1) is only 0.15% (about 4 non-zero entries per row), with all non-zero
entries equal to ±1. The density of ρ(g2) is 99.7%, with denominator LCM 56 = 15625
and the numerators have at most 4 digits (average 18.1). The total time for the general
extension of ρH to G was 69656s (19.3h).

Since 2 did not divide the denominators in the final representation ρ, we could directly
reduce ρ modulo 2 to obtain a degree-2480 representation of G over F4. It was then easy
to verify in about a minute (by the standard modular Meataxe tools) that this modular
representation is equivalent to the corresponding irreducible representation in the online
ATLAS which was computed by Wilson in [Wil98b].

5.10. The degree-782, -3588 and -5083 representations of the Fischer Group
Fi23

Let G be the sporadic simple Fischer group Fi23, of order

4089470473293004800 = 218.313.52.7.11.13.17.23.

and can be defined by a degree-31671 permutation representation. The first three faithful
representations of G have degrees 782, 3588 and 5083 respectively and can all be writ-
ten over the rational field. We first computed the degree-782 representation in 596s by
IrreducibleRationalRepresentations (see p. 64).

The two larger degree-3588 and degree-5083 representations (needed for the computa-
tion of representations of the Baby Monster [p. 119] and Fischer F ′24 [p. 121] respectively)
were computed by general extension via the maximal subgroup H equal to 211.M23 (index
195747435 in G). First a sufficiently large normalized subgroup L < H of order 41287680
(shape 24.24.26.A7) was found, with a normalizing element g ∈ G \ H (12s); these were
used in both extensions.

Degree 3588: Let χ be the degree-3588 irreducible character of G; χH = χ ↓ H

splits over Q as 1 + 22 + 253 + 506 + 1288 + 1518. Corresponding representations were
computed easily: the degree-22 representation was trivially derived from a permutation
representation of degree 23 of H, while the other representations were computed by direct
induction of representations of degree 1 or 6 for suitable subgroups. Then general extension
was applied to χ and the direct sum of these representations of H with the above L and g.
There were 43 initial image matrices; linear reduction via the character took this down to
27 variables, and then group order relations with orders 2, 4, 6 reduced this to 22 variables
and a corresponding prime ideal of required dimension 5 (6871s). Since this is a rather
non-trivial ideal, we give the lexicographical Gröbner basis of the ideal out of interest:

{ x1 + 2x2x11, x2x10 −
63

92
, x3 −

28

3
x6x20, x4 −

28

3
x6x10x19,

x5 +
14

3
x6x19, x6x11 +

14

69
x9x14, x6x15 −

1

6
x14, x6x22 −

3

28
,

118

x7 −
112

3
x9x14x21, x8 + 8x9x14, x9x15 +

23

28
x11, x9x18 −

3

7
x17x20,

x9x19 +
3

28
x20, x9x22 +

92

7
x11x20, x11x18 +

3

92
x17x22,

x11x19 −
3

368
x22, x12 −

28

3
x14x21, x13 −

56

9
x14x19, x14x20 −

9

224
,

x14x22 −
9

14
x15, x15x20 −

1

16
x22, x16 − 4x17x20, x17x19 +

1

4
x18,

x17x21 +
1

32
, x18x21 −

1

8
x19 }.

Note that even though there are several variables, this basis has the structure discussed
in point 5 on p. 100, since the representations of H are all absolutely irreducible, with
multiplicity 1. The point of the variety of the ideal was:

(
1323
184

,
63
92
,

1
644

,− 1
644

,
1

1288
,

3
644

,− 9
448

,−27
28
,

3
28
, 1,

−21
4
,− 3

64
,−1

4
,
9
8
,
161
4
, 1, 7, 1,− 1

28
,

1
28
,− 1

224
, 23).

Computing the corresponding images of the standard generators of G took 51s (via the
diagonal block representation of H) and 9086s respectively. The denominator LCM for
the defining matrices is 211.7.23 and the absolute maximum numerator is 12285. The total
time to compute this representation was 4.4 hours.

Degree 5083: Let χ be the degree-5083 irreducible rational character of G. Then
χH = χ ↓ H splits over Q as 253+1288+3542. The first two representations were computed
above, while the degree-3542 representation was computed as the direct induction to H of a
degree-7 representation of a subgroup of H of index 506, with shape 211.A8. Again, general
extension could then applied with the same L and g as above. There were 20 initial image
matrices; linear reduction via χ reduced this to 8 variables, then group relations for orders
2 and 4 reduced this to 6 variables with a corresponding prime relation ideal of dimension
2, as required. Computing the corresponding images of the standard generators g1, g2 of
G took 204s (via the diagonal block representation of H) and 27303s respectively. The
image of the first generator is sparse and its non-zero entries are only ±1. Interestingly,
despite being dense, the image of the second generator of G has only 71 different entries,
with LCM denominator 256 and absolute maximum numerator 39.

5.11. The degree-4371 representation of the Baby Monster Group

Let G be the Baby Monster sporadic simple group, of order

4154781481226426191177580544000000 = 241.313.56.72.11.13.17.19.23.31.47.

A minimal-degree faithful ordinary representation of G has degree 4371 and can be realized
over Q. We constructed such a representation explicitly over Q by general extension
without explicit use of the character (table entry on p. 186). The degree-4370 modular
representation over F2 was used to define G. Considering the huge size of G (by far the
largest group for which we computed an ordinary representation) and the matrices by

119

which G is defined, the effectiveness of our GeneralExtension algorithm can be seen in
that the only computations involving G itself were elementary group arithmetic operations
for: (1) finding the subgroup L (with some use of the modular Meataxe), (2) finding group
order relations within the subalgorithm ExtendRelations and (3) the rewriting of the
final representation on the standard generators. All of this was quite feasible: using the
above modular matrix representation of G, Magma can multiply two elements of G in
about 0.2s and invert an element in about 0.6s (we have implemented fast algorithms for
these operations, similar to those described in [ABH10]).

Let χ be the degree-4371 irreducible character of G and let H be the third largest
maximal subgroup of G, which equals Fi23 and has index 1015970529280000 in G. The
restricted character χH = χ ↓ H splits as 1 + 782 + 3588. The appropriate representations
of H had already been computed (see p. 118).

To compute suitable L ≤ H and normalizing element g ∈ G \H, we used the advanced
method of Subsec. 5.4.8. Let S be the largest maximal subgroup of H which equals
2.F22 (order 129123503308800). Random elements of G of order 2 were generated until
the extension of S by such an element was a reducible matrix group (869 tries, 6844s;
for each try, it took about 0.4s to generate a random element, then 2–3s to compute its
order and power up to obtain an element of order 2, then 4–5s to test irreducibility of
the extended matrix group). This yielded a subgroup E = 〈S, r〉 of G equal to 2E6(2)
(order 76532479683774853939200). Using the modular Meataxe, a projection π : E → Eπ
was then constructed, where Eπ was a degree-78 matrix representation over F2, and Sπ
was then set to π(S). Since the computation of normalizers was still too hard within Eπ,
we instead successively generated a random order-2 element gπ of Eπ and computed the
intersection of Sπ and (Sπ)gπ until this was reasonably large. After a few random tries (a
few seconds per try), this yielded an intersection Lπ which had order 454164480 and shape
210.M22. This could then be mapped back under π−1 to the original degree-4370 matrix
representation over F2 of G to obtain L ≤ H with order 908328960 and shape 2.210.M22

and the corresponding g ∈ G \H with Lg = L and g2 = 1.

The restriction of the representations of H to L and Lg in ExtensionImageSetup
took 480s for degree-788 and 39426s for degree-3588. Constructing the Hom-module basis
took 16500s and yielded 54 initial image matrices. Within ExtendRelations, the initial
square group relation yielded 54 degree-2 relations (1560s), then an order-3 group relation
yielded 42 linear relations and 366 degree-2 relations, reducing the number of variables to
7 (5790s), and finally an order-4 group relation yielded one linear relation and 4 quadratic
relations, reducing the number of variables to 6 and giving a dimension-2 ideal (1351s).
The final lexicographical Gröbner basis of the ideal was:

{ x1 +
3726

325
x2x6, x2x5 −

4225

905418
,

x3 +
3726

325
x4x5, x4x6 −

4225

83298456
}.

The point of the variety was (13
5589

, 130
5589

,− 13
972
, 65

11178
, 65

324
, 65

7452
) and the corresponding image

matrix ρ(g) had density 14.7% and denominator LCM 28.35.7.23.

Finding words for the standard generators g1, g2 of G in terms of the generators of
H and the normalizer element g took 3200s; it then took 26924s to compute the images
of g1, g2 using these words. We were unable to conjugate H so that one of the standard

120

generators of G was in H, so both image matrices are dense. Although ρ(g1) has density
89.2%, it has only 10950 distinct entries, with absolute maximum numerator 39725 and
denominator LCM 211.35.7.23, while ρ(g2) has density 89.2%, and only 11251 distinct
entries, with absolute maximum numerator 31045 and denominator LCM 211.35.7.23. The
traces of the matrices are -53 and 78 respectively, matching the character table in the
ATLAS. A sample of 10 random entries of the matrices is the following:

{111

32
,

7

384
,
581

24
,
−31

24
,
−1909

1344
,
−159

5888
,
333

896
,
153

896
,
437

24
,
−467

5184
}.

The total time taken was 35.0 hours, starting from the precomputed representations of H.

We can of course easily construct the mod-p reduction of this representation for any
prime p not dividing the denominators (in particular, 5 is of interest). We also used a p-adic
conjugation algorithm (outlined on p. 152) to construct corresponding irreducible degree-
4371 representations over Fp for p = 3, 7, 23 (6291s, 1560s, 2357s respectively) and verified
that the mod-3 representation is equivalent to the one in the online ATLAS [WWT+] by
the modular Meataxe.

5.12. The degree-8671 representation of the Fischer Group Fi′24

Let G be the sporadic simple Fischer group Fi′24, of order

1255205709190661721292800 = 221.316.52.73.11.13.17.23.29.

A minimal-degree faithful ordinary representation of G has degree 8671 and can be realized
over Q. We constructed such a representation explicitly over Q by general extension
without explicit use of the character (table entry on p. 187).

A degree-306936 permutation representation was used to define G. Let χ be the degree-
8671 irreducible character of G and let H be the largest maximal subgroup which is equal
to F23 (and can be computed as a point stabilizer); χH = χ ↓ H splits as 3588 + 5083 over
Q. Corresponding representations of H had already been computed (see p. 118).

Thankfully, finding a sufficiently large subgroup L ≤ H and normalizer g ∈ G \ H
required very little computation. We simply took L to be the largest maximal subgroup
of H which equals 2.F22 (index 31671). The normalizer N of L in G was computed in 30s
(using the standard backtrack algorithm in permutation groups) and N has order 2 · |L|
with N 6⊂ H. Now write H = {h1, h2}, where h1, h2 are the standard generators of H.
Because computing ρH(h) for an arbitrary h ∈ H would be very expensive, we did a random
search for some g ∈ N \H such that g2 ∈ H and g · h1 or g · h2 had a small order. After
a minute’s search (when the smallest possible order had been stable for quite a while), we
had a suitable g of order 2 such that g · h2 had order 8.

Then we applied the general extension algorithm without the explicit use of the char-
acter with the above L and g. Computing the restriction of the representations of H to
L was very expensive: the restriction of the degree-3588 representation took 23675s, while
the restriction of the degree-5083 representation took 47280s. There were 5 initial image
matrices, then order relations for orders 2 [g2 = 1] and 8 [(gh2)8 = 1] reduced this to 3
matrices and a corresponding prime ideal of required dimension 1 (32046s).

Finally, computing the corresponding images of the standard generators g1, g2 of G
took 58072s total. We were unable conjugate H so that one of the standard generators

121

of G was in H, so both image matrices are dense: ρ(g1) has density 84.9% but only
1407 distinct entries, while the absolute maximum numerator is 2277 and the denominator
LCM is 989184 = 211.3.7.23. Similarly, ρ(g2) has density 89.0% but only 2936 distinct
entries, while the absolute maximum numerator is 1655 and the denominator LCM is
1978368 = 212.3.7.23. A sample of 10 random entries of the matrices is the following:

{117

256
,

9

16
,
819

368
,
115

192
,
259

128
,

3

5152
,
11

8
,−469

16
,− 21

2944
,− 651

1472
}.

The total time taken was 38.6 hours, starting from the precomputed representations of H.

5.13. Representations of the Harada-Norton Group

Let G be the sporadic simple Harada-Norton group, of order

273030912000000 = 214.36.56.7.11.19.

We computed several irreducible representations of G via general extension, as follows.

The degree-1140000 permutation representation was used to define G. Let H be the
largest maximal subgroup of G, which equals A12 (index 1140000). We used general ex-
tension to compute several representations of G via the subgroup H. It was easy first to
compute the largest normalized subgroup L of H with g ∈ G \ H, such that Lg = L; L
had order 518400 and g had order 10, with g2 ∈ H. Also, H was first conjugated so that
the first standard generator g1 of G is in H, so the image of g1 in each of the following
representations is sparse.

The degree-133 representation of G, realized over Q(
√

5) (table entry on p. 171), was
computed via general extension with the above H,L and g. The relevant representations
of H had degrees 1 and 132, and these were first constructed in 1.1s. There were 7 initial
image matrices, and these were reduced to 6 by linear reduction; then the initial square
group relation and one order-4 group relation reduced the system to 2 image matrices and
an ideal of the required dimension 1 (15s). Rewriting the representation to be defined on
the final generators took 1s, and the total time was 19.8s. This ordinary representation
had also been explicitly constructed by Bray & Curtis [BC03].

The degree-760 rational representation of G (table entry on p. 181) was again computed
via general extension with the above H,L and g. The relevant representations of H had
degrees 1, 132, 165, 462 and these were computed in 77s using IrreducibleRational-
Representations. There were 43 initial image matrices, and these were reduced to 24
by linear reduction; then the initial square group relation and group relations of order 4
and 6 reduced the system to 18 image matrices and an ideal of the required dimension 3
(234s). Rewriting the representation to be defined on the final generators took 48s, and
the total time was 359s.

The degree-3344 rational representation of G (table entry on p. 185) was again com-
puted via general extension with the above H,L and g. The relevant representations of H
had the following degrees with multiplicities: 1, 54, 132 × 2, 462 × 2, 616, 1485; these were
all quickly constructed by IrreducibleRationalRepresentations (207s), except for
the degree-1485 case (2126s: see p. 72 for details). Note the non-trivial multiplicities; this
rarely arises when H is the largest maximal subgroup of G, but is still handled successfully
by the general extension algorithm. Because of the multiplicities, the norm of χ ↓ H was

122

12, so an ideal of dimension 11 was required. Initially there were 146 initial image matrices,
and these were reduced to 123 by linear reduction. The initial square group relation yielded
130 quadratic relations alone. Then an order-4 group relation gave 673 quadratic relations
and 33 linear relations, reducing to 90 variables. Another order-4 group relation then gave
6 linear relations, reducing to 84 variables with 584 quadratic relations. The ideal now had
dimension 11, as required (11327s for the complete relation collection). Including linear
relations for 11 maximally independent variables reduced the ideal to have linear relations
only, so it was then easy to write down a rational image matrix for g. Finally, rewriting the
representation to be defined on the standard generators took 228s. The total time taken
was 11762s (3.2h).

The degree-8778 and degree-8910 representations of G were extracted from the tensor
square of the degree-266 irreducible rational representation by the hybrid algorithm of the
next chapter, while the degree-9405 representation was constructed by general extension
(see p. 187 for details).

5.14. Conclusion

We summarize the main features of the extension approach. Some of the key advantages
are the following:

1. This approach can handle the situation where G has no proper subgroups of moderate
index so the splitting approach is not applicable when reasonable tensor products
are not available (since one cannot construct permutation or induced representations
of reasonable degree), and does not require any specific conditions for G or χ. In
fact, if the number of variables in the symbolic matrix can be kept to be small (say
under 50), then the general extension algorithm is very efficient; the size of G and
the indices of its maximal subgroups become rather irrelevant and the degree of the
representation is not a major factor either (the heart of the algorithm involves only
matrix multiplication and computations with partial Gröbner bases which can be
managed when the number of variables is reasonable and the dimension of the ideal
is not too large).

2. Under the inductive assumption that ρH has small entries, this approach typically
yields a result with very small entries also. This is true even when the final repre-
sentation is written over an irrational field (in contrast to the splitting approach).

3. A simple variant of the general extension algorithm avoids the explicit use of the
character χ, so even when it is not feasible to compute with the classes or character
table of G, then one can often still compute a representation affording χ (the other
algorithms need the character explicitly). Several of the huge sporadic simple groups
can be handled this way, for example.

4. Once a suitable normalized subgroup L is found and the linear reduction is done
(which may be skipped in the variant with no use of χ), the only computations needed
with the group G are elementary operations on elements to gather suitable relations.
Thus non-trivial properties of the structure of G are irrelevant; in particular, the
algorithm avoids a search in subgroups (which the splitting approach requires to find
a suitable virtual representation). As we have seen, the algorithm is very effective
even when the basic group arithmetic is expensive (e.g., for the representation of

123

the Baby Monster in Sec. 5.11) or it is impossible to compute a base and strong
generating set for G. Also, the potentially expensive multiple evaluations of the
character can be avoided (as noted in Ex. 5.6.1, it is sometimes better to avoid using
the character even when it has already been computed because non-linear relations
can reduce the system more quickly).

Some of the limitations are the following:

1. In both irreducible and general extension, a sufficiently large normalized subgroup
L may be hard to find. Even when the largest possible normalized subgroup L can
be found easily, it may be such that the number of associated image matrices is very
large and in the general extension algorithm in particular, the number of variables
and the number of terms in the polynomials may grow so large as to make the
computation impossible.

2. If χ ↓ H splits into many irreducibles over the field F , it may be expensive to set up
a suitable block-diagonal representation ρH , and so this may take longer than using
the splitting approach directly to compute the representation affording χ. But this
is rarely a major problem.

124

Chapter 6

Entry Reduction and the Hybrid Algorithm

6.1. Introduction

Let χ be an absolutely irreducible character for a finite group G. The previous two
chapters presented algorithms which start with a representation ρH affording χH = χ ↓ H
for a subgroup H of G, and extend ρH to a representation ρ of G affording χ, such that
ρ ↓ H = ρH . Also, if χH is absolutely irreducible, then ρ is unique, and we have seen both
from the simple bounds implied by Minkwitz’s formula (p. 82) and in practical examples
that if the entries of the image matrices defining ρH are reasonably small, then those
defining ρ are also reasonably small. This fact led to the idea that one could reverse the
process to reduce the entries of an existing representation. Suppose first that we already
have an arbitrary representation ρ1 : G→ GLn(F) affording χ. Now if we construct some
representation ρH : H → GLn(F) affording χH = χ ↓ H , such that ρH has small entries,
then we can compute a transformation matrix T such that (ρ1 ↓ H)T = ρH , and then
ρ = (ρ1)T affords χ, and is such that ρ ↓ H = ρH . Using this idea, we first present a
heuristic LLL-based algorithm to choose a suitable transformation matrix T ; this seems to
work very well in practice to yield a reduced representation most of the time.

We then introduce a ‘hybrid’ algorithm which combines the splitting and extension ap-
proaches. It first sets up information determining an absolutely irreducible representation
ρ1 using the splitting approach (via condensation of a potentially large-degree virtual rep-
resentation). Now ρ1 is not constructed explicitly: often it will have very large entries and
would take a very long time to construct. But the algorithm can use the above reduction
algorithm with modular techniques to conjugate ρ1 directly to a reduced representation ρ
written over a minimal field and with reduced entries. This algorithm is extremely efficient
and routinely allows the construction of representations of very high degree over non-trivial
number fields, typically with very small entries. It avoids the need to find a normalized
subgroup L in the extension algorithms, so is particularly suitable for the case that ρH
splits into many irreducible components. Also, H does not need to be maximal for the
method to work well.

6.2. The Entry Reduction Algorithm

For the algorithm to reduce the entries of a given representation, we first present a
subalgorithm to select a suitable reduced partial basis of a Hom-module. Then our main
algorithm to construct a reduced representation is very simple, based on this.

125

Algorithm ReducedHomBasis(B, r)
Input:

• A basis B = [b1, . . . , bk] of a subspace S of Mm×n(F), where F is a number field.

• An integer r with 1 ≤ r ≤ k, such that the sum of the rowspaces of the bi has rank at
least rm over F .

Output:

• A reduced basis C = [c1, . . . , cr] of a subspace of S such that the sum of the rowspaces
of the ci has rank rm over F .

Steps:

1. Write F = Q(α), and let d = DegQ(F).

Let φ : Mm×n(F) → Qmnd be the natural Q-vector space isomorphism, viewing
Mm×n(F) as a vector space over Q.

2. Set SQ to the (kd)-dimensional subspace of Qmnd generated by

{φ(bi · αj) : 0 ≤ j ≤ d− 1, 1 ≤ i ≤ k}.

Set L := (l1, . . . , lkd) to a LLL-reduced basis of the saturation of SQ, sorted with the
shortest vectors first.

Set W = (w1, . . . , wkd) = (φ−1(l1), . . . , φ−1(lkd)).

3. Construct an F -basis C = [c1, . . . , cr] from W such that the sum of the rowspaces of
the ci has rank rm over F , as follows:

(a) First try each subset of W of cardinality k (in lexicographical order).
(b) Next try k distinct sums of pairs from W .
(c) Finally, enumerate k linear combinations of elements of R with increasing integral

coefficients.

Return C.

Algorithm EntryReductionBySubgroup(ρ1, H)
Input:

• A representation ρ1 : G → GLn(F) for a finite group G and a field F which is
normal over Q (where ρ1 is not necessarily irreducible over F).
• A proper subgroup H of G (not necessarily maximal).

Output:

• A representation ρ : G → GLn(F) of G which is equivalent to ρ1, and such that
ρ ↓ H is equivalent to a block representation of χ ↓ H .

Steps:

1. Set χ to the character of ρ1 and χH to χ ↓ H and decompose χH uniquely as

χH =
k∑
i=1

mi · ψi,

126

where ψi ∈ IrrF (H) and mi ≥ 1 for 1 ≤ i ≤ k.

2. Set [σ1, . . . , σk] := IrreducibleRepresentationsOverField([ψ1, . . . , ψk], F).

3. Set ρH := ρ1 ↓ H .

For i := 1 to k do:
{

Set Bi to an F -basis of HomFH(σi, ρH).
Set [Ci,1, . . . , Ci,mi] := ReducedHomBasis(Bi,mi).

}
4. Set T to the vertical concatenation of [C1,1, . . . , C1,m1 , . . . , Ck,1, . . . , Ck,mk].

Set ρ := (ρ1)T and return ρ.

Proposition 6.2.1. Algorithms ReducedHomBasis and EntryReductionBySub-
group are correct.

Proof. Clearly the σi representations are set up so that ρH = ⊕ki=1 ⊕
mi
j=1 σi affords χH .

Subalgorithm ReducedHomBasis is very similar to ReducedBasisForAction (p. 73);
the only difference is that the former selects a final basis of matrices so that their images
add up to a subspace of the right rank; since the input matrices form a basis for the Hom-
module, the search in Step 3 of that subalgorithm must find such a basis. Now as the ψi
are inequivalent and the i-th call to ReducedHomBasis from EntryReductionBy-
Subgroup returns a basis of homomorphisms whose images are pairwise independent, T
must be invertible and clearly conjugating ρ1 by T yields ρ such that ρ ↓ H = ρH . �

Remarks 6.2.2. We note the following points on the algorithm and its implementa-
tion:

1. The point of using LLL-reduction in ReducedHomBasis is that of all the transfor-
mation matrices T which can be chosen so that the output representation ρ is such that
ρ ↓ H = ρH , using one derived from the LLL-reduction of the Hom-bases seems to give
a highly reduced result most of the time, particularly when the field F has small degree.
The key feature of this algorithm which makes it so effective is that the dimension of
the lattice that the LLL algorithm acts on in the subalgorithm ReducedHomBasis is
typically very much smaller than the degree n of the representation. If the field F has
degree f , and the dimension of the endomorphism ring of σi is d, then the dimension
of the lattice will be df . Note that for each i, the length of Bi (the dimension of the
Hom-module for the i-th representation of H) may be greater than mi. But it is very
important to give the whole basis of the Hom-module to ReducedHomBasis so that
the LLL algorithm has a larger lattice to act upon and can thus produce a more reduced
basis.

2. The quality of the output can vary considerably by varying the subgroup H (even
if the representations of H have very small entries themselves). Generally speaking,
assuming the representations of H have small entries, then the larger the subgroup H
is, the more likely it is that the entries of the final representation are smaller. Also,
when non-trivial multiplicities are present, this increases the dimension of the lattice
which the LLL algorithm has to act on in ReducedHomBasis. So it is usually best

127

to let H be one of the largest maximal subgroups of G for H, so that there are less
constituents of χ ↓ H , and usually these only occur multiplicity 1. But this not always
the best choice; several examples below will demonstrate this phenomenon.

3. One does not always have to call IrreducibleRepresentationsOverField to con-
struct the initial representations of H: one can instead use any other method to com-
pute these, as long as they are realized over F . This is done in some of the examples
below. But IrreducibleRepresentationsOverField does automatically give ap-
propriate irreducible F -representations even when a non-trivial Schur index is present
(either for χ or one of the characters of H). Also, the normality condition on F has
only been imposed so that IrreducibleRepresentationsOverField can be called
for a complete automatic algorithm to construct the representations of H.

4. It is easy to adapt the algorithm RewriteOverMinimalField (p. 80) to use the
above algorithm instead of SplitByEigenspace to rewrite a representation over any
field to be over a minimal field, and also with reduced entries.

Example 6.2.3. Let G = 6.A7. Consider the following absolutely irreducible representa-
tion ρ1 : G→ GL6(F), where F = Q(α), α = ζ3 (a primitive cube root of unity).

ρ1(g1) =
1

798


−1262α− 1546 787α− 145 −1038α+ 246 −1227α+ 1926 1161α+ 396 −101α− 1948

172α+ 236 379α− 445 942α+ 810 −381α+ 600 −537α− 876 −365α− 640
1828α+ 1970 −593α− 127 918α+ 276 15α− 2160 −1179α− 198 649α+ 1772

382α+ 320 568α+ 269 60α+ 138 −591α+ 117 9α− 99 391α+ 221

1200α+ 366 111α− 423 318α− 306 −1257α− 936 −471α+ 792 729α+ 360
1534α+ 1214 −299α+ 629 78α− 858 −489α− 2202 −507α+ 390 1027α+ 2402

 ,

ρ1(g2) =
1

798


−1414α− 539 −75α+ 2022 993α+ 249 1604α− 3014 −123α− 2637 −1357α+ 829
−322α− 581 45α+ 702 −117α− 1107 −58α− 692 −405α− 333 −37α+ 673

1106α− 329 −561α− 2208 −297α+ 75 −802α+ 3502 1059α+ 2715 479α− 1811

287α− 98 −81α+ 93 450α+ 237 530α+ 820 330α− 39 −226α− 41
−168α− 945 −549α− 744 −9α+ 99 1080α+ 1686 951α+ 711 −453α− 1401

812α− 287 −1023α− 1914 −213α+ 747 290α+ 3460 1227α+ 1665 185α− 1769

 .

We can reduce the entries of ρ1 by algorithm EntryReductionBySubgroup as
follows. Let H = 〈h1, h2〉 be one of the maximal subgroups of G of order 180 (index 6).
Then χ ↓ H splits as 1+5 over F , where χ is the character of ρ1. We can instantly construct
corresponding representations σ1, σ2 as follows:

σ1(h1) =
(

1
)
, σ1(h2) =

(
−α− 1

)
,

σ2(h1) =


0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

 , σ2(h2) =


0 −α− 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 .

The echelonized basis of HomFH(σ1, ρ1 ↓ H) contains the single 1× 6 matrix:(
1 0 0 −2α− 1 1 −α

)
and ReducedHomBasis applied to this returns the basis containing the single 1 × 6
matrix:

C1,1 =
(
α + 1 0 0 −α + 1 α + 1 1

)
128

Similarly, the echelonized basis of HomFH(σ2, ρ1 ↓ H) contains the single 5× 6 matrix:

1

13


13 12α + 9 −4α + 10 −10α− 14 −2α− 8 8α + 6

8α + 6 8α− 7 6α− 2 −6α + 2 −17α− 3 7α + 2
−4α− 3 0 6α− 2 4α + 16 3α− 1 −15α− 8

4α + 3 −9α + 3 6α− 2 −2α− 8 −6α− 11 −α + 9
−α− 4 3α− 1 −2α− 8 −2α− 8 3α− 1 α + 4


and ReducedHomBasis applied to this returns the basis containing the single 5 × 6
matrix:

C2,1 =


α− 3 −3α− 3 2α− 2 2α+ 4 2 −2α− 2

−2α− 2 −3α+ 1 −2α 2α 5α+ 2 −2α− 1
α+ 1 0 −2α −4 −α 4α+ 3
−α− 1 3α −2α 2 α+ 3 α− 2

1 −α 2 2 −α −1

 .

After setting T to the vertical concatenation of C1,1 and C2,1 and then setting ρ to (ρ1)T ,
we obtain the following reduced representation:

ρ(g1) =


1 0 0 0 0 0
0 0 0 0 0 α
0 0 0 0 α 0
0 0 0 1 0 0
0 0 −α− 1 0 0 0
0 −α− 1 0 0 0 0

 ,

ρ(g2) =


0 −1

4α
1
4(α+ 1) −1

4 0 −1
4α

α+ 1 1
2(−α− 1) 1

2(−α− 1) 1
2(−α− 1) 0 0

−α 1
2

1
2(−α− 1) 0 0 1

2(−α− 1)
−1 0 1

2(−α− 1) 1
2α 0 1

2
0 0 0 0 1 0

α+ 1 1
2 0 1

2α 0 1
2α


Note that since H had first been conjugated so that g1 ∈ H, the first image matrix ρ(g1)
is monomial (a block diagonal sum of images of σ1 and σ2).

For this particular example, if the subgroup H is varied, then the algorithm still returns
a similar representation with very small entries, even when H is a much smaller subgroup
(so that the corresponding representations of H may have non-trivial multiplicities). Also,
if the original ρ1 is first conjugated to have much larger entries, then applying the algorithm
to such a ρ1 produces a result which is essentially the same as the above reduced ρ.

Despite this being a small example, it scales very well as the degree of the representation
increases, since the quality of the output tends to depend on the number of blocks in the
representation of H, and not on the degree.

Example 6.2.4. Let G be the sporadic simple group J3. A minimal-degree faithful repre-
sentation of G has degree 85 and can be realized over the quadratic field F = Q(

√
−19). Let

χ be one of the corresponding characters. In Ex. 3.9.7 (p. 77) we constructed a represen-
tation ρ1 : G→ GL85(F) affording χ in 285s, but the representation was poor, with entry
numerators of about 73 digits and common denominator 1. However, we could reduce this
representation by algorithm EntryReductionBySubgroup, as follows. Let H be the
largest maximal subgroup of G, which has index 6156 (shape L2(16).2). Then χH = χ ↓ H

129

is rational and splits over F as 17 + 68; corresponding irreducible rational representa-
tions [σ1, σ2] were constructed by algorithm IrreducibleRepresentationsOverField
in only 0.7s. Then the computation of the Hom-modules and the final conjugation took
22.3s to obtain an equivalent reduced representation ρ : G→ GL85(F).

Let g1, g2 be the standard generators of G. Since g1 ∈ H, ρ(g1) is rational with the
block form given by σ1, σ2 (integral with maximum entry 3), while ρ(g2) is dense and has
entries in F with at most 3-digit numerators and denominator LCM 120. Random sample
entries of ρ(g2) are: 1

20
(α+10), 1

20
(4α+5), 1

120
(11α−4). This is possibly the first time that

an absolutely irreducible representation affording χ has been constructed over a minimal
field, with very small entries. The algorithm of the next section will allow the same reduced
representation to be computed much more quickly (see Ex. 6.4.1).

6.3. The Hybrid Black-box/Entry Reduction Algorithm

6.3.1. Introduction. In this section we present the hybrid algorithm for computing
an irreducible representation which combines the splitting and extension approaches. The
implementation of this algorithm is very efficient and routinely allows the construction of
representations of very high degree over number fields, typically with very small entries. It
is preferable over the general extension algorithm when there is a large number of image
matrices needed by the latter algorithm.

The basic tool used by the algorithm is a ‘black-box representation’ which encapsulates
a fixed uniquely-determined underlying representation ρF : G → GLn(F), where F is Q
or a number field. The key idea is that the explicit construction of ρF itself is avoided:
often it will have very large entries and would take a very long time to construct. Yet one
can efficiently compute the modular projection of ρF under any given modular projection
function φ : F 99K Fp. This feature will be combined with the entry reduction algorithm
(via modular techniques) to conjugate ρF directly to a reduced representation ρ.

Definition 6.3.1. Call B = (G,χ, F, π(φ)), a black-box representation for χ, if:

• G is a finite group and χ is a character of G (not necessarily irreducible).

• F is Q or a number field Q(α) which is normal over Q and contains a subfield iso-
morphic to Q(χ).

• There is a fixed underlying representation ρF : G → GLn(F) (usually not explicitly
constructed) which affords χ, under a suitable embedding of Q(χ) into F .

• π is a ‘modular projection’ function which takes a coefficient modular reduction func-
tion φ : F 99K Fp and returns the representation ρφ : G → GLn(Fp) given by the
reduction of ρF under φ. (The function can return some error flag if the modular
reduction cannot be performed on all entries defining ρF .)

The way we will use black-box representations practice is the following:

• A ‘black-box setup’ function will take G and χ and automatically construct a black-box
representation B = (G,χ, F, π(φ)).

• Once we have such a B, we can extract F and then successively call the modular
function B.π with suitable modular reduction functions φ : F 99K Fp and use the
usual modular combination techniques to construct an ordinary representation which
is equivalent to the underlying ρF .

130

Note that we require the field F to be normal over Q since it allows IrreducibleRep-
resentationsOverField to be used to set up suitable representations of the subgroup
H and it will enable a suitable underlying representation to be set up easily when we use
condensation (see below). So the following algorithms will return a flag ‘Fail’ if a nor-
mal field F cannot be found; this has not been a serious restriction in practice for all our
applications, since we have always found a normal field easily (it is trivial to find if the
Schur index is 1).

6.3.2. Using an Irreducible Rational Representation. One method to set up a
black-box representation simply uses the eigenspace of a suitable endomorphism, just as
in algorithm AbsolutelyIrreducibleRepresentation.

Algorithm BBRationalModuleSetup(χ,MQ)
Input:

• An absolutely irreducible character χ for a finite group G.

• An irreducible QG module MQ whose character contains χ.

Output:

• A black-box representation B = (G,χ, F, π(φ)) for χ, where F is a minimal field for
χ.

Steps:

1. Set E := EndQG(MQ).

Search for a generator e of a maximal subfield of E such that the subfield is normal
over Q (for 1000 tries of small random elements of E, say). Return ‘Fail’ if a normal
field cannot be found.

Set UF to a basis matrix of the α-eigenspace of e over F .

2. Set π :=
Function(φ)
{

[φ : F 99K Fp is a given partial homomorphism, naturally extended to vectors,
matrices, modules over F , etc.]

Set Ū := φ(UF), M̄ := φ(MQ).
Set S̄ to the submodule of M̄ generated by the rows of Ū , computing the

reduced action on a fully echelonized basis [all done over Fp].
[Return ‘Fail’ if φ applied to any element is not in the domain of φ.]
Return S̄.

}
3. Set B := (G,χ, F, π(φ)) and return B.

Lemma 6.3.2. Algorithm BBRationalModuleSetup is correct.

Proof. This algorithm is similar to AbsolutelyIrreducibleRepresentation except
that the reduced module acting on the α-eigenspace of e is not computed over F but is
dynamically computed mod p each time that π is called; since an echelonized basis of the

131

subspace is used, the modular reduced actions are consistent, thus determining a fixed
underlying representation ρF over F , and correctness follows by Cor. 1.5.5. �

6.3.3. Using Condensation. We now present an advanced method to set up a black-
box representation for an absolutely irreducible character χ, using the condensation-based
tools of Chapter 3. The basic idea is to use most of the algorithm IrreducibleRa-
tionalRepresentations to determine an underlying irreducible rational representation
containing χ and to set up relevant condensation information, without explicitly construct-
ing the final rational representation.

Recall that the condensation operation simply maps the FG-module M to the eFGe-
module eMe, where e is the idempotent eK for some subgroup K (see Sec. 3.5). Now an
elementary but useful property of this operation is that it commutes with extension of the
base field, since it just involves multiplication by an algebra element. Thus if a simple
module S̃ over Q is the condensation of some simple module S, then we can decompose S̃
over an extension field F , and then each component over F must correspond to a submodule
of S over F . The following result shows that a suitable field can also be found via the
endomorphism ring of the condensed module.

Proposition 6.3.3. Suppose M is a simple FG-module and let e = eK be the condensation
idempotent for some subgroup K of G. Let M̃ = Me and assume M̃ 6= 0, so M̃ is simple
by Lem. 3.5.1. Let E = EndFG(M) and let Ẽ = EndeFGe(M̃). Then E ∼= Ẽ as rings.

Proof. Let A = FG. Then A has a unique simple component AM such that M is iso-
morphic to the only simple AM -module [Jac89, 4.4, 5.4]. Then since M̃ 6= 0, AM and
ÃM = eAMe are Morita equivalent, so E ∼= Ẽ by [Lux97, 3.1.2]. �

To apply these ideas in practice, we first make easy modifications to the algorithms Ir-
reducibleRationalRepresentations (p. 66) and AutomaticCondensation (p. 61):
an extra flag is added to each algorithm which indicates ‘black-box mode’.

In the black-box mode, IrreducibleRationalRepresentations first proceeds ex-
actly as before, setting up the queue of possible virtual representations and selecting the
first one which contains the desired constituent (and recursing as usual to construct a rel-
evant representation of a subgroup H if induction is to be used). But when the algorithm
calls AutomaticCondensation to obtain a representation affording χ, it also passes the
‘black-box mode’ flag; that algorithm also first proceeds as before (to find a suitable sub-
group K, etc.), except that after it has extracted the simple submodule S̃ of the condensed
module M̃ via the rational Meataxe, it does one modular spin and then the character test to
check that the condensed algebra has enough generators; when that test passes, it immedi-
ately returns the condensation information 〈M̃, S̃,C 〉, instead of calling IntegralSpin to
construct the rational representation. Then IrreducibleRationalRepresentations
also immediately returns the information 〈M̃, S̃,C 〉.

It is then easy to set up a black-box representation based on the information returned by
IrreducibleRationalRepresentations in black-box mode, as the following algorithm
does.

132

Algorithm BBCondensationSetup(χ)
Input:

• An absolutely irreducible character χ for a finite group G.

Output:

• A black-box representation B = (G,χ, F, π(φ)) for χ where F is a minimal field for
χ.

Steps:

1. Let χQ ∈ IrrQ(G) be the irreducible rational character containing χ.

Call IrreducibleRationalRepresentations([χQ]) in black-box mode to obtain

the information 〈M̃, S̃,C 〉 for χQ.

[M̃ is the full condensed module, S̃ is the submodule of M̃ corresponding to χ and C
is the associated condensation environment.]

2. Set Ẽ := EndÃ(S̃), where Ã is the condensed algebra such that S̃ is an Ã-module.

3. Set c := DegQ(Q(χ)) and set s := sQ(χ).

Search for a generator e of a maximal subfield of Ẽ whose degree over Q is d = cs and
is such that the subfield is normal over Q (for 1000 tries of small random elements of
Ẽ, say). Return ‘Fail’ if a normal field cannot be found.

Let f be the minimal polynomial of e over Q and set F := Q(α) where the minimal
polynomial of α is f .

4. Set BS̃ to a basis matrix of the α-eigenspace of e over F .

Set BM̃ to the matrix corresponding to BS̃ under the embedding of S̃ into M̃ .

Set UF := C .Uncondense(BM̃).

5. Set π :=
Function(φ)
{

[φ : F 99K Fp is a given partial homomorphism, naturally extended to vectors,
matrices, modules over F , etc.]

Set Ū := φ(UF).
Set S̄ to the submodule of the full virtual module of C

generated by Ū , using C .Action [all done over Fp].
[Return ‘Fail’ if φ applied to any element is not in the domain of φ.]
Return S̄.

}
6. Set B := (G,χ, F, π(φ)) and return B.

Theorem 6.3.4. Algorithm BBCondensationSetup is correct.

Proof. In Step 1, after calling IrreducibleRationalRepresentations in black-box
mode, we have an Ã-module S̃ which is the condensation of an underlying simple QG-
module S whose character is χQ. Let E = EndQG(S) and Ẽ = EndeQGe(S̃). By Prop. 6.3.3,

133

E and Ẽ are isomorphic, so we may identify them. In Step 3, a maximal subfield of the
desired degree must exist by Thm. 1.5.1 and Thm. 1.4.3. Assume that a maximal subfield
of Ẽ which is normal over Q is found (otherwise ‘Fail’ will be returned) and let F = Q(α)
be the isomorphic number field, of degree d.

In Step 4, let ṼF be the submodule of S̃F which is generated by the α-eigenspace of
e over F . Then by Lem. 3.5.1, a corresponding submodule VF of SF must exist whose
condensation is ṼF and is just the uncondensation of ṼF (working over F).

Since E ∼= Ẽ, F is isomorphic to a maximal subfield of E and so by Cor. 1.5.5 and the
fact that F is normal over Q, the Q-representation corresponding to S splits over F into
d absolutely irreducible representations, whose characters are the (F/Q)-conjugates of χ.
By considering the symmetry and Lem. 3.5.1, the corresponding d simple constituents of
SF must all condense to d simple non-zero submodules of S̃F with the same dimension.
Now by Lem. 1.5.3, the dimension of ṼF equals the dimension of S̃ divided by d, so it
must be isomorphic to one of these simple submodules of S̃F . Thus VF has character χ,
under some embedding of Q(χ) into F (and ρF in the definition of the black-box represen-
tation is the representation corresponding to VF). Otherwise the algorithm is the same as
BBRationalModuleSetup above, so the correctness follows in the same way. �

Remarks 6.3.5. We note the following points on our implementation:

1. Algorithm BBCondensationSetup is the more powerful of the setup algorithms
since it uses condensation and avoids the explicit construction of an irreducible ratio-
nal representation, but Algorithm BBRationalModuleSetup is useful when one
already has an irreducible rational representation (constructed by whatever means);
we have applied it in some situations below.

2. In both algorithms (just as in AbsolutelyIrreducibleRepresentation), if the
Schur index s of χ is 1, then the field F is essentially unique (and normal over Q) but
if s > 1, then F is not unique. As an option, one can specify a particular field F to be
used, assuming it can easily be found in Ẽ.

3. One could also create a black-box setup function for any other algorithm which con-
structs a representation (e.g., restriction from a known representation with a fixed
eigenspace of some endomorphism).

6.3.4. The Hybrid Black-box/Entry Reduction Algorithm. We can now present
the hybrid algorithm for constructing a representation affording an absolutely irreducible
character. The basic idea is to construct a black-box representation B, and to reduce
this by the above EntryReductionBySubgroup algorithm in place, so that the final
representation ρ is equivalent to the underlying representation ρF of B, but ρ also has
reduced entries, and modular techniques are used to avoid the explicit construction of ρF
at any point.

Algorithm BBReductionRepresentation(χ,H)
Input:

• An absolutely irreducible character χ for a finite group G.

134

• A proper subgroup H of G (not necessarily maximal).

Output:

• An absolutely irreducible representation ρ : G → GLn(F) affording χ, where F is a
minimal field for χ.

Steps:

1. Set B := BBCondensationSetup(χ); if ‘Fail’ is returned, then return ‘Fail’.

Write B = (G,χ, F, π(φ)) and then write F = Q(α) with f ∈ Q[x] the minimal
polynomial of α and set d := Deg(f).

[One can set up B and F by other means; the condensation-based method is given
here as the default.]

2. Set χH := χ ↓ H and decompose χH uniquely as

χH =
k∑
i=1

mi · ψi,

where ψi ∈ IrrF (H) and mi ≥ 1 for 1 ≤ i ≤ k.

3. Set [σ1, . . . , σk] := IrreducibleRepresentationsOverField([ψ1, . . . , ψk], F).

4. Construct an echelonized F -basis Bi of HomFH(σi, ρF ↓ H) for i = 1, . . . , k (where ρF
is the underlying representation of B over F) by the standard CRT-based modular
scheme (see p. 23), choosing each prime to be greater than 2χ(1), as follows. For each
successive prime p and root βj ∈ Fp of f (for 1 ≤ j ≤ d; take β1 = 1 if F = Q):

• Set φβj : F 99K Fp to the partial homomorphism given by reduction modulo p
and by α 7→ βj.

• Set ρβj := B.π(φβj) (the modular projection of the underlying representation
ρF); skip to a new prime if there is failure in the modular construction.

• Compute an echelonized basis of HomFpH(φβj(σi), ρβj ↓ H) for i = 1, . . . , k.

Combine the modular bases via interpolation and Chinese Remaindering and use ra-
tional reconstruction to construct each F -basis Bi when stable.

5. For 1 ≤ i ≤ k, set [Ci,1, . . . , Ci,mi] := ReducedHomBasis(Bi,mi).

Set T to the vertical concatenation of [C1,1, . . . , C1,m1 , . . . , Ck,1, . . . , Ck,mk].

6. Construct the images [X1, . . . , Xr] ∈Mn(F) of the generators {g1, . . . , gr} of G under
the conjugated F -representation (ρF)T , again by the standard CRT-based modular
scheme, as follows. For each successive prime p and root βj ∈ Fp, compute φβj and ρβj
as above, set Tβj := φβj(T) and compute (ρβj)

Tβj ; combine these modular images via
interpolation and Chinese Remaindering and use rational reconstruction when stable
to construct matrices [X1, . . . , Xr] ∈Mn(F).

7. Test whether [X1, . . . , Xr] define a valid representation ρ of G, where ρ(gi) = Xi for
1 ≤ i ≤ r, by computing a presentation of G and checking that all the relations on
the gi are satisfied by the Xi also. If the validation fails, return to Step 4, using new
primes and ensuring that more primes are used than last time.

8. Embed Q(χ) in F via Lem. 1.5.4 so that the character of ρ equals χ, then return ρ.

135

Theorem 6.3.6. Algorithm BBReductionRepresentation is correct.

Proof. First, the correctness of the output follows from the verification in Step 7 that
ρ is a valid representation of G and the fact that ρ equals the underlying representation
ρF of B modulo some M > 2χ(1) under an appropriate embedding of Q(χ) into F ,
so Lem. 1.5.4 is applicable in the last step, so the output is correct upon termination.
To see termination, it is clear that after setting up the black-box representation B of
χ and setting up representations of H affording the irreducible components of χ ↓ H (via
IrreducibleRepresentationsOverField), the heart of the algorithm is essentially the
same as the algorithm EntryReductionBySubgroup, except that the construction of
the Bi bases of the Hom-modules and the conjugation of ρF by T are performed by the
standard CRT-based modular method. As with other modular algorithms, there can only
be a finite number of bad primes (dividing the denominators of entries in ρF or the σi
or entries in the echelonized basis of the Hom-modules), and these will be detected if the
construction of ρβj fails at any point or the verification fails in Step 7. Similarly, if a
modular construction succeeds but does not use enough primes, then this will be detected
in the verification step and more primes will be used next time. Thus there must eventually
be enough good primes chosen so that all of the Hom-modules are properly constructed
and a transformation matrix T is constructed so that the modular reconstruction of (ρF)T

succeeds and is correct. �

Remarks 6.3.7. We will give several examples in the next section which demonstrate
how the algorithm performs in different ways. We first note the following points on the
algorithm and its implementation:

1. The primes can be chosen as in the modular algorithm for computing a Hom-module
(see p. 24) and each prime will be much greater than 2χ(1) in practice. It is also
good to add further restrictions on each prime p so that the defining polynomials of
the fields corresponding to the absolutely irreducible representations of H underlying
the σi representations do not split modulo p. Then when computing HomFpH(σi, . . .),
the representation σi remains irreducible modulo p, so the modular Hom-module can
be computed by the faster Holt/Rees Hom algorithm for an irreducible module to
construct the modular homomorphisms (instead of having to decompose a semisimple
module).

2. Computing the restricted representation ρβj ↓ H for each modular representation ρβj
can be rather expensive when the degree is large (since it typically involves evaluation
of words in the strong generators). But there is a simple trick to avoid this which
we can often use: when we set up the black-box representation for G, we can extend
the generators of G to include the generators of H and so when the modular spin
algorithm constructs the modular representation of G each time, the reduced action of
the generators of H are also constructed, so the restriction of this representation to H
is then trivial to compute. The extra cost of computing the reduced action of the extra
generators is typically very small. This simple modification helps enormously in very
large degree. Note also that the ρβj computed in Step 4 can be stored and reused in
Step 6, for any prime which is used in both steps.

3. An obvious optimization of Step 4 is that when the basis Bi of the Hom-module for a
particular representation σi of H has been constructed, then there is nothing to do for

136

this basis for any subsequent primes which are needed to construct other bases. This
situation arises commonly in practice.

4. Note that χ does not really need to be absolutely irreducible; we have given a version
here where B is first constructed for an absolutely irreducible χ, but a black-box rep-
resentation for an arbitrary character of G could be set up and used. For example, we
have sometimes recursively computed a representation affording a character χH of a
subgroup H which is not absolutely irreducible: to obtain a reduced representation we
have extended Step 3 of IrreducibleRepresentationsOverField (p. 77) so that
BBRationalModuleSetup can be called with a homogeneous (reducible) rational
representation with the suitable endomorphism e and then the rest of BBReduction-
Representation is used to obtain a reduced representation over a field F which is
non-minimal for χH .

5. For the verification in Step 7, we use the usual technique of using words in the strong
generators of G, instead of the original generators. All powers of the generating ma-
trices (and their inverses) can be stored as they arise, to avoid later recomputation.
Assume that all relations are of the form wl(g1, . . . , gr) = 1. Now one can write a
word w(g1, . . . , gr) as a list of the form [ie11 , . . . , i

en
n] where i

ej
j corresponds to g

ej
ij

(note

that ej can be negative) and then sort the words in lexicographical order according to
these lists (comparing bases then exponents). Then while looping over the words in
this order, subproducts can be remembered so that each new product can be computed
from the point at which the word differs from the previous word, etc. (so this is akin to
a depth-first search because of the lexicographical order). Also, every matrix multipli-
cation within each word can be done using a relevant modular algorithm for matrices
over F . Alternatively, if a word involves multiplying the matrices [Ai1 , . . . Aik], then one
can determine a bound for the whole product (after having taken out the denominator
LCM) and then compute the whole product modulo enough primes and check that this
product equals the identity matrix each time (thus avoiding a CRT step at the end).
This method can be improved further: since there is already a modulus M such that
the putative representation is already known to be correct modulo M , the verification
only needs to check each relation modulo enough extra primes which cover the relevant
bound. Combining all the above improvements, the verification is very efficient, and
typically takes a small number of seconds even for representations with degrees in the
hundreds, since matrix multiplication is very fast in our implementation.

6. All the remarks on EntryReductionBySubgroup hold here. In particular, the
choice of H can have a strong effect on the quality of the result (see p. 127). It is
generally best to choose H to be one of the largest maximal subgroups of G, so that
the multiplicities are more likely to be 1 and so the relevant Hom-modules will have
small dimension and the LLL-reduction will be stronger. Occasionally there are still
non-trivial multiplicities when H is the largest maximal subgroup; worst-case examples
are the degree-1920 and -1938 representations of J3 (p. 184), where the multiplicities
go up to 8 and the algorithm fails to construct representations with very small entries
(in the former case, the dimension of the last Hom-module is 24, since F has degree 3).
But it is not always bad if the representations of H occur with a high multiplicity. For
example, for the degree-1728 and -2048 representations of 2F4(2)′, both computed by
BBReductionRepresentation (p. 183 and p. 184 respectively), the representations

137

of the subgroup H include a degree-64 representation with multiplicity 11 and 13
respectively, and several others of high multiplicity, but the resulting representations
of G still have relatively small entries.

7. Just as in the irreducible extension algorithm (see p. 88), we first conjugate H if possible
so that one of the generators of G is in H, so the corresponding image matrix is usually
sparse or has entries in a subfield, etc., and the final representation is more compact.
Some examples (among very many in our database) are the following, where in each
case G has two standard generators g1, g2 and ρ is the relevant representation:

• For the degree-65 representation of G = Sz(8), ρ(g1) is diagonal with entries ±1
only (32 -1s and 33 1s, thus trace 1). (The contributing representations of H of
degree 7 and 28 are monomial over Z.)

• For the degree-220 representation of G = U5(2), g1 has order 2 and ρ(g1) is diag-
onal, with entries ±1 only, while ρ(g2) has density 66.7% and entries in Q(ζ3).

• For the degree-126 representation of G = 3.McL, the field F is Q(α), where the
minimal polynomial of α is x4 − x3 − 2x2 − 3x + 9. Here g1 has order 2 and
ρ(g1) is a monomial matrix with the only non-zero entries being 1 and ±β, where
β = 1

6
(−α3 − 2α2 + 2α + 3) (of order 3 in F).

6.4. Examples

We now devote a whole section to presenting examples of the use of the hybrid algorithm
BBReductionRepresentation, since it is effective for a wide range of situations and
there are several interesting phenomena which arise.

Example 6.4.1. Let G be the sporadic simple group J3 and let χ be one of the degree-
85 characters of G, with character field F = Q(

√
−19). We noted in Ex. 3.9.7 that

AbsolutelyIrreducibleRepresentation applied to χ returns a poor representation
ρ1 : G→ GL85(F), and in Ex. 6.2.4 we used the entry reduction algorithm to conjugate ρ1

to a reduced representation ρ (in 22.9s).

By using BBReductionRepresentation we could instead construct the reduced
representation ρ directly without having to construct ρ1 first, as follows (table entry on
p. 168). By using the same H as in Ex. 6.2.4 (order 8160), irreducible rational rep-
resentations of H having degrees 17 and 68 were first set up in 0.7s. Then a black-box
representation B was constructed for χ, using condensation of a degree-14688 permutation
representation of G: the condensation subgroup K had order 81, the condensed module
M̃ had dimension 186, and the simple constituent S̃ corresponding to χ had dimension 2.
The endomorphism ring of S̃ was isomorphic to F , as expected, so the black-box repre-
sentation B could be set up with a suitable eigenspace (total black-box setup time 48.0s).
Finally, the rest of BBReductionRepresentation used B and the representations of
H to construct ρ affording χ in only 1.2s. The resulting representation is identical to the
representation constructed in Ex. 6.2.4, but avoids the initial construction of ρ1 (and the
irreducible rational representation from which that was extracted).

Example 6.4.2. This example involves computing a representation realized over a degree-
4 number field, having extracted it as a constituent of a degree-18954 induced represen-
tation, but the result still has very small entries. Let G = 3.G2(3), and let χ be one of

138

the degree-189 absolutely irreducible characters of G; χ has Schur index 1 and character
field F = Q(α), where α has minimal polynomial x4 − x3 + 4x2 + 3x+ 9. We computed a
representation ρ affording χ by BBReductionRepresentation, as follows (table entry
on p. 174).

The black-box representation B for χ was set up by using induction condensation
for a degree-54 irreducible rational representation of a subgroup of G of index 351. The
condensation subgroup K chosen by AutomaticCondensation had order 96 and the
full condensed module M̃ had dimension 180. The condensed submodule S̃ corresponding
to χ had dimension 4 (split out by the rational Meataxe in only 0.7s); it was then trivial
to compute an endomorphism

e =


0 0 1 2
0 0 1 −1
1 −1 1 1
−2 −1 −1 0


of S̃ whose minimal polynomial is f above. The total black-box setup time was 49.2s.

The subgroup H for reduction was chosen to be a soluble subgroup of order 22.37 so
that χH = χ ↓ H splits as four inequivalent degree-27 irreducible characters which can be
realized over Q(ζ3), one with multiplicity 1 and others with multiplicity 2. Corresponding
representations were constructed by inducing linear representations for a subgroup of H
of index 27 (2.8s total). The remaining steps of BBReductionRepresentation took
44.8s, as follows. Step 4 used 3 primes and 4 roots per prime to construct the Hom-
modules; each modular spin in the induced module of degree 18954 took 3.0s to compute
the dimension-189 submodule and the reduced action. Only one prime was needed in
Step 7 to compute the final representation ρ : G → GL189(F) affording χ, and this was
verified in 1.4s. Let {g1, g2} be the standard generators of G. Then ρ(g1) is monomial
(since g1 ∈ H and the representations of H are monomial) while ρ(g2) has density 97.9%
and entry denominator LCM 648 = 23.34 and absolute maximum numerator 243; a typical
entry is 1

216
(−α3 − 8α2 + 4α− 31).

We thus see that the algorithm BBReductionRepresentation is very effective at
constructing a representation of non-trivial degree over a non-trivial number field, even
when it is extracted from a very large representation (degree 18954 here).

Example 6.4.3. This example shows that it is sometimes better to use black-box rep-
resentations which are based on tensor condensation instead of permutation or induction
condensation. Let G1 = 121.U4(3) and G2 = 122.U4(3). Both groups have absolutely
irreducible representations of degree 216 and Schur index 1, which can realized over the
minimal field Q(ζ12) of degree 4; let χ1 and χ2 be corresponding characters. Without us-
ing tensor condensation, the smallest-degree virtual representation for χ1 has degree 6720
(induction of a degree-24 representation of an index-280 subgroup; 1065s to set up) and for
χ2 the degree is 12960 (induction of a degree-12 representation of an index 1080 subgroup;
875s to set up). Instead, we used a black-box representation based on tensor condensation
in both cases; for G1 we used the tensor product of representations of degrees 30 and 40
(thus virtual degree 1200; 81s to set up the black-box representation), while for G2 we
used the tensor product of representations of degrees 40 and 72 (thus virtual degree 2880;
117s to set up the black-box representation). The modular spin operations are also quicker

139

in both cases than for the induction-based situation, since the degrees of the actions are
significantly smaller. See p. 175 for more details.

Several representations of very high degree are also computed via black-box represen-
tations based on tensor condensation; e.g., the degree-7497 and -7650 representations of
the sporadic Held group, both over the quadratic field Q(

√
−7) (p. 187).

Example 6.4.4. In this example, the initial call to IrreducibleRepresentations-
OverField in the hybrid algorithm needs to use Fieker’s algorithm to rewrite a repre-
sentation over a minimal extension field. Let G = U3(4) and let χ one of the degree-75
irreducible characters of G; χ has Schur index 1 and values in Q(ζ13), and the character field
Q(χ) can be written as F = Q(α), where α has minimal polynomial x4 +x3 + 2x2−4x+ 3.
A typical call to AbsolutelyIrreducibleRepresentation on χ takes about 3400 sec-
onds and yields a representation with entries having numerators of up to 28 digits and
denominators with 2 digits. So we used BBReductionRepresentation instead to con-
struct a representation affording χ, as follows (table entry on p. 167).

First a black-box representation B for χ was constructed via the induction to G of a
linear representation of an index-416 subgroup of G which condensed to a dimension-30
reduced module. The simple condensed constituent S̃ corresponding to χ had dimension
20 and an endomorphism of S̃, generating a subfield isomorphic to F , was instantly con-
structed. (The total time to set up B was 0.8s.)

Let H be the largest maximal subgroup of G; H has order 960 and is soluble, with shape
22+4.3.5. Now χH = χ ↓ H splits over F into irreducible characters of degree 12, 15, 48
respectively and the degree-15 and degree-48 representations can be realized over Q (and
computed in less than a second). But the degree-12 character ψ1 has Schur index 2. So
when IrreducibleRepresentationsOverField was called on the components of χH
and F , it first obtained an irreducible rational representation σ1 of degree 24 corresponding
to ψ1. The endomorphism ring of σ1 has dimension 4 and is non-commutative with trivial
centre, as expected. Elements from the LLL-reduced basis of a maximal order of E and
small linear combinations thereof have minimal polynomials such as x2 + x+ 1 and x2 + 2,
none of which have a root over F . In fact, the single quadratic subfield of F equals Q(

√
13),

and ψ1 cannot be realized over this subfield. So the algorithm instead set F0 to one of
the quadratic subfields of E and then computed the corresponding absolutely irreducible
representation ρF0 which is a constituent of (σ1)F0 and then called Fieker’s algorithm on
ρF0 and F which immediately gave a representation ρ1 : H → GL12(F) affording ψ1. The
complete time taken in IrreducibleRepresentationsOverField was 3.0s.

Finally, the rest of BBReductionRepresentation took only 1.1s to construct a
representation ρ : G → GL75(F) affording χ. The total time for constructing ρ was thus
4.9 seconds. Writing the standard generators of G as g1, g2, we have that ρ(g1) has density
0.02% with only ±1 for non-zero entries, while ρ(g2) has density 96.1% and maximum
3-digit numerators and denominator LCM 960 = 26 · 3 · 5.

Example 6.4.5. This example shows that the hybrid algorithm can efficiently compute
absolutely irreducible representations over a minimal field efficiently and with small entries,
even when the field has very high degree.

Let G = L2(83), which has a class of 20 degree-84 conjugate irreducible representations.
Let χ be one of the corresponding characters, which has entries in Q(ζ41) and Schur index

140

1. The minimal-degree character field of χ can be written as F = Q(α), where α has
minimal polynomial f , which is equal to

x20 + x19 − 19x18 − 18x17 + 153x16 + 136x15 − 680x14 − 560x13 + 1820x12 + 1365x11−
3003x10 − 2002x9 + 3003x8 + 1716x7 − 1716x6 − 792x5 + 495x4 + 165x3 − 55x2 − 10x+ 1.

We computed a representation ρ : G → GL84(F) affording χ, as follows (table entry
on p. 195). We set H to the largest maximal subgroup of G with shape 41.83. Now
χH = χ ↓ H splits over F as 2 + 82 (the minimal fields for these representations are Q and
F respectively). Corresponding representations were constructed by IrreducibleRep-
resentationsOverField in 11.3s. A typical entry of the image of a generator in the
degree-2 representation is:

α16 − 16α14 + 104α12 − 352α10 + 660α8 − 672α6 + 336α4 − 64α2 + 1,

while the degree-85 rational representation has only two non-zero entries per row, which
are all ±1.

Setting up a black-box representation B for χ took only 3.8s, via the condensation of
a degree-3403 permutation representation of G (condensed dimension 63) and the desired
condensed constituent S̃ had dimension 20. The generators of the action of S̃ had entries
in the range -8 to 8 and the endomorphism ring Ẽ of S̃ was isomorphic to F as expected.
The first non-scalar matrix e in a LLL-reduced basis of Ẽ was a sparse 20 × 20 integral
matrix with very small entries and with minimal polynomial equal to f , so the eigenspace
of e over F was used to generate the submodule over F .

Finally, the rest of BBReductionRepresentation used B and the representations
of H to construct ρ affording χ in only 34.8s (total time 49.9s). The image matrices
both have density 98.8%, denominator LCM 83 and absolute maximum numerator 120782
(average 1796.6, 1879.6). So the entries are very small, considering the very large degree
of F and the degree of χ. A sample random entry is:
1
83

(−2w19− 2w18 + 36w17 + 36w16− 268w15− 274w14 + 1062w13 + 1150w12− 2394w11− 2906w10

+3011w9 + 4508w8 − 1849w7 − 4142w6 + 265w5 + 2004w4 + 178w3 − 382w2 − 43w + 20).
Note that if this representation is rewritten over the cyclotomic field Q(ζ41) (into which F
embeds), then the entries have denominator LCM 83, and the absolute numerator maxi-
mum is just 45 (average 2.4).

For comparison, we also computed the underlying representation ρF over F of the black-
box representation B by calling the modular setup function B.π with enough primes till
the reconstruction of the combination succeeded; this took 120 primes and 226s. The
denominator LCM was a 397-digit integer and the absolute maximum numerator was a
421-digit integer. So the hybrid algorithm often does a very major reduction of the entry
size of the underlying representation!

Example 6.4.6. This example shows that is sometimes worth applying the hybrid algo-
rithm recursively all the way down a chain of subgroups which are successively maximal.

For the classical groups L2(q) and 2.L2(q), there are absolutely irreducible represen-
tations of degree (q − 1)/2 or (q + 1)/2 and these can be very hard to compute over a
minimal field (which is always quadratic). Let G = 2.L2(71) and let χ be one of the faith-
ful degree-36 irreducible characters of G; the character field of χ equals F = Q(

√
−71) and

141

χ has Schur index 1. We computed a representation ρ affording χ as follows (table entry
on p. 196).

Let H1 be the largest maximal subgroup of G (the Borel subgroup), of order 4970.
Then χ ↓ H1 splits over F as 1 + 35. Let ψ1 be the degree-35 character, which has
character field F and Schur index 1. Computing a representation affording ψ1 via Abso-
lutelyIrreducibleRepresentation yields a representation with 8-digit numerators
and denominator LCM 1 (in 32 seconds), and computing a representation for χ by BBRe-
ductionRepresentation using this representation of H yields a representation whose
image matrices have 11-digit numerators and denominator LCM 71.

But we could compute a representation of better quality, as follows. Consider the chain
of subgroups:

G > H1 > H2 > H3 > H4 > 1,

with respective orders 357840, 4970, 2485, 497, 71, 1 and such that each Hi is the largest
maximal subgroup of the preceding subgroup (with successive indices 72, 2, 5, 7). Let ψi
be the restriction of ψ1 to Hi for i = 2, 3, 4. Each ψi is irreducible over F . So σi (affording
ψi) was computed for i = 4, 3, 2, 1 successively, each time using the previous representation
σi+1 for i < 4, as follows.

• Since H4 is cyclic, σ4 affording ψ4 could be constructed simply by factoring the poly-
nomial x71−1 over F ; this has irreducible factors of degrees 1, 35 and 35 (it takes 0.35
seconds to compute the factorization, using Trager’s algorithm [Tra76]). The image
of a generator of H4 under σ4 was defined to be the companion matrix A of one of the
degree-35 factors. The entries of the last row of A are:

[1, α+ 1, α− 8,−2α− 14,−5α− 5,−5α+ 13,−2α+ 28, 2α+ 33,
6α+ 33, 11α+ 22, 13α− 8, 9α− 40, 2α− 52,−3α− 47,−6α− 38,
−8α− 26,−8α− 12,−7α− 5,−7α− 2,−8α+ 4,−8α+ 18,−6α+ 32,
−3α+ 44, 2α+ 54, 9α+ 49, 13α+ 21, 11α− 11, 6α− 27, 2α− 31,
−2α− 30,−5α− 18,−5α,−2α+ 12, α+ 9, α,−1]

• For i = 3, 2, 1, σi (affording ψi) was computed by setting up a black-box representation
for ψi and reducing this via σi+1.

• Finally, ρ affording χ was computed by a black-box representation for χ (via a per-
mutation representation of degree 144), and then reducing via [1H , σ1], where 1H is
the trivial representation of H.

The final representation ρ has 6-digit numerators and denominator LCM 71 and the total
time taken to construct ρ was 11.3 seconds. Note that if we omit one of the subgroups in
the chain, the quality of the final representation becomes poorer.

6.5. Comparison with General Extension

Here is a brief comparison of the general extension and hybrid algorithms. General
extension is obviously necessary when the group G is such that the index of its maximal
subgroups are so large that one cannot set up a reasonable black-box representation based
on permutation or induction condensation (although tensor condensation may be applica-
ble, such as in some of the very high-degree representations of HN). But the number of
initial image matrices and the norm of χ ↓ H (determining the dimension of the relation

142

ideal) have a critical effect on the time taken by the general extension algorithm, so there
are many cases where it may require many more expensive matrix operations in generating
all the polynomial relations and solving the final polynomial system may be difficult. Also,
the final rewriting of the representation to be defined on the given generators of G may be
expensive. So the hybrid algorithm is often much faster and is particularly better when
the final field F over which the representation is written has high degree. Some examples
below illustrate these points.

We noted in Subsec. 5.4.7 that for the general extension algorithm, one can use LLL-
reduction on the final set of image matrices and the associated polynomials (before com-
puting the point of the variety) to attempt to reduce the entries of the final representation.
An alternative way to improve the quality of the output is simply to apply the algorithm
EntryReductionBySubgroup to the resulting representation, reducing by representa-
tions of H2, where H2 is some subgroup of G which is conjugate to H; in this case, it costs
nothing to set up the corresponding representations of H2 (see point 7 on p. 138). The
resulting representation always seems to have as good quality as that of the result of using
BBReductionRepresentation instead.

Example 6.5.1. Let G be the sporadic simple Suzuki group Suz. We noted in Ex. 5.5.2
that the degree-143 rational representation of G can be computed by general extension in
only 2.4s after degree-65 and -78 rational representations of H (the largest maximal sub-
group) are set up. In contrast, if we use BBReductionRepresentation to construct
this representation, then we have to condense a permutation representation of G of degree
32760 or a monomial representation of G of degree 22880 (induction of a linear represen-
tation of an index 22880 subgroup). If we use the latter, then setting up the black-box
representation takes 106s, and then the rest of the algorithm takes 6s, so after the initial
setup of the representations of H, BBReductionRepresentation takes 112s, compared
with 2.4s for GeneralExtension.

However, some high degree representations of G are more easily handled by Irre-
ducibleRationalRepresentations or BBReductionRepresentation since they
occur as constituents of lower-degree representations: the irreducible representations of
degrees 780 and 1001 (p. 182) occur in permutation representations of degree 1782. The
irreducible representations of degrees 3432 (p. 185), 5005 and 5940 (p. 186) occur in the
tensor square of the degree-143 representation, so we computed them using that, to avoid
the situation of a large number of image matrices in the general extension algorithm.

Example 6.5.2. Consider the degree-171 representation of G = 3.J3 over the degree-4
number field F = Q(α), where the minimal polynomial of α is x4 − x3 + 2x2 + x + 1
(table entry on p. 173). Here the black-box representation was based on the induction of a
degree-34 rational representation of an index-6156 subgroup; the condensed module M̃ had
dimension 876 (condensed subgroup of order 240) and took 331s to set up, then 138s to
extract the dimension-4 condensed submodule S̃. Then BBReductionRepresentation
with a subgroup H of index 17442 took 384s to do the rest: there were 3 primes, 4 roots per
prime and each modular spin took 28s (with a degree-209304 space over each finite field!).
The total time taken was 860s. For the resulting representation ρ : G → GL171(F), ρ(g1)
has denominator LCM 64, absolute maximum numerator 32 and density 98.7%, while ρ(g2)
is monomial (see [Ste11]). So despite having to extract the representation from a virtual

143

induced representation of degree 209304, the hybrid method still yielded a small result in
reasonable time.

In contrast, if we were to use general extension on the appropriate representation of
the above H (of index 17442), then the largest normalized subgroup L would have order
1728 with 54 initial image matrices and the dimension of the relation ideal would have
dimension 12, so this computation would be more much expensive, particularly since it
would be over the number field F of degree 4. (Using the larger maximal subgroup H
of index 6156 instead, the largest normalized subgroup L would have order 288 with 313
initial image matrices.)

6.6. The degree-10944 representation of the O’Nan Group

Let G be the sporadic simple O’Nan group, of order

460815505920 = 29.34.5.73.11.19.31.

A minimal-degree faithful representation of G has degree 10944, which can be realized
over Q. Let χ be the corresponding character. We succeeded in constructing a rational
representation affording χ, but this was by far the most difficult representation in our
database to construct, not just because the degree 10944 is very large, but also because
the largest maximal subgroups of G are relatively small.

LetH be the largest maximal subgroup ofG, which equals L3(7):2 (order 3753792, index
122760), and let χH = χ ↓ H . The norm of χH is 52, so there are many corresponding
irreducible representations of H. For the general extension method applied to χ and a
representation affording χH , the largest possible normalized subgroup L has order 672, with
179118 associated image matrices; since also the final relation ideal would have dimension
51, it is clearly infeasible to use this method.

Now the desired representation does occur in a degree-122760 permutation module of
G, but clearly it is also infeasible to use the direct condensation-based splitting method
here, since the matrices given to the Hermite form and LLL algorithms in the integral spin
would be far too large. However, we were able to compute a representation affording χ by
algorithm BBReductionRepresentation, as follows (table entry on p. 187).

A degree-122760 permutation representation was used to define G, and H was defined
as above. The decomposition of χH into irreducible rational characters has the following
degrees (with multiplicities):

1, 57, 112, 152× 3, 304, 342× 2, 343× 3,

399, 399× 2, 456, 456, 684, 684, 1368, 1728× 2.

Corresponding irreducible rational representations were constructed by either irreducible
extension (degree 57, 152, 342, 343, 399, 456) or general extension, via the normal subgroup
H2 = L3(7) of H in both cases. The corresponding representations of H2 were first con-
structed by either direct induction or IrreducibleRationalRepresentations (160s
total), except for the degree-1728 representation, which was constructed by first comput-
ing a corresponding degree-288 absolutely irreducible representation of H2 over a degree-6
minimal field via BBReductionRepresentation, and then using restriction of scalars
to Q (51s).

144

We set up a black-box representation B for χ as follows. Let n = χ(1) = 10944.
Condensation was used, where the virtual representation σ was the degree-122760 per-
mutation representation of G, and a condensation subgroup K of order 343 was selected,
so that the condensed module M̃ had dimension 366 (43s for setup). Then M̃ split as
1 + 42 + 76 + 97 + 150 and the dimension-42 constituent S̃ corresponding to χ was ex-
tracted (371s for the rational Meataxe). For the uncondensation of S̃ inside the degree-
122760 permutation module, a modular spin with parallel operations on integral vectors
took 11.4 hours. Then using the resulting invariant n × 122760 integral basis matrix, we
could construct in a few seconds integral n × n matrices U,A1, A2, B1 and B2 (all sparse
with entries mostly ±1) such that

g1 7→ A1U
−1, g2 7→ A2U

−1, h1 7→ B1U
−1, h2 7→ B2U

−1

defined an irreducible rational representation ρ1 of G which afforded χ, where {g1, g2} and
{h1, h2} are standard generators of G and H respectively. The above image matrices would
have impractically large entries in Q, so they were not computed explicitly, but we could
define a black-box representation B for χ via ρ1.

To apply the remaining steps of BBReductionRepresentation, we needed to con-
struct ρ1 ↓ H for successive primes and compute corresponding Hom-modules for each of
the irreducible representations of H. All of the Hom-modules were computed via 10 par-
allel processors and took about 191.0 hours total sequential time (10 primes at 19.1 hours
each); the bulk of the time was in the modular Meataxe to decompose the semisimple
modules corresponding to ρ1 ↓ H over the finite fields. The reduction of the bases of all of
the rational Hom-modules in ReducedHomBasis then took 1521s total.

Finally, we could construct the rational representation ρ affording χ. Since it was easy
to conjugate H initially so that the first generator g1 of G was in H, the first image matrix
ρ(g1) was constructed via the block sum of images of the representations of H (density
0.094%). This matrix has integral entries in the range -22 to 22 (43 distinct values) and
trace 64, equalling χ(g1), as expected. Finally, constructing the second image matrix ρ(g2)
via conjugation of ρ1(g2) by the transformation matrix took 3.9 hours. This matrix ρ(g2)
has density 99.7% and 4003690 distinct entries (trace 64 also). The denominator LCM is
278110941696 = 29.35.76.19 (maximum denominator 8941324 = 22.76.19) and the absolute
maximum numerator is 45532001, while the average numerator has only 3 digits. The larger
numbers only occur in the last 5184 rows and the last 5184 columns of the matrix (since the
LLL algorithm had to act on a corresponding lattice of dimension 6 in ReducedHomBasis
for the degree-1728 block, so it was harder to reduce the corresponding section). A sample
of 10 random entries in this portion of the matrix is the following:

{ 46385

460992
,

35179

460992
,

41815

319333
,
23671

91238
,
15285

76832
,− 31583

388962
,− 328

4617
,− 308925

8941324
,

56407

117649
,− 43579

268912
}.

In the rest of the matrix (the top left 5760× 5760 submatrix), the numbers are much
smaller (average 2-digit numerators and 5-digit denominators). A sample of 10 random
entries in this portion is the following:

{− 745

9604
,

1

1176
,

55

5472
,− 1593

21952
,

5

196
,

1024

21609
,

1375

65664
,− 31

4802
,

629

98496
,

1

1372
}.

145

We skipped the final verification step, since it would be extremely expensive, but we did
perform several checks on the representation to verify its correctness (by computing traces
of products of the matrices over Q, and some modular checks). Also, the 10 primes used
above in the modular construction of the Hom-modules are 2 more than were needed (the
results of the rational reconstruction were actually covered by 8 primes), and we computed
the Hom-modules on 10 more primes in parallel and verified that they were consistent with
the rational Hom-modules and the conjugated image of g2, so the result is also verified to
be correct modulo an integer of the order of 10140. The total time taken for the whole
computation was about 202.4 hours.

6.7. Conclusion

We summarize the main features of the hybrid approach. Some of the key advantages
are the following:

1. Since the underlying representation is constructed via the splitting approach, which
first determines an underlying irreducible rational representation, the result is guar-
anteed to be written over a minimal field F .

2. This approach easily handles much higher degrees (both for the result and for the
virtual representation σ) than are practical in the direct splitting approach, since
the expensive saturation, Hermite form and reduction operations on large integral
matrices are completely avoided.

3. This approach generally works just as well over number fields as over Q, so does not
face the major challenge of finding a good eigenspace basis in the splitting approach.

4. This approach is often much more efficient than the general extension algorithm
when the number of image matrices in that algorithm is large or when the polynomial
system is difficult to solve over the minimal field F . Sometimes the hybrid algorithm
is even faster than irreducible extension when the number of image matrices is large.

The only real limitation of the hybrid approach is that if G has no proper subgroups of
moderate degree and tensor condensation is not applicable, then one cannot set up an
appropriate black-box representation so this approach will not be practical, but general
extension is usually applicable in such a case.

146

Chapter 7

A General Strategy

7.1. Outline

We outline here a general procedure to compute a representation ρ : G→ GLn(F) affording
a given character χ ∈ Irr(G) and such that F is a minimal field for χ, as a synthesis of all
the algorithms presented in the thesis.

1. If G is too large to compute its character table, then choose a maximal subgroup H
of G (e.g., by using known words in the standard generators of G), determine the
decomposition of χ ↓ H (by inspection of the Atlas, say), then compute corresponding
irreducible representations of H recursively, and then use general extension with G and
the sum of these representations, without explicit use of the character (Sec. 5.6).

2. [Now the character table of G is assumed to be computed.]
Set d = χ(1), C = Q(χ), c = DegQ(C) and s = sQ(χ).

3. If there exists a subgroup H of G of index l, with l > 1 and lq = d, and such that there
is a ψ ∈ H such that ψ ↑ G = χ and sQ(ψ) ·DegQ(Q(ψ)) = s · c (choose l to be maximal
under such conditions), then recursively compute a representation ρH : H → GLn(F)
affording ψ and then return (ρH) ↑ G.

4. If cs = 1 and d is reasonably small (say, up to 1000) and computing subgroups of G
is not too hard, then set [ρ] := IrreducibleRationalRepresentations([χ]) and
return ρ. During the algorithm, if there is no virtual representation of reasonable degree
(say, less than 100,000), then abort and go to Step 6.

5. If cs 6= 1 and d is reasonably small (say, up to 200) and computing subgroups of G
is not too hard, then set ρ := AbsolutelyIrreducibleRepresentation(χ) and
return ρ. If there is no virtual representation of reasonable degree, or if the basis of the
eigenspace is not sparse enough after reduction, then abort and go to the next step.

6. If there is a maximal subgroup H of G such that χH = χ ↓ H is absolutely irreducible,
then construct ρH affording χH recursively, then set ρ := IrreducibleExtension(χ,
ρH) and return ρ.

7. Choose a maximal subgroup H of G. Usually, this should one of the largest maximal
subgroups, but not necessarily; a smaller H may be such that computing the relevant
representations of H are easier to compute recursively.

8. If proper subgroups of G only have very large index (i.e., so permutation or induced
representations from subgroups will have very large degree), or one can compute a
normalized subgroup L ≤ H so that the norm of χ ↓ L is not too large, then use
GeneralExtension on χ and H; otherwise use BBReductionRepresentation

147

on χ and H. In either case, to construct ρH affording χH = χ ↓ H , either use Ir-
reducibleRepresentationsOverField (the default algorithm) or recurse on each
irreducible component of χH .

7.2. Examples

Example 7.2.1. In this example, BBReductionRepresentation is used twice, with
an irreducible extension in between. Let G = U3(13), and let χ be one of the degree-157
absolutely irreducible characters of G. χ has character field F = Q(ζ7) (degree 6) and
Schur index 1. We constructed a representation over F affording χ as follows (table entry
on p. 172).

First a black-box representation B for χ was constructed via a permutation representa-
tion of degree 15386 which condensed to a dimension-94 module M̃ ; the simple condensed
constituent S̃ corresponding to χ had dimension 20 (90s).

Now let H be the largest maximal subgroup of G, which has index 2198 in G and
shape 2.21+1.3.7.131+2, and let χH = χ ↓ H , which splits over F as 1 + 156. Let ψ be
the degree-156 character of H. Computing a representation affording ψ is non-trivial,
so instead of using using the simple IrreducibleRepresentationsOverField which
effectively maps to AbsolutelyIrreducibleRepresentation, we did the following.
The representation can be computed via irreducible extension for a subgroup H2 of index
7 in H. The character ψ2 = ψ ↓ H2 has Schur index 2, so again it is non-trivial to
compute a representation affording it. So let H3 be a subgroup of index 4 in H2; then
ψ3 = ψ ↓ H3 is a rational irreducible character with Schur index 1. Computing σ3 :
H3 → GL153(Q) affording ψ3 was easy via IrreducibleRationalRepresentations
(2.9s). Then BBReductionRepresentation was applied to ψ2 and σ3; the black-box
representation B2 for ψ was constructed from a degree-2198 permutation representation of
H2 and this yielded σ2 : H2 → GL153(F2), where F2 = Q(

√
−7) is a subfield of F (16.2s).

Then σ1 : H → GL153(F) could be constructed via irreducible extension of σ2, with only
2 image matrices (10.0s). The total time for constructing the representation of H was 29
seconds.

Finally, B and the linear representation of H together with σ1 could be used to con-
struct ρ : G → GL154(F) affording χ (the rest of BBReductionRepresentation took
13.5s). The total time for constructing ρ was thus 104s. If the standard generators of G are
g1, g2, then ρ(g1) has density 99.9%, absolute maximum numerator 154 and denominator
LCM 169 = 132, while ρ(g2) has density 0.01% with only ±1 for non-zero entries. A typical
entry of ρ(g1) is the following:

1

169
(21α5 + 40α4 − 14α3 + 35α2 + 3α− 19).

Example 7.2.2. Let G = 3.U3(17) and let χ be one of the irreducible characters of G of
minimal degree. χ has degree 273 and character field F = Q(ζ9) (of degree 6) and Schur
index 1. We constructed a representation ρ : G → GL273(F) affording χ (table entry on
p. 178). This involved non-trivial use of practically every algorithm in this thesis!

First let H1 be the largest maximal subgroup of G, which is a soluble group of order
25.32.173 (index 4914). Then χ1 = χ ↓ H1 splits as 16 + 2726, so GeneralExtension
could be applied to χ and a representation of H1 corresponding to this decomposition.

148

To set up the representation σ1 : H1 → GL272(F), we first moved down to a subgroup
H2 of H1 (index 9) such that the restriction to H2 of the degree-272 character was also
irreducible. So a corresponding representation σ2 : H2 → GL272(Q(ζ3)) was constructed
by BBReductionRepresentation in 350s, as follows. The black-box representation
B was constructed from the condensation of the induction to H2 of a degree-32 rational
representation σ′2 of an index-34 subgroup H ′2 of H2; constructing σ′2 itself was the hard-
est step and involved splitting a homogeneous (condensed) module of dimension 128 with
endomorphism centre dimension 2, Schur index 2 and multiplicity 4 by SplitHomoge-
neous: the maximal order O took 87s to compute and there was no split element arising
from the elements of a LLL-reduced basis of O or products of such, but a sum of such
was a split element and this gave a decomposition into simple components immediately.
Next, representations of a subgroup H3 of H2 (index 289) were used for the reduction of
B to set up σ2: the two corresponding representations both had degree 16 with multiplic-
ities 8 and 9 respectively (constructed by IrreducibleRepresentationsOverField
in 96s). So then the representation σ1 : H1 → GL272(F) could be constructed by using
IrreducibleExtension twice (index 3 and normal both times) to extend σ2 from H2 to
H1 (20s).

Finally, GeneralExtension was applied to χ and the degree-1 and -272 representa-
tions of H1. The largest possible normalized subgroup L of H1 had order only 288, yielding
791 initial image matrices! Nevertheless, linear reduction with χ reduced this to only 6
image matrices, and then one order-2 group relation yielded a relation ideal of dimension
1 generated by:

x1x2 +
1

9826
(ζ5

9 + ζ4
9 + ζ9)

(934s total). Computing the image matrix corresponding to a solution and rewriting the
representation on the original generators of G took 29s. The total time taken for the whole
computation of ρ : G → GL273(F) was 1333s. The LCM of the entry denominators is
578 = 2.172 and the absolute maximum entry numerator is 1171; typical entries of both
image matrices of ρ are:

1

578
(−33ζ5

9 − 72ζ4
9 + 185ζ3

9 − 59ζ2
9 + 71ζ9 + 14),

1

578
(7ζ5

9 + 11ζ4
9 − 31ζ3

9 − 21ζ2
9 + 20ζ9 − 68).

Note that the minimal-degree representation from which one could construct a black-
box representation for χ and use BBReductionRepresentation has degree 2673216
(induction of degree 272, index 4914), so using that algorithm would take much longer.

Example 7.2.3. There is sometimes non-trivial recursion in the use of the general exten-
sion algorithm; e.g., the degree-1938 representation of 2E6(2) depends on the degree-833
and -1105 representations of F4(2), which depend themselves on the degree-253, -510 and
-595 representations of S8(2), etc. See the higher-degree table in Chapter 9.

149

Part 2

A Database of Irreducible Representations

Chapter 8

Information about the Tables

The rest of the thesis presents several tables describing our database of irreducible ordinary
representations with detailed information on how each representation was constructed.
This chapter contains a guide on how to read the tables.

Each entry in each table describes a faithful representation ρ : G → GLn(F), which
is always absolutely irreducible. Let χ be the character afforded by ρ. The fields for the
entry are as follows:

• The field in the column labelled Deg gives the degree n of the representation.

• The field in the column labelled Group describes the group (matching the Atlas
notation and that of Hiss/Malle for the quasi-simple representations to degree 250).
An asterisk (*) after the group name indicates that the representation is a minimal-
degree faithful representation of the group.

• The field C in the column labelled C gives the degree over Q of the character field
Q(χ), while the field S in the column labelled S gives the Schur index S = sQ(χ). The
number field F over which the representation is realized always has degree C×S over
Q (so F = Q if and only if C = S = 1) and F is thus always a field of minimal degree
for the constructed representation. Note also that F is always an abelian extension of
Q (we have been able to ensure this fairly easily in all cases).

• The field in the column labelled N/D describes the size of the entries of the final
representation ρ and is generally of the form N/D, meaning that in all the rational
coefficients of the entries of the matrices defining the representation, the absolute
value of all numerators is at most N (typically of the form ‘xd’, meaning x decimal
digits, or simply ‘1’, meaning all non-zero numerators are ±1) and the LCM of all
denominators is D. If the representation is realized over Q (C = S = 1) and the
representation is also integral (a very common case), then the ‘/1’ is omitted. However,
a ‘/1’ is always kept for irrational representations when relevant, just to make it
clear that the number field elements do not have a non-trivial denominator (since the
algorithms constructing irrational representations do not always yield integral integral
representations). An ‘s’ indicates that the representation is also sparse: the matrices
defining the representation all have density 10% or less (very commonly, the density
will be very much lower, particularly if the representation is monomial).

The LCM of the denominators is given so that one can see which primes divide the
denominators of at least one entry. Note that we can effectively construct a mod-p
representation from any of the constructed ordinary representations, for any prime
p. If p does not divide the denominators of the entries in the matrices defining the
representation, then of course one can reduce the representation modulo p immediately
(perhaps writing the result over an extension field of Fp if F is not Q). For the

152

case that p does divide a denominator, we have a developed a p-adic variant of the
algorithm in Sec. 1.10 to conjugate the representation to an integral representation;
the p-adic algorithm only needs to compute modulo pk for suitable k (instead of over
Q). We are thus easily able to reduce any of the constructed representations modulo
any prime. This algorithm generally takes a small number of seconds for degree up
to 1000, but can also handle much higher degrees effectively; see the discussion on
modular representations of the Baby Monster at the end of Sec. 5.11, for example.
For the high-degree representations of the sporadic groups, we constructed several
derived modular representations and checked that they were equivalent to ones in the
online ATLAS [WWT+] when such were present.

• The field in the column labelled Time describes the time taken to construct the
representation in seconds; if a time is at least 10 seconds, then the number of seconds
is rounded to the nearest integer. ‘Th’ indicates T hours when the time is greater
than an hour. If the algorithm is naturally split into two main stages, then the time
is split accordingly (the details are explained below, depending on the method).

In some cases, where the main method involves extension of a representation ρH
of a subgroup H, an entry for ρH (or at least its major components when ρH is not
absolutely irreducible) is already in one of the tables, so the time is given as ‘+E’,
indicating that the time was E seconds for constructing the representation affording
χ, assuming that ρH was already constructed (and the time for constructing the non-
trivial components of ρH can be seen elsewhere).

Note that apart from the cases for which general extension was used without
explicit use of the character, we assume in general that the character table has first
been computed for G so the time for this is not included. The main reason for this is
that our main algorithms to compute irreducible representations take character(s) as
input and so the computation of irreducible characters is not a part of the algorithms
proper. The other reason is that for many of the groups, we have computed the
character table once and then computed all of the relevant representations of G in one
Magma session, so the character table construction is shared by the construction of
all the representations. As we have noted before, the computation of the character
table takes a very small number of seconds for most of the groups covered here anyway,
and in many cases where it is very expensive, we have used general extension without
explicit use of the character instead (see Ex. 5.6.1).

Since a variety of methods are used, the entry in the column labelled Method gives detailed
information on which major algorithm was used, as indicated by the following tags:

• IRR: Here C = S = 1 always, so the representation is rational and the algorithm
IrreducibleRationalRepresentations (p. 66) was used to construct the repre-
sentation. This tag is followed by one of the following indicators:

• ‘perm D cC’: this indicates that permutation condensation was used: for a vir-
tual permutation representation of G of degree D, the desired component of the
corresponding permutation module was split and the full condensed module M̃
(in algorithm AutomaticCondensation) had dimension C. Note that if the

153

degree D is small (typically under 100), then often the direct permutation mod-
ule was split without condensation, so condensation is not needed and ‘cC’ is
omitted.

• ‘ind iI dD cC’: this indicates that induction condensation was used: for a sub-
group H of index I in G, a rational representation MH of degree D was con-
structed by recursively calling IrreducibleRationalRepresentations, and
then the condensation of the induction of MH up to G was used; the condensed
module had dimension C.

• ‘ρa ⊗ ρb cC’: this indicates that tensor condensation was used: first irreducible
rational representations ρa, ρb of G of degrees a and b respectively were computed
(usually by an earlier stage of IrreducibleRationalRepresentations), and
then the condensation of ρa ⊗ ρb was used; the condensed module had dimension
C. If ρb is identical to ρa (so the tensor square is used), then the notation ‘(ρa)

2’
is used.

Since the representation returned by this function is always integral, the denominator
LCM is always 1, so the ‘N/D’ field omits the ’/1’. The time entry simply gives the
total time for the call to IrreducibleRationalRepresentations.

• AIR: Here at least one of C and S is not 1, so the representation had to be realized
over a proper extension of Q and the algorithm AbsolutelyIrreducibleRepre-
sentation (p. 74) was used to construct the representation. Recall that this algorithm
simply calls IrreducibleRationalRepresentations and then constructs an abso-
lutely irreducible representation via an eigenspace of an endomorphism over a suitable
number field of minimal degree. Thus the tag is followed by the ‘perm’ ‘ind’, or ‘⊗’
indicators, exactly as above, showing how the subalgorithm IrreducibleRational-
Representations first constructed the rational representation.

The time entry has the form TR + TC , meaning TR seconds for the call to Irre-
ducibleRationalRepresentations and TC seconds for the call to SplitByEigen-
space (p. 74). Typically, TC is smaller for TR for the cases covered here, but not
always.

• IE: This indicates that the representation was constructed by calling algorithm Ir-
reducibleExtension (p. 86). A maximal subgroup H of G was first selected such
that χH = χ ↓ H was absolutely irreducible. Then a representation ρH affording χH
(over a minimal field) was constructed and then IrreducibleExtension was called
on χ and ρH . The tag ‘IE’ is either followed by a description of H if there is a well-
known form which is brief; otherwise ‘iI’ is used, indicating that H has index I in G.
Details on how ρH was constructed are generally added in parentheses, unless that is
trivial or too complicated to outline; most of the time, this involves a call to Irre-
ducibleRationalRepresentations or AbsolutelyIrreducibleRepresenta-
tion, in which case the ‘perm’ or ‘ind’ indicators are used, just as above, but with
‘RR’ and ‘AIR’ omitted to save space. If the algorithm IrreducibleExtension is
called recursively (so as to extend from a non-maximal subgroup), then ‘iI2’ is given,
indicating irreducible extension from a subgroup of H of index I2, etc.

154

The time entry has the form TH+TE, meaning TH seconds for the time to construct
the representation ρH (by whatever method) and TE seconds for the internal steps of
IrreducibleExtension.

• GE: This indicates that the representation was constructed by algorithm GeneralEx-
tension (p. 97). If χ was not used explicitly (using the variant algorithm of Sec. 5.6),
then ‘[¬χ]’ (meaning ‘no χ’) is appended to the initial tag.

A subgroup H of G was first selected and is described in the same way as for
irreducible extension above (again, often H was the largest maximal subgroup of G,
but not always). Next, suitable irreducible F -representations of H were constructed
(usually by algorithm IrreducibleRepresentationsOverField [p. 77]) to make
up the relevant block-diagonal representation ρH of H affording χ ↓ H . The list of
representations of H, corresponding to the decomposition of χH into distinct charac-
ters from IrrF (H) (with multiplicities), is described by a list in square brackets with
entries of the form dmf , where for each representation of H in the decomposition, d is
the degree of the representation, f is the degree over Q of the minimal number field
over which it can be realized and such that the field embeds into the target field F ,
and m is the multiplicity of that representation in χH . Note that the corresponding
representation is thus irreducible over F , but not necessarily absolutely irreducible.
We use the multiplicative notation dmf instead of df ×m simply to save space. If the
degree f is 1, then the subscript 1 is omitted, while if the multiplicity m is 1, then
the superscript 1 is omitted. We sometimes also use the notation dm1+...+mk

f , which
indicates k inequivalent representations, each of degree d and written over a subfield
of degree f and occurring with multiplicity m1, . . . ,mk respectively (dk×mf is the same
with m1 = . . . = mk = m). Finally, if all the representations are over a field of degree
f , then the subscript f is often placed outside the list to save space. Examples of this
notation are the following:

(1) For the degree-273 representation of 3.U3(17) (p. 178), H is a subgroup of G of
index 4914, and the list of corresponding representations of H is described by
[1, 272]6, indicating that χH splits into representations of degree 1 and 272, such
that a minimal field for both representations has degree 6.

(2) For the degree-3344 representation of HN (p. 185), H is a subgroup of G equal to
A12, and the list of corresponding representations of H is described by [1, 54, 1322,
4622, 616, 1485], indicating that χH splits into irreducible rational representations
of these degrees, and the degree-132 and -462 representations occur with multi-
plicity 2.

The time entry has the form TH+TE, meaning TH seconds for the time to construct
the representations of H, and TE seconds to compute the general extension algorithm
on χ and the representations of H. Again, this makes it clear how much time is spent
on constructing the relevant representation(s) for H and how much time is spent on
extending this to the representation for G.

For some representations, the G[I]E[¬χ] tag is used, indicating that the general
extension algorithm without explicit character was used, even though ρH was abso-
lutely irreducible; this is used in the case that it is too hard to compute the character
χ and use the direct IrreducibleExtension algorithm.

155

• BB: This indicates that the representation was constructed by calling the hybrid
algorithm BBReductionRepresentation (p. 134). A subgroup H of G was first
selected (again, this was often the largest maximal subgroup of G, but sometimes
H was not even a maximal subgroup). Then BBReductionRepresentation was
called on χ and H.

The tags after ‘BB’ indicate how the black-box representation B for χ was con-
structed; this is similar to the IRR and AIR cases above but is abbreviated slightly
to save space: ‘pD’ indicates that a permutation representation of degree D was con-
densed, ‘iI dD’ indicates that an induced irreducible rational representation σ was
used (where I is the index of the subgroup and D is the degree of σ), while ‘da⊗db’ or
‘(da)

2’ indicate tensor products as for the IRR case above. The indicator ‘cC’ again
indicates the dimension C of the condensed module M̃ in all cases. The field F over
which ρ is written is derived from B and is always minimal. Note that the simple
submodule S̃ of M̃ which is used in B will generally have smaller dimension than C,
of course; space considerations force this dimension to be omitted, but it is very often
the degree of the field F , or only a small multiple of that.

After this, the tag ‘RiI’ indicates the index of the subgroup H by which the
final representation was reduced (a description of H is given instead of ‘iI’ if it is
brief). Corresponding representations of H were usually first constructed by calling
IrreducibleRepresentationsOverField (p. 77) on χH = χ ↓ H and F . The
list of representations of H, corresponding to the decomposition of χH into distinct
characters from IrrF (H) (with multiplicities), is described by a list exactly as for the
general extension case above. For example:

(1) For the degree-65 representation of Sz(8) (p. 166), H is a subgroup of G of index
65, and the list of corresponding representations of H is described by [23, 7, 282],
indicating that χH splits into 4 representations: a degree-2 representation written
over a degree-3 number field, an irreducible rational representation of degree 7,
and an irreducible rational representation of degree 28, occurring with multiplicity
2.

(2) For the degree-8250 representation of McL (p. 187), which is written over the
quadratic field F = Q(

√
−7), the list describing the representations of H is

[140, 210, 3151+1, 420, 5603×1, 6401+2
2 , 7292, 8962]. The 5603×1 means that there are

3 inequivalent degree-560 rational representations, each occurring with multiplic-
ity 1. The 6401+2

2 means that there are 2 inequivalent degree-640 representations
written over F , occurring with multiplicity 1 and 2 respectively.

The time entry has the form TH+TR, meaning TH seconds for the time to construct
the representations of H (just as for the ‘BB’ case above), and TR seconds to set up
the black-box representation B and then do the rest of BBReductionRepresen-
tation (the latter is typically very fast because of the modular conjugation, so the
bulk of TR typically comes from the search in IrreducibleRationalRepresenta-
tions to set up B). This makes it clear how much time is spent on constructing the
relevant representation(s) of H and how much time is spent on extending this to the
representation of G.

156

• ‘DI iI dD’: This indicates that the representation ρ was constructed as the direct
induction to G of a degree-d representation ρH of an index-I subgroup H of G. Note
that in this case, ρH must have been realized over a subfield of a minimal field F for
χ.

• ‘ρa⊗ρb’: This indicates that the representation ρ was constructed as the direct tensor
product of irreducible rational representations of G of degrees a, b respectively. These
representations must have been realized over subfields of a minimal field F for χ.

Finally, if there is a discussion on the construction of the representation in the main text,
there is a page reference given in parentheses.

157

Chapter 9

Representations of Quasi-simple Groups

9.1. The Hiss/Malle Classification to degree 250

A quasi-simple group G is a group that is a perfect central extension of a simple group.
Hiss and Malle have classified all faithful irreducible representations ρ : G → GLn(F),
where G is a quasi-simple group, n ≤ 250, and the characteristic of the field F does
not equal the defining characteristic of G if G is a group of Lie type ([HM01]; corrected
version [HM02]). They give a general characterization of the irreducible representations
of An, L2(q) and 2.L2(q) and then they present a large table listing all the other possible
representations up to degree 250.

The L2(q) and 2.L2(q) representations will be covered in the next chapter. In this
chapter we will consider the large table of Hiss & Malle which lists all the other repre-
sentations. We have constructed a database containing a representation for every single
ordinary (non-modular) entry in this table; every representation is written over a field of
minimal degree. We present here a table which gives information on the representations
and how they were constructed (see the previous chapter for details on how to read the
table). Our table follows the order of the corresponding table of Hiss & Malle exactly:
the only omissions are the purely modular representations, which are not of relevance to
this thesis, of course. We omit the irrationalities of the characters to save space (see the
original paper for details). We have also discovered some minor errors which remain in the
corrected paper [HM02]:

• Degree 61, U5(3) [p. 108]: there should also be a rational character, with Schur
indicator + (Schur index 1).
• Degree 62/63, S6(5) and 2.S6(5) [p. 108]: the groups are round the wrong way.

That is, the degree should be 63 for S6(5) and the degree should be 62 for 2.S6(5).
• Degree 204, U5(4) [p. 123]: the Schur indicator should be ‘-’ instead of ’o’.

Note that we have not used any external ordinary representations at all in constructing
our database (there are several such in the online Atlas and also in separate databases
built by D. Holt and S. Nickerson). Every representation has been computed from scratch,
starting from only a permutation or modular matrix representation of the group, and using
only the algorithms described in this thesis. Some representations could also be computed
by other special techniques (e.g., the degree-24 representation of 2.Co1 can be computed
as the automorphism group of the Leech lattice in Magma in about 20 seconds), but we
managed to construct all representations using only the algorithms described here. Several
of the representations can be seen at the webpage [Ste11].

We note the following statistics for this table:

• There are 669 representations.

158

• There are 353 rational representations; of these, 323 were computed by Irre-
ducibleRationalRepresentations (196 by IRR perm, 124 by IRR ind, 3 by
IRR ⊗) and 30 by other methods.
• There are 316 irrational representations; of these, 117 were computed by Abso-

lutelyIrreducibleRepresentation (19 by AIR perm, 97 by AIR ind, 1 by
AIR ⊗) and 199 by other methods.
• 89 representations were computed by BBReductionRepresentation.
• 81 representations were computed by IrreducibleExtension.
• 14 representations were computed by GeneralExtension.

Deg Group C S Method N/D Time
3 3.A6 * 4 1 AIR ind i10 d6 c12 1/2 0.3 + 0.1
4 2.A6 * 1 2 AIR ind i6 d8 c16 1/1 0.3 + 0.2
4 2.A7 * 2 1 AIR ind i7 d8 c4 1/1 0.8 + 0.1
4 2.U4(2) * 2 1 AIR ind i40 d2 c8 1/1 1.1 + 0.1
5 A6 1 1 IRR perm6 s 1 0.0
5 U4(2) * 2 1 AIR ind i40 d1 c6 1/1 0.3 + 0.1
6 3.A6 2 1 DI i6 d1 s 1/1 0.0
6 6.A6 * 2 1 AIR ind i6 d12 c16 2d/2 1.3 + 0.5
6 A7 1 1 IRR perm7 s 1/1 0.1
6 3.A7 * 2 1 AIR ind i21 d2 c10 1d/1 0.1 + 0.3
6 6.A7 * 4 1 AIR ind i17 d24 c24 2d/2 5.2 + 0.4
6 6.L3(4) * 2 1 AIR ind i21 d12 c52 1/1 3.1 + 0.1
6 U3(3) * 1 2 AIR ind i36 d6 c52 s 1/1 0.2 + 0.0
6 U4(2) * 1 1 IRR perm27 s 1 0.1
6 61.U4(3) * 2 1 AIR ind i378 d1 c36 1/1 3.7 + 0.1
6 2.J2 * 2 2 AIR ind i100 d12 c240 1/1 5.6 + 0.1
7 A8 1 1 IRR perm8 s 1 0.1
7 U3(3) 1 1 IRR ind i28 d1 c4 s 1 0.1
7 U3(3) 2 1 AIR perm36 1/1 0.1 + 0.1
7 S6(2) * 1 1 IRR ind i28 d1 c26 s 1 0.2
8 A6 2 1 AIR ind i15 d2 c6 1d/1 0.6
8 2.A6 2 2 AIR ind i6 d8 c8 1d/1 0.4
8 2.A8 1 1 IRR ind i8 d8 c2 1 1.1
8 A9 1 1 IRR perm9 s 1 0.1
8 2.A9 * 1 1 IRR ind i9 d8 c8 1 1.8
8 41.L3(4) * 4 1 AIR ind i21 d32 c96 2d/1 4.5 + 0.6
8 2.S6(2) * 1 1 IRR ind i120 d1 c14 s 1 0.2
8 2.O+

8 (2) * 1 1 IRR ind i120 d1 c16 s 1 0.3
9 A6 1 1 IRR perm10 1 0.1
9 3.A6 2 1 AIR ind i15 d2 c6 1d/1 0.5 + 0.0
9 A10 1 1 IRR perm10 s 1 0.0

159

Deg Group C S Method N/D Time
10 A6 1 1 IRR perm30 1 0.1
10 2.A6 2 2 DI i10 d1 s 1 0.1
10 A7 2 1 AIR ind i35 d1 c5 1d/2 0.1 + 0.1
10 A11 1 1 IRR perm11 s 1 0.1
10 2.L3(4) * 2 1 AIR ind i56 d1 c8 1d/1 0.3 + 0.1
10 U4(2) 2 1 AIR ind i40 d2 c8 1d/1 0.3 + 0.1
10 U5(2) * 2 1 AIR ind i165 d4 c52 1d/1 5.0 + 0.2
10 M11 * 1 1 IRR perm11 s 1 0.0
10 M11 2 1 AIR ind i12 d10 c14 1d/1 0.1 + 0.0
10 2.M12 * 2 1 AIR ind i12 d20 c28 1d/1 1.2 + 0.1
10 2.M22 * 2 1 AIR ind i22 d20 c60 1d/1 1.4 + 0.1
11 A12 1 1 IRR perm12 s 1 0.1
11 U5(2) 1 1 IRR ind i297 d2 c36 1d/1 0.6 + 0.1
11 M11 1 1 IRR perm11 s 1 0.1
11 M12 * 1 1 IRR perm12 s 1 0.1
12 6.A6 2 1 DI i6 d2 (i5 d4) s 1d/2 0.7 + 0.0
12 A13 1 1 IRR perm13 s 1d 0.0
12 L3(3) * 1 1 IRR perm13 s 1 0.1
12 U3(4) * 1 2 AIR ind i65 d24 c313 1d/1 5.2 + 0.1
12 2.S4(5) * 2 2 AIR ind i156 d8 c112 1d/1 8.9 + 0.3
12 2.G2(4) * 1 2 IE i2080 (ind i2 d12) 1d/1 7.8 + 0.6
12 2.M12 1 1 IRR perm24 s 1 0.1
12 6.Suz * 2 1 IE i57480192 (i3 d24 c24) 1d/1 28 + 42
13 A14 1 1 IRR perm14 s 1 0.0
13 L3(3) 1 1 IRR perm26 s 1 0.1
13 U3(4) 4 1 AIR ind i65 d4 c16 1d/1 0.4 + 0.3
13 S4(5) * 2 1 AIR ind i156 d1 c8 1d/1 0.2 + 0.1
13 S6(3) * 2 1 IE i155520 (ind i3 d26) 1d/1 0.8 + 0.2
14 A7 2 1 AIR perm15 1/1 0.1
14 2.A7 2 2 BB i15 d16 c36 Ri7 [42, 84] 1d/6 0.7 + 1.0
14 A8 1 1 IRR perm15 s 1 0.1
14 A15 1 1 IRR perm15 s 1 0.0
14 U3(3) 1 1 IRR perm63 c4 s 1 0.0
14 2.S6(3) * 2 1 IE i155520 (perm 56) 1d/1 2.5 + 0.3
14 Sz(8) * 2 1 AIR ind i560 d2 c88 1d/1 1.0 + 0.2
14 G2(3) 1 1 IRR ind i378 d1 c30 s 1 0.8
14 J2 * 2 1 AIR perm315 c27 1d/1 0.6 + 0.1
14 2.J2 1 2 AIR ind i280 d2 c44 1d/1 1.0 + 0.1
15 3.A6 2 1 DI i15 d1 s 1/1 0.0
15 A7 1 1 IRR ind i21 d1 c3 s 1/1 0.1
15 3.A7 2 1 AIR ind i21 d8 c24 1d/1 0.6 + 0.1
15 A16 1 1 IRR perm16 s 1 0.0
15 3.L3(4) 2 1 AIR ind i120 d2 c36 1d/1 0.3 + 0.1
15 U4(2) 1 1 IRR perm36 s 1 0.2

160

Deg Group C S Method N/D Time
15 31.U4(3) * 2 1 AIR ind i540 d2 c84 1d/1 1.2 + 0.1
15 S6(2) 1 1 IRR ind i36 d1 c4 s 1 0.2
16 2.A10 1 1 IRR ind i10 d8 c8 1 9.2
16 2.A11 2 1 IE i2520 (i11) 2d/1 5.3 + 1.5
16 A17 1 1 IRR perm17 s 1 0.0
16 L3(3) 2 1 IE i13 (RR i9 d2) 2d/27 0.5 + 0.1
16 M11 2 1 AIR perm144 c6 2d/1 0.1 + 0.4
16 M12 2 1 AIR perm144 c14 2d/1 0.2 + 0.5
17 A18 1 1 IRR perm18 s 1 0.0
18 A19 1 1 IRR perm19 s 1 0.0
18 S4(4) 1 1 IRR ind i120 d1 c8 s 1d 0.2
18 3.J3 * 4 1 IE i25840 (DI i18 d1) 2d/16 0.5 + 7.0
19 A20 1 1 IRR perm20 s 1 0.1
20 2.A7 1 2 AIR ind i7 d8 c8 1d/1 1.0 + 0.1
20 A8 1 1 IRR perm15 s 1 0.1
20 A21 1 1 IRR perm21 s 1 0.0
20 L3(4) * 1 1 IRR perm21 s 1 0.1
20 42.L3(4) * 2 1 AIR ind i21 d8 c24 1d/1 0.9 + 0.1
20 U3(5) * 1 2 AIR ind i50 d20 c120 1d/1 1.2 + 0.1
20 U4(2) 1 1 IRR perm27 s 1 0.1
20 2.U4(2) 1 1 IRR ind i40 d4 c28 1d 0.9
20 2.U4(2) 2 1 AIR perm80 c12 1d/1 1.0 + 0.1
20 2.U4(3) * 1 2 AIR ind i280 d4 c88 1d/1 10.3 + 0.1
20 4.U4(3) * 2 1 AIR ind i280 d4 c84 1d/1 19.2 + 0.2
21 A7 1 1 IRR perm42 1 0.1
21 3.A7 2 1 AIR ind i7 d12 c12 1d/1 0.7 + 0.1
21 A8 1 1 IRR perm56 s 1 0.1
21 A8 2 1 IE 15 (DI i21 d1) 1d/8 0.1 + 0.1
21 A9 2 1 IE 120 (AIR ind i28 d1) 1d/6 0.1 + 0.1
21 3.L3(4) 2 1 AIR perm63 s 1/1 0.1 + 0.1
21 U3(3) 1 1 IRR ind i28 d1 c4 s 1 0.1
21 U3(3) 2 1 AIR ind i56 d1 c4 s 1d/1 0.1 + 0.1
21 U3(5) 1 1 IRR perm50 s 1 0.1
21 3.U3(5) * 2 1 AIR ind i126 d2 c28 1d/1 3.5 + 0.1
21 U4(3) * 1 1 IRR perm112 s 1 0.3
21 31.U4(3) 2 1 AIR ind i126 d2 c20 s 1d/1 0.6 + 0.1
21 3.U6(2) * 2 1 IE i228096 (AIR ind i42 d2) 1d/1 9.4 + 2.0
21 S6(2) 1 1 IRR ind i28 d1 c4 s 1 0.2
21 M22 * 1 1 IRR perm21 s 1 0.0
21 3.M22 * 1 1 IRR perm22 s 1 0.1
21 J2 2 1 AIR ind i280 d1 c22 1d/1 0.4 + 0.1
22 U6(2) * 1 1 IRR perm891 c61 s 1 0.6
22 M23 1 1 IRR perm23 s 1 0.1
22 HS * 1 1 IRR perm100 s 1d 0.3

161

Deg Group C S Method N/D Time
22 McL * 1 1 IRR perm275 c23 s 2d 0.7
23 M24 * 1 1 IRR perm24 s 1 0.0
23 Co3 * 1 1 AIR ind i276 d1 c12 s 1d 0.3
23 Co2 * 1 1 AIR ind i2300 d1 c74 s 1d 14.4
24 3.A7 4 1 BB i7 d18 c18 Ri7 [9, 15]2 2d/48 0.6 + 0.7
24 6.A7 4 1 BB i21 d8 c8 Ri35 [122

2] 1d/12 4.9 + 3.5
24 2.A8 2 1 AIR ind i8 d8 c10 1d/1 1.4 + 0.1
24 121.L3(4) * 8 1 IE i21 (AIR ind i18 d8) 3d/320 26 + 3
24 U4(2) 1 1 IRR perm40 s 1 0.1
24 2.S4(7) * 2 1 AIR ind i800 d6 c80 2d/4 4.5 + 3.4
24 2.Co1 * 1 1 GE i98280 [1, 23] 1d/1 15 + 4.3
25 S4(7) * 2 1 IE i1176 (ind i50 d1 c2) 1d/7 1.4 + 0.2
26 L3(3) 1 1 IRR perm39 s 1 0.1
26 L3(3) 2 1 AIR ind i52 d2 c8 s 1d/1 1.1 + 0.1
26 L4(3) * 1 1 IRR perm117 s 1 0.4
26 3D4(2) * 1 1 IRR perm819 c37 s 1d 0.4
26 2F4(2)′ 2 1 IE i1600 Ri8775 [22, 8, 16] 1d/8 0.9 + 4.9
27 A9 1 1 IRR perm36 s 1 0.1
27 L3(3) 1 1 IRR ind i39 d1 c3 s 1 0.1
27 U3(3) 1 1 IRR perm28 s 1 0.1
27 S6(2) 1 1 IRR perm28 s 1d 0.1
27 3.O7(3) * 2 1 IE i12636 (AIR ind i36 d2) 2d/14 11.5 + 2.9
27 3.G2(3) 2 1 AIR ind i378 d2 c60 1d/1 3.1 + 0.2
27 2F4(2)′ 2 1 AIR perm2304 c144 2d/1 3.0 + 0.6
28 A8 1 1 IRR perm56 s 1 0.1
28 A9 1 1 IRR ind i36 d1 1 0.3
28 2.L3(4) 2 1 BB p112 c16 Ri1260

[14×1, 12+2, 24×1, 23+3] 1d/4 0.1 + 0.4
28 42.L3(4) 4 1 BB p224 c32

Ri105 [42, 122
2] 2d/16 2.3 + 1.1

28 U3(3) 2 1 AIR ind i63 d1 c5 1d/1 0.1 + 0.2
28 U3(5) 1 1 IRR perm50 s 1d 0.1
28 O+

8 (2) * 1 1 IRR ind i120 d7 c56 s 1d 0.3
28 2.Ru * 2 1 IE i7238400 (i35 d1 c10) 3d/1 47 + 6.6
30 L3(5) * 1 1 IRR perm31 s 1 0.1
30 L5(2) * 1 1 IRR perm31 s 1 0.1
30 U4(2) 1 1 IRR ind i36 d1 c2 s 1 0.1
30 U4(2) 2 1 AIR ind i40 d1 c8 s 1d/1 0.1 + 0.1
31 L3(5) 1 1 IRR perm62 s 1 0.1
31 L3(5) 2 1 AIR perm124 s 1 0.2 + 0.1
32 2.A12 1 2 IE i15400 (DI i8 d4) 1d/9 7.9 + 3.5
32 2.A13 1 2 IE i1716 (BB Ri2 [32]) 3d/357 121 + 4.1
32 U3(3) 2 1 BB i63 d2 c10

Ri224 [24×1, 64] 2d/9 0.1 + 0.3

162

Deg Group C S Method N/D Time
32 2.M12 1 2 AIR ind i12 d32 c34 s 1d/1 1.5 + 0.7
34 S4(4) 1 1 IRR perm85 s 1d 0.1
34 O−8 (2) * 1 1 IRR perm119 s 1d 0.3
35 A7 1 1 IRR perm70 c5 s 1/1 0.2
35 A8 1 1 IRR ind i56 d1 c6 s 1 0.2
35 A9 1 1 IRR perm120 c8 1d 0.5
35 A10 1 1 IRR perm45 s 1 0.2
35 L3(4) 1 1 IRR perm56 s 1d 0.1
35 U4(3) 1 1 IRR perm126 s 1d 0.4
35 S6(2) 1 1 IRR perm36 s 1d 0.1
35 S6(2) 1 1 IRR perm120 s 1d 0.4
35 S8(2) * 1 1 IRR ind i120 d1 c4 s 1d 0.5
35 O+

8 (2) 1 1 IRR perm120 s 1d 0.2
35 Sz(8) 3 1 BB p520 c12

Ri1120 [13, 42+3+3
3] 2d/13 0.2 + 0.6

36 2.A7 1 2 BB i15 d16 c36 Ri7 [16, 20]2 2d/9 1.1 + 1.0
36 6.A7 2 1 AIR ind i21 d8 c8 (p. 76) 2d/1 2.6 + 0.3
36 A10 1 1 AIR ind 45 d1 c5 s 1 0.2
36 2.L3(4) 1 1 IRR ind i56 d1 c8 s 1 0.1
36 42.L3(4) 2 1 AIR ind i120 d2 c36 2d/1 0.8 + 0.3
36 6.L3(4) 2 1 AIR ind i120 d2 c6 1d/1 8.6 + 0.3
36 122.L3(4) * 4 1 BB i120 d4 c8 Ri21 [16, 20]4 1d/48 1.6 + 11.0
36 2.U4(2) 2 1 AIR ind i40 d2 c4 s 1/1 1.0 + 0.3
36 32.U4(3) * 2 1 AIR ind i162 d2 c32 1d/1 1.0 + 0.4
36 122.U4(3) * 4 1 IE i162 (ind i3 d72 c36) 2d/4 43.5 + 3.3
36 J2 1 1 IRR perm100 s 1d 0.3
39 L3(3) 1 1 IRR ind i52 d1 c4 s 1 0.1
39 L4(3) 1 1 IRR perm40 s 1 0.1
39 U3(4) 4 1 BB p208 c5

Ri975 [15 : 1, 3 : 8] 1d/8 0.7 + 1.6
40 2.L4(3) * 1 1 IRR perm80 s 1/1 0.1
40 U4(2) 2 1 AIR ind i45 d2 c4 s 1/1 0.1 + 0.2
40 S4(5) 1 1 IRR ind i300 d1 c26 s 1d 0.5
40 2.S4(9) * 1 2 IE i3321 (ind i12 d8 c8) 1d/6 17 + 1.3
40 2.S8(3) * 2 1 IE i39656127420 (i40 d16) 3d/4 464 + 3.5
40 2.Sz(8) * 3 1 BB i65 d8 c11 Ri455 [85] 1d/8 1.6 + 2.0
41 S4(9) * 1 1 IRR ind i820 d1 c20 s 1d 4.6
41 S8(3) * 2 1 GE i39656127420 [52, 36] 1d/16 9.1 + 5.3
42 A9 1 1 IRR perm126 c12 s 1 0.5
42 A10 1 1 AIR ind i126 d1 1 1.2
42 6.L3(4) 4 1 BB i120 d2 c6

Ri504 [24, 5
2+3+3
2] 2d/32 4.7 + 12.6

42 U3(7) * 1 2 IE i344 (ind i2 d42 c4) 2d/7 4.2 + 2.4
42 U7(2) * 1 2 IE i38313, i960 (ind i27 d28) s 1/2 15 + 17

163

Deg Group C S Method N/D Time
43 U3(7) 1 1 IRR ind i344 d1 c8 s 1d 0.4
43 U3(7) 2 1 AIR ind i688 d1 c14 2d/1 3.0 + 0.6
43 U3(7) 4 1 AIR ind i344 d4 c28 3d/1 5.1 + 5.3
43 U7(2) 2 1 GE i61997056 [1, 72, 352] 2d/243 85 + 22
44 A11 1 1 IRR perm55 s 1 0.2
44 U5(2) 1 1 IRR perm165 c15 s 1d 0.2
44 M11 1 1 IRR perm55 c3 s 1 0.1
44 2.M12 2 1 IE i12 (AIR ind i55 d1 c5) 2d/15 0.3 + 0.4
45 A8 2 1 DI i15 d3 (AIR ind i21 d1) s 1d/1 0.6
45 A11 1 1 IRR ind i55 d1 c7 s 1 0.5
45 L3(4) 2 1 BB p280 c8 Ri21 [153×1] 1d/8 0.3 + 0.9
45 3.L3(4) 4 1 BB i21 d30 c90 Ri63 [153×1] 2d/32 0.3 + 5.0
45 U4(2) 2 1 AIR ind i40 d3 c10 2d/1 0.2 + 0.8
45 32.U4(3) 2 1 IE i567 (i10 d12 c16) 1d/64 4.7 + 1.9
45 M11 1 1 IRR ind i55 d1 c5 s 1 0.1
45 M12 1 1 IRR perm144 c14 s 1d 0.2
45 M22 2 1 IE i77 (AIR ind i10 d6 c8) 1d/8 0.4 + 1.8
45 3.M22 2 1 IE i77 (AIR ind i60 d1 c8) 1d/16 4.1 + 1.1
45 3.M22 4 1 IE i77 (AIR ind i60 d2 c16) 2d/64 7.6 + 2.0
45 M23 2 1 IE i253 (AIR ind i30 d6 c18) 1d/4 1.1 + 0.4
45 M24 2 1 IE M23 1d/4 +0.3
48 2.A8 1 2 BB i8 d40 c24 Ri15 [48] 1/4 0.5 + 2.9
48 A9 1 1 IRR perm84 s 1 0.1
48 2.A9 2 1 BB i840 d1 c56 Ri120 [21, 27] 2d/168 1.1 + 6.2
48 2.A10 2 1 BB i10 d96 c52 Ri945 [24, 24] 2d/80 2.9 + 61
48 121.L3(4) 8 1 BB i56 d24 c192

Ri105 [83×2
4] 4d/192 8.7 + 23.5

48 122.L3(4) 8 1 BB i56 d24 c192
Ri112 [122, 124, 124] 3d/960 2.3 + 35.4

48 3.U3(5) 2 1 AIR ind i50 d12 c64 1d/1 1.6 + 0.6
48 2.S6(2) 1 1 IRR ind i28 d8 c22 s 1 0.2
50 S4(4) 1 1 IRR perm85 s 1 0.1
50 O+

8 (2) 1 1 IRR perm135 s 1 0.3
50 2.J2 2 1 AIR perm200 c16 1d/1 0.3 + 1.0
51 U4(4) * 4 1 IE i1040 (i120 d1) 2d/10 5 + 21
51 S4(4) 2 1 AIR ind i120 d1 c8 s 1d/1 1.8 + 0.6
51 S8(2) 1 1 IRR ind i136 d1 c4 s 1d 0.2
51 O−8 (2) 1 1 IRR perm136 s 1d 0.4
51 He * 2 1 BB p2058 c80

Ri187425 [6, 21, 242] 1d/8 9.8 + 8.2
52 L4(3) 1 1 IRR ind i117 d1 c5 s 1d/1 0.2
52 U3(4) 4 1 AIR ind i64 d4 c16 s 1d/1 1.0 + 3.4
52 U4(4) 1 1 IRR perm325 c9 s 1d 8.8
52 2.S4(5) 2 2 BB i156 d8 c80 Ri156 [12, 40]4 2d/25 1.3 + 30.8

164

Deg Group C S Method N/D Time
52 3D4(2) 1 1 RR (ρ26)2 c20 1d 18
52 2.F4(2) 1 1 GE i139776 [S8(2)]: [1, 51] 1d 32 + 20
54 A12 1 1 IRR perm66 s 1d 0.3
54 M12 1 1 IRR perm66 s 1d 0.1
55 A12 1 1 IRR ind i66 d1 c6 s 1 0.7
55 U5(2) 1 1 IRR perm176 d16 1d 0.5
55 U5(2) 2 1 AIR ind i165 d2 c20 s 1d/1 0.7 + 0.2
55 M12 1 1 ExteriorSquare(ρ11) s 1d 0.0
55 M11 1 1 IRR ind i66 d1 c6 s 1 0.1
55 M12 1 1 IRR ind i66 d1 s 1d 0.1
55 M22 1 1 IRR perm77 s 1d 0.1
56 A8 1 1 IRR ind i35 d2 c4 s 1 0.4
56 2.A8 2 1 AIR ind i28 d8 c8 2d/1 2.8 + 0.6
56 2.A8 2 1 BB i15 d8 c3 Ri15 [8, 16] 2d/48 0.5 + 1.9
56 A9 1 1 IRR ind i84 d1 c10 s 1 0.4
56 2.A9 1 1 IRR ind i9 d8 c8 1d 1.8
56 41.L3(4) 2 1 AIR perm224 c32 s 1d/1 0.3 + 1.0
56 L3(7) * 1 1 IRR perm57 s 1 0.1
56 U3(8) * 1 2 IE i513 (i3 d112 c16) 2d/4 42 + 22
56 2.U4(3) 1 1 IRR ind i112 d1 c8 s 1d 0.5
56 2.U6(2) * 1 2 IE i20736 (ind i176 d1 c16) 1d 5.3 + 14.0
56 S6(2) 1 1 IRR ind i63 d1 c7 s 1 0.1
56 2.O+

8 (2) 1 1 IRR ind i120 d8 c64 1d 1.6
56 2.Sz(8) 3 1 BB i65 d8 c11 Ri455 [87] 3d/40 1.8 + 3.2
56 2.M22 1 1 IRR ind i176 d1 c16 1d 1.0
56 4.M22 * 4 1 IE i22 (DI i56 d1) 1d/12 0.7 + 1.4
56 J1 * 2 1 BB p2665 c14 Ri1463

[11+1, 31+1+2+2
2 , 42+2, 52+2] 2d/120 0.2 + 0.5

56 2.J2 2 2 BB i315 d8 c180 Ri100 [56] 2d/9 0.5 + 6.3
56 2.HS 1 1 IRR ind i100 d56 c272 1d 11.9
57 L3(7) 1 1 IRR perm114 s 1 0.2
57 3.L3(7) 2 1 DI i57 d1 s 1 0.2
57 U3(8) 2 1 AIR ind i513 d2 c48 2d/1 3.8 + 0.6
57 3.U3(8) * 6 1 BB i513 d6 c162 Ri3648

[75×1+2, 8]6 2d/36 7 + 220
60 6.L3(4) 4 1 BB i21 d12 c36

Ri210 [41×3, 61+2+2+3]2 2d/48 2.3 + 20.3
60 122.L3(4) 8 1 BB i56 d24 c192

Ri56 [6, 6, 92, 153]4 4d/3200 8.9 + 123.4
60 U4(2) 1 1 IRR perm120 s 1d 0.1
60 2.U4(2) 1 1 IRR perm120 s 1d 0.2
60 2.U4(2) 1 2 AIR ind i40 d4 c8 s 1d/1 0.4 + 0.6
60 2.U4(2) 2 1 AIR ind i40 d4 c16 s 1d/1 0.7 + 0.6
60 U5(3) * 1 2 IE i81984 (i360 d1 c36) 1d/9 187 + 64

165

Deg Group C S Method N/D Time
60 2.S4(11) * 2 1 IE i7381 (p2640, Ri144) 2d/110 596 + 40
61 U5(3) 1 1 IRR perm13664 c176 1d 8.6
61 U5(3) 2 1 GE i4941 [20, 20, 21]2 2d/4 1755 + 10
61 S4(11) * 2 1 IE i7260 (ind i122 d1) 2d/11 10.0 + 2.4
62 L6(2) 1 1 IRR perm63 s 1d 0.1
62 2.S6(5) * 2 1 IE i78000000 (ei 126, 3) s 1d/5 13 + 5.3
63 L3(4) 2 1 AIR perm252 s 1d/1 0.2 + 0.6
63 3.L3(4) 2 1 AIR perm252 s 1d/1 0.7 + 0.6
63 3.L3(4) 4 1 AIR ind i63 d6 c18 s 1d/1 3.1 + 8.3
63 S6(5) * 2 1 IE i377812500 [J2] 2d/10 0.3 + 5.3
63 J2 1 1 IRR perm100 s 1d 0.3
64 A8 1 1 IRR ind i56 d2 c10 s 1 0.5
64 2.A8 1 2 AIR ind i15 d16 c16 s 1d/1 1.5 + 1.0
64 2.A10 1 1 IRR ind i10 d8 c10 s 1d 3.3
64 2.A14 1 2 IE i135135 (ind i64 d2 c4) s 1d/8 5.4 + 3
64 2.A15 2 1 IE i1401400 (IE i10) 2d/54 8.5 + 2.3
64 L3(4) 1 1 IRR ind i21 d4 c12 s 1d 0.1
64 2.L3(4) 1 1 IRR ind i21 d4 c12 s 1d 0.4
64 41.L3(4) 2 1 AIR ind i120 d2 c36 2d/1 1.9 + 1.0
64 42.L3(4) 2 1 AIR ind i21 d8 c24 s 1d/1 2.9 + 0.9
64 U3(4) 1 1 IRR perm64 s 1d 0.2
64 U4(2) 1 1 IRR ind i45 d8 s 1d 0.2
64 2.U4(2) 1 2 AIR ind i40 d6 c12 2d/1 3.8 + 1.1
64 2.S6(2) 1 2 IE i135 ((ρ8)2) 2d/2d 2.4 + 25.0
64 Sz(8) 1 1 IRR perm65 s 1d 0.0
64 2.Sz(8) 1 1 IRR ind i65 d8 c11 s 1d 1.7
64 G2(3) 2 1 IE i351 (i63 d2 c4) 2d/21 14 + 14
64 2.J2 2 2 AIR ind i315 d8 c344 3d/1 20.9 + 23.9
65 A13 1 1 IRR perm78 s 1d 0.1
65 L4(3) 1 1 IRR ind i117 d1 c5 s 1d 0.2
65 U3(4) 1 1 IRR ind i65 d2 c10 s 1d 0.2
65 U3(4) 4 1 AIR ind i65 d8 c32 3d/1 8.2 + 16.1
65 S4(5) 1 1 IRR perm156 s 1d 0.1
65 Sz(8) 3 1 BB p455 c14

Ri65 [23, 7, 282] 2d/16 0.2 + 0.6
65 G2(4) * 1 1 IRR perm416 s 1d 1.0
66 A13 1 1 ExteriorSquare(ρ12) s 1d 0.0
66 U5(2) 2 1 AIR ind i172 d2 c22 s 1d/1 5.1 + 0.9
66 M12 1 1 IRR perm132 s 1d 0.2
66 6.M22 * 4 1 GE i77 [30, 36]2 (p. 110) 2d/32 3.4 + 2.8
66 3.Suz * 2 1 IE i2358720 (i3 d66) 2d/12 15.2 + 7.8
70 A8 1 1 DI i35 d2 1d 0.5
70 2.L3(4) 1 1 IRR ind i21 d6 1d 0.3
70 2.U4(3) 1 1 IRR ind i126 d1 1d 2.7

166

Deg Group C S Method N/D Time
70 2.U4(3) 2 1 AIR ind i126 d6 3d/1 13.0 + 2.0
70 S6(2) 1 1 IRR ind i336 d1 1d 3.4
70 J2 2 1 BB i525 d1 c39

Ri100 [14, 56] 2d/27 0.4 + 1.3
72 L3(8) * 1 1 IRR perm73 1d 0.2
72 U3(9) * 1 2 IE i730 (ind i8, d18) 2d/9 20.9 + 5.8
73 L3(8) 6 1 AIR perm511 1d/1 5.3 + 31.9
73 U3(9) 1 1 IRR ind i730 d1 c10 1d 3.8
73 U3(9) 4 1 BB i730 d4 c36

Ri730 [24, 724] 2d/9 3.2 + 12.6
75 A10 1 1 IRR perm120 1d 1.1
75 U3(4) 4 1 BB i416 d1 c30 Ri65

[122, 15, 48] (p. 140) 3d/240 3.0 + 1.9
76 J1 1 1 IRR perm266 1d 0.4
77 A14 1 1 IRR perm91 s 1 0.2
77 J1 1 1 IRR perm266 1d 0.3
77 J1 2 1 BB p1045 c11 Ri1463

[1, 33+3
2 , 43+3, 52+3, 62] 2d/120 0.5 + 1.4

77 HS 1 1 IRR perm100 1d 0.3
78 A14 1 1 ExteriorSquare(ρ13) s 1 0.0
78 S4(5) 2 1 BB p312 c24 Ri156

[1, 32, 202, 24, 302] 2d/50 5.6 + 2.8
78 S6(3) 1 1 RR (ρ26)2 c20 2d/1 +1.9
78 O7(3) * 1 1 IRR ind i351 d1 1d 4.0
78 G2(3) 1 1 IRR ind i351 d1 1d 1.9
78 G2(4) 1 1 IRR ind i2080 d1 c100 1d 6.6
78 2F4(2)′ 1 1 IRR perm1755 c117 1d 3.9
78 3.Suz 2 1 IE i1782 (i3 d78) 3d/4 52.8 + 6.0
78 Fi22 * 1 1 IE 2F4(2)′ 1d/1 +2.0
80 41.L3(4) 4 1 BB p1344 c36

Ri56 [4, 4, 162, 202]2 3d/180 2.4 + 4.4
80 42.L3(4) 4 1 BB i56 d8 c24

Ri105 [4, 82, 125]2 2d/96 2.3 + 15.3
80 2.U4(2) 1 2 DI i40 d2 s 1d/1 0.7
81 U4(2) 1 1 IRR perm160 s 1d 0.1
84 A9 1 1 IRR ind i120 d1 c8 s 1 0.1
84 A10 1 1 IRR ind i120 d1 c10 s 1 0.6
84 3.L3(4) 2 1 AIR ind i21 d10 c18 1d/1 3.2 + 1.4
84 122.L3(4) 4 1 BB i120 d4 c8

Ri105 [42+2+2, 125]4 2d/48 36 + 9.8
84 L4(4) * 1 1 IRR perm85 1d 2.9
84 U3(5) 1 1 IRR perm525 1d 1.0
84 3.U3(5) 2 1 AIR ind i525 d2 c122 2d/1 12.9 + 1.8
84 61.U4(3) 2 1 AIR ρ12 ⊗ ρ30 c8 2d/1 14 + 1.7

167

Deg Group C S Method N/D Time
84 121.U4(3) * 4 1 IE 122.L3(4) Ri112 [24, 60]4 2d/27 +12 + 112
84 2.S4(13) * 2 2 IE i14365 (DI i2 d42) 4d/702 73 + 4.8
84 S6(2) 1 1 IRR perm120 s 1d 0.9
84 O+

8 (2) 1 1 IRR perm120 s 1d 0.4
84 O−8 (2) 1 1 IRR perm119 s 1d 0.4
84 2.J2 1 2 AIR ind i100 d12 c72 2d/1 7.9 + 10.5
84 L4(4) 1 1 IRR perm85 s 1d 0.7
85 L4(4) 2 1 AIR perm255 c3 s 1/1 3.0 + 1.6
85 U8(2) * 2 1 IE i3766321152 (ei 1008) 2d/12 5 + 10
85 S4(4) 1 1 IRR perm120 s 1d 0.3
85 S4(13) * 2 1 IE i14196 (i85 d2 c2) 2d/13 85 + 4.6
85 S8(2) 1 1 IRR ind i120 d1 c8 s 1d 2.2
85 J3 * 2 1 BB p14688 c186

Ri6156 [17, 68] (p. 138) 2d/120 0.7 + 49
86 U8(2) 1 1 GE i1844412416 [36, 50] 2d 40 + 8
90 A10 1 1 IRR perm126 s 1d 0.9
90 A15 1 1 IRR perm105 s 1 1.1
90 2.L3(4) 1 1 IRR ind i21 d6 c18 s 1d 0.4
90 6.L3(4) 2 1 AIR ind i21 d12 c36 1d/1 15.8 + 1.3
90 L3(9) * 1 1 IRR perm91 s 1d 2.1
90 L4(3) 1 1 IRR perm117 s 1d 1.2
90 U4(3) 1 1 IRR perm112 s 1d 1.2
90 62.U4(3) * 2 1 IE i112 (DI i90 d1) 1d/9 1.7 + 1.8
90 S4(5) 1 1 IRR perm156 s 1d 1.3
90 J2 1 1 IRR perm280 s 1d 0.6
91 A15 1 1 ExteriorSquare(ρ14) s 1 0.0
91 L3(9) 1 1 IRR perm182 s 1d 1.6
91 L3(9) 2 1 DI i91 d1 s 1/1 0.2
91 L3(9) 4 1 DI i91 d1 s 1/1 0.2
91 S6(3) 2 1 RR (ρ26)2 c12 2d/1 +3.8 + 2.8
91 O7(3) 1 1 IRR ind i364 d1 c20 s 1d 5.6
91 Sz(8) 1 1 IRR perm520 c12 s 1d 0.6
91 G2(3) 1 1 IRR perm364 c28 s 1d 0.4
96 L3(5) 10 1 IE i31 (DI i24 d4) (p. 89) 5d/(55 · 67) 0.2 + 11.9
96 3.L3(7) 2 1 IE i57 (DI i16 d6) 1d/7 22.0 + 3.1
99 M12 1 1 IRR perm220 c20 s 1d 0.4
99 M22 1 1 IRR perm330 c30 s 1d 0.7
99 3.M22 2 1 AIR ind i22 d30 c60 3d/1 17.7 + 3.4

104 A16 1 1 IRR perm120 s 1 0.2
104 U4(5) * 2 1 IE i1575 (ind i2, d104) 3d/3 9.1 + 3.5
104 2.U4(5) * 1 2 IE i1575 (ind i312, d8) 3d/2 123 + 61
104 2.U4(5) 2 1 IE i1575 (ind i156, d8) 3d/1 99 + 23
104 S4(5) 1 1 IRR ind i156 d4 c20 1d 1.0
104 2.S4(5) 1 2 AIR ind i156 d8 c40 3d/1 32.2 + 5.2

168

Deg Group C S Method N/D Time
104 2.Sz(8) 1 1 IRR ind i520 d2 c11 s 1d 1.4
104 G2(3) 1 1 IRR perm364 s 1d 2.0
104 2.G2(4) 2 2 IE i2016 (DI i2 d52) 2d/10 29.1 + 14.7
105 A9 1 1 IRR ind i84 d2 c18 s 1d 0.8
105 A16 1 1 ExteriorSquare(ρ15) s 1 0.0
105 U3(5) 1 1 IRR ind i126 d1 s 1d 0.2
105 3.U3(5) 2 1 AIR ind i126 d2 s 1d/1 4.1 + 3.7
105 31.U4(3) 2 1 AIR ind i126 d2 s 1d/1 8.5 + 3.9
105 U4(5) 1 1 IRR perm756 s 1d 11.9
105 S6(2) 1 1 IRR ind i28 d6 s 1d 1.5
105 S6(3) 1 1 IRR perm1120 s 1d 1.7
105 O7(3) 1 1 IRR perm756 s 1d 2.2
105 3.M22 4 1 BB i231 d2 c20

Ri22 [21, 84]2 3d/1440 1.9 + 6.5
110 A11 1 1 IRR perm165 c15 s 1 1.1
110 U3(11) * 1 2 IE i1332 (ρ1 ⊗ ρ110) 3d/11 23 + 5.5
110 U5(2) 1 2 AIR ind i165 d16 c128 3d/1 18.9 + 4.3
110 U5(2) 2 1 AIR perm495 c35 s 1d/1 3.4 + 1.5
110 2.M12 2 1 BB i12 d20 c20

Ri12 [102, 45, 55] 2d/44 0.8 + 3.2
111 U3(11) 1 1 IRR ind i1332 d1 c32 s 1d 6.6
111 U3(11) 2 1 BB i1332 d2 c66

Ri5328 [1, 110] 2d/11 8.4 + 11.9
111 3.U3(11) * 2 1 BB i3996 d1 c186

Ri5328 [12, 1102] 2d/121 52 + 24
111 3.U3(11) 4 1 BB i1332 d4 c132

Ri5328 [12, 1102] 2d/11 62 + 40
112 2.A9 1 1 IRR ind i120 d1 c8 s 1d 0.8
112 2.S6(2) 1 1 IRR ind i120 d1 c14 s 1d 0.3
112 2.O+

8 (2) 1 1 IRR ind i120 d1 c16 s 1d 0.4
119 A17 1 1 IRR perm136 s 1 1.3
119 S8(2) 1 1 IRR perm120 s 1 0.3
120 A9 1 1 IRR perm280 c20 s 1d 0.3
120 2.A9 2 1 DI i120 d1 s 1 0.1
120 A11 1 1 IRR ind i165 d1 s 1d 0.4
120 A17 1 1 ExteriorSquare(ρ16) s 1 1.3
120 121.L3(4) 4 1 AIR ind i360 d2 c8 s 1/1 41 + 17
120 L5(3) * 1 1 IRR perm121 s 1 0.4
120 2.U4(3) 1 1 IRR ind i540 d1 c56 1d 1.7
120 4.U4(3) 2 1 AIR ind i540 d2 c104 3d/1 17 + 4.5
120 61.U4(3) 2 1 AIR ind i126 d2 c16 s 1d/1 2.2 + 3.1
120 121.U4(3) * 4 1 BB i540 d4 c160

Ri112 [60, 60]4 1d/54 98 + 75
120 U5(2) 1 1 IRR perm165 1 0.4

169

Deg Group C S Method N/D Time
120 6.U6(2) * 2 1 IE 6.M22 2d/84 +5.4
120 S6(2) 1 1 IRR perm288 s 1d 0.6
120 2.S6(2) 1 1 IRR perm240 s 1d 0.2
120 2.S6(2) 1 1 IRR perm288 s 1d 0.3
120 M12 1 1 IRR ind i220 d1 c20 s 1d 0.8
120 2.M12 1 1 IRR ind i12 d11 c12 s 1d 0.9
120 2.M12 1 1 IRR ind i220 d1 c20 s 1d 0.6
120 2.M22 1 1 IRR ind i176 d1 c16 s 1d 2.2
120 6.M22 2 1 BB i672 d2 c124

Ri22 [1202] 1d/8 1.2 + 37
120 12.M22 * 8 1 IE i22 (i360 d2 c64) 2d/84 142 + 167
120 J1 3 1 BB i1463 d1 c77 Ri266

[101+2+2, 112, 242] 3d/660 0.6 + 3.7
121 L5(3) 1 1 IRR perm242 c2 s 1 1.9
121 S10(3) * 2 1 GE[¬χ] i74032324732080

[602, 61] 2d/72 1100 + 11
122 2.S10(3) * 2 1 G[I]E[¬χ] i74032324732080 2d/54 2311 + 23
124 L3(5) 1 1 DI i31 d4 s 1 0.2 + 0
124 L3(5) 2 1 DI i31 d4 s 1/1 0.5 + 0
124 L3(5) 4 1 DI i31 d4 s 1d/3 2.0 + 0
124 L5(2) 1 1 IRR perm155 c2 s 1 0.2
124 Sz(32) * 2 1 IE i1025 (DI 124 d1) 1d/16 2.0 + 3.9
124 G2(5) * 1 1 IRR ind i3906 d4 c504 2d 108
125 L3(5) 1 1 IRR ind i31 d5 c5 s 1d 0.2
125 U3(5) 1 1 IRR perm126 s 1d 0.1
126 A10 1 1 IRR ind i210 d1 c14 s 1 2.3
126 A11 2 1 IE i11 (IRR ind i210 d1) 1d/10 2.5 + 2.2
126 L7(2) * 1 1 IRR perm127 s 1 1.1
126 U3(5) 1 1 IRR ind i175 d1 c19 s 1d 0.2
126 U3(5) 2 1 BB i126 d4 c48 Ri525

[1, 41+3, 42
2, 5

2+3, 63, 63+4
2 , 82] 2d/720 0.7 + 6.3

126 3.U3(5) 2 1 BB i126 d4 c56 Ri525
[1, 4, 43×2, 43, 52+3, 64, 123]2 2d/240 2.1 + 5.8

126 3.U3(5) 4 1 BB i126 d8 c96 Ri525 [12,

41+2+2+2+3
2 , 51+5

2 , 63
2, 6

3+4
4] 3d/480 3.6 + 7.0

126 32.U4(3) 2 1 AIR perm378 c36 s 1/1 1.5 + 3.5
126 61.U4(3) 2 1 AIR ind i378 d2 c28 s 1/1 3.5 + 3.6
126 62.U4(3) * 2 1 DI i126 d1 s 1/1 0.1
126 62.U4(3) 4 1 BB i540 d14 c264

Ri112 [36, 90]2 1d/27 3.4 + 17
126 S4(7) 1 1 IRR ind i1176 d1 c50 1d 3.5
126 2.M22 2 1 BB i77 d6 c42 Ri22 [36, 90] 2d/56 1.5 + 6.0
126 6.M22 4 1 BB i77 d12 c84 Ri22 [36, 90]2 4d/336 20.1 + 51.2
126 J2 1 1 IRR perm280 c22 s 1 0.4

170

Deg Group C S Method N/D Time
126 2.J2 2 2 BB i100 d12 c72

Ri100 [62, 56, 64] 3d/189 2.8 + 6.2
126 3.McL 4 1 IE i275 [32.U4(3)] 2d/324 5 + 67
128 2.A16 * 1 1 IE i2627625 (IE i81, DI i8) 2d/1 223 + 5
128 2.A17 * 2 1 IE i24310 (IE i29400, DI i64) 2d/6 3150 + 15
130 S4(5) 1 1 IRR ind i156 d1 c8 s 1d 0.3
132 A11 1 1 IRR perm462 c30 s 1d 1.4
132 A12 1 1 IRR perm462 c14 s 1 1.1
132 L3(11) * 1 1 IRR perm133 s 1d 0.6
133 L3(11) 1 1 DI i133 d1 s 1 0.4
133 L3(11) 4 1 DI i133 d1 s 1/1 0.4
133 U3(8) 1 1 IRR perm3648 c180 s 2d 8.3
133 J1 1 1 IRR perm1045 c11 2d 9.5
133 J1 2 1 BB p1596 c19 Ri1463

[1, 33
2, 3

4
2, 4

4, 44, 55, 56, 64] 2d/120 0.2 + 3.5
133 HN * 2 1 GE A12 [1, 132] (p. 122) 2d/320 1.1 + 15
135 A18 1 1 IRR perm153 c15 s 1 0.5
135 S8(2) 1 1 IRR perm136 c20 s 1 0.6
136 A18 1 1 IRR perm306 c28 s 1 1.1
140 U4(3) 1 1 IRR perm162 c18 s 1d 0.3
140 4.U4(3) 2 1 BB i540 d2 c104

Ri112 [20, 60, 60]2 1d/54 122 + 15
143 Suz * 1 1 GE i1782 [65, 78] (p. 111) 2d 10 + 3.2
144 2.A11 1 1 IRR ind i11 d16 c4 1d 304
144 U3(5) 2 1 BB p750 c15

Ri126 [83×1, 203, 203
2] 2d/500 7.0 + 3.8

144 3.U3(5) 4 1 BB i50 d30 c156 Ri126
[81+1+2

2 , 201+3
2 , 32] 2d/500 8.0 + 8.5

144 2.S4(17) * 2 2 IE i41616 (IE i290) 4d/2890 159 + 32
144 M12 1 1 IRR perm396 c10 2d 0.9
144 4.M22 4 1 BB i22 d128 c256

Ri77 [644, 804] 2d/144 11 + 134
144 12.M22 8 1 BB i22 d192 c384

Ri77 [248, 1204] 4d/33600 17 + 370
145 S4(17) * 2 1 IE i41616 (IE i2) 3d/17 27 + 17
150 S4(7) 2 1 BB i400 d6 c40

Ri1176 [50, 100] 2d/42 1.7 + 13
152 A19 1 1 IRR perm171 c19 s 1 0.3
152 L3(7) 1 1 IRR ind i57 d8 c24 1d 2.1
153 A19 1 1 ExteriorSquare(ρ18) s 1 0.0
153 S4(4) 1 1 IRR perm1360 c80 s 2d 7.5
153 3.J3 4 1 BB (ρ72)2 c112

Ri17442 [34, 152, 453
2] 2d/32 4.7 + 43

153 He 2 1 IE i2058 (IE i2 [S4(4)]) 3d/8 +9.9

171

Deg Group C S Method N/D Time
154 A12 1 1 IRR perm220 c12 s 1 1.5
154 O−10(2) * 1 1 IRR perm495 c15 s 1d 2.2
154 M22 1 1 IRR perm176 c16 s 1d 0.3
154 2.M22 1 1 BB i330 d1 c30

Ri22 [64, 90] 2d/21 2.3 + 4.4
154 HS 1 1 IRR perm1110 c62 1d 3.2
155 L3(5) 1 1 IRR ind i31 d6 c6 s 1d 0.4
155 L3(5) 2 1 DI i31 d5 (AIR ind i12 d1) s 1/1 1.6 + 0.1
155 L4(5) * 1 1 IRR perm156 s 1 0.3
155 L5(2) 1 1 IRR perm310 c10 s 1 0.2
155 S10(2) * 1 1 IRR perm992 c32 s 1d 1.8
155 O+

10(2) * 1 1 IRR perm496 s 1d 2.7
156 2.L4(5) * 1 1 IRR perm312 c8 s 1 2.1
156 4.L4(5) * 2 1 IE i1550 (IE i2) s 1/1 16.1 + 4.5
156 U3(13) * 1 2 IE i2198 (IE i7) 3d/507 62 + 56
156 S4(5) 1 1 IRR ind i300 d1 c8 s 1d 0.7
156 2.S4(5) 1 2 AIR ind i156 d2 c20 s 1/1 12.9 + 4.6
157 U3(13) 1 1 IRR perm4396 c28 s 2d 24
157 U3(13) 6 1 BB p15386 c94 Ri2198

[1, 1566] (p. 148) 3d/169 29 + 75
160 2.A9 1 1 IRR ind i36 d8 c8 s 1d 0.9
160 A10 1 1 IRR ind i120 d2 c18 s 1d 3.1
160 2.A12 2 1 IE 2.M12 3d/11164 +34.3
160 2.O+

8 (2) 1 1 IRR ind i120 d7 c80 1d 2.9
160 2.M12 2 1 BB i12 d32 c34 Ri220

[2, 3, 3, 4, 4, 83+3, 166] 2d/1296 1.7 + 6.4
160 4.M22 4 1 BB i32 d77 c224

Ri77 [15, 64, 80]2 3d/1080 17 + 234
160 J2 1 1 IRR perm316 c27 s 1d 0.5
162 A9 1 1 IRR ind i9 d28 c16 1d 2.5
165 A11 1 1 IRR perm330 c24 s 1 1.6
165 A12 1 1 IRR ind i220 d1 c12 s 1 2.8
165 U5(2) 1 1 IRR ind i165 d6 c48 2d 10.2
168 A9 1 1 IRR ind i9 d42 c22 1d 4.5
168 2.A9 2 1 BB i120 d7 c56

Ri120 [7, 8, 14, 16, 212, 273] 2d/189 0.9 + 7.5
168 S6(2) 1 1 IRR perm315 c23 s 1 0.7
168 2.S6(2) 1 1 IRR ind i28 d8 c8 2d 1.7
168 S6(3) 1 1 IRR perm364 c26 s 1d 4.5
168 O7(3) 1 1 IRR perm351 c23 s 1d 1.7
168 G2(3) 1 1 IRR perm351 c27 s 1d 1.0
170 A20 1 1 IRR perm190 c16 s 1 0.8
170 U9(2) * 1 2 GE[¬χ] J3 [85, 85]2 (p. 114) 4d/36480 +85
171 A20 1 1 IRR perm380 c30 s 1 1.2

172

Deg Group C S Method N/D Time
171 3.U9(2) * 2 1 G[I]E[¬χ] 3.J3 [1712] (p. 113) 2d/480 +69
171 S6(7) * 2 1 IE i4517721600 (i344, i3,

BB i19 d18 Ri19 [919×1
2]) 2d/98 73 + 261

171 3.J3 2 1 BB (ρ72)2 c80 Ri17442
[1, 1, 4, 51+2, 151+1+2, 452]2 2d/480 4.5 + 36

171 3.J3 4 1 BB i6156 d34 c876 Ri17442
[34, 34, 152, 152, 453

2] (p. 143) 2d/64 7.3 + 853
172 2.S6(7) * 2 1 IE i4517721600 (i3, BB

p688 c40 Ri6536 [1, 919×1
2]) 2d/98 48 + 91

175 S4(7) 1 1 IRR perm400 c10 2d 2.4
175 O+

8 (2) 1 1 IRR perm960 c64 1d 3.3
175 J2 1 1 IRR ind i280 d1 c22 s 1d 1.8
175 HS 1 1 IRR perm176 c12 s 1 0.8
176 U5(2) 1 1 IRR perm297 c21 s 1d 1.3
176 2.U6(2) 1 1 IRR ind i1408 d1 c94 2d 11.8
176 M12 1 1 IRR ind i12 d32 c34 2d 5.1
176 4.M22 2 2 DI i22 d8 (AIR ind i21 d32) s 2d/1 72.6
176 2.HS 2 1 AIR perm704 c36 s 1/1 1.2 + 4.0
180 2.S4(19) * 2 1 IE i65341 (BB p13680 c94

Ri14400 [91+1+9×2
2]) 3d/76 96 + 55

181 S4(19) * 2 1 IE i64980 (i2 d181 c2) 3d/19 65 + 26
182 L3(13) * 1 1 IRR perm183 c3 s 1 1.5
182 U6(3) * 1 2 IE i27328 (DI i91 d2) s 1/3 1.3 + 5.6
182 2.U6(3) * 2 1 IE i4980528 [2.S6(3)] 2d/32 +102
182 2.S6(3) 1 2 ρ13 ⊗ ρ14 1d/1 62
182 2.S6(3) 2 1 BB p728 c42 Ri364

[1, 202, 362, 452, 80] 2d/81 18 + 6.6
182 O7(3) 1 1 IRR perm351 c23 s 1d 1.4
182 G2(3) 1 1 IRR perm351 c27 s 1d 1.3
183 L3(13) 1 1 IRR perm366 c6 s 1 1.7
183 L3(13) 2 1 AIR perm732 c12 s 1/1 9.9 + 5.8
183 3.L3(13) 2 1 DI i183 d1 c18 s 1/1 3.6
183 3.L3(13) 4 1 DI i183 d1 c18 s 1/1 3.7
183 U6(3) 1 1 IRR perm27328 c568 2d 53
186 L3(5) 1 1 IRR ind i310 d1 c10 s 1d 0.4
186 O+

10(2) 1 1 IRR perm527 c15 s 1d 3.9
187 S10(2) 1 1 IRR perm1056 c32 s 1d 3.2
187 O−10(2) 1 1 IRR perm528 c20 s 1d 2.9
189 A9 1 1 IRR ind i9 d35 c25 s 1d 2.3
189 A21 1 1 SymmetricSquare(ρ20) s 1 2.0
189 L4(4) 2 1 IE i85 (i84 d6 c12) 1d/8 146 + 20
189 3.U3(8) 2 1 BB i513 d42 c170

Ri513 [21, 168]2 1d/32 39 + 307
189 U4(3) 1 1 IRR perm280 c32 s 1d 0.6

173

Deg Group C S Method N/D Time
189 32.U4(3) 2 1 BB p540 d2 c82

Ri112 [452, 1442] 2d/27 31 + 22
189 S6(2) 1 1 IRR ind i63 d5 c25 s 1d 1.2
189 3.G2(3) 4 1 BB i351 d54 c180 Ri1456

[271+3×2
2] (p. 138) 3d/648 2.8 + 94

189 J2 2 1 BB i1008 d1 c76 Ri525
[6, 91+2, 121+2+2, 242+2] 2d/48 0.8 + 5.5

190 A21 1 1 ExteriorSquare(ρ20) s 1 0.0
195 S6(3) 1 1 IRR perm364 c26 s 1d 2.7
195 O7(3) 1 1 IRR perm364 c22 s 1d 1.6
196 S4(8) * 1 1 IRR ind i2016 d1 c32 2d 19.5
196 3D4(2) 1 1 GE i2457 [28, 168] 2d 34 + 89
200 2.S4(7) 2 1 BB p800 c28

Ri400 [1, 42, 48, 632, 842] 4d/2352 547 + 16
204 U5(4) * 1 2 IE i66625 (DI i51 d4) (p. 89) 1d/8 48 + 8.7
204 S4(4) 2 1 AIR ind i85 d6 c30 s 2d/1 8.7 + 20
204 O−8 (2) 1 1 IRR perm765 c31 s 1d 1.3
205 5.U5(4) * 4 1 GE i66625 [1, 204: i30 d136] 1d/8 402 + 65
208 A13 1 1 IRR perm286 c18 s 1d 1.7
208 2.L4(3) 2 1 IE i40 (AIR ind i13 d18 c18) 2d/81 23 + 19
208 S4(5) 2 1 BB i325 d8 c72

Ri312 [10, 20, 30, 40, 48, 60]2 2d/50 6.2 + 26
208 2.S4(5) 2 2 BB i325 d16 c192

Ri624 [10, 20, 30, 40, 48, 60]2 3d/100 6.2 + 27
209 A22 1 1 SymmetricSquare(ρ21) s 1 2.6
209 J1 1 1 IRR perm1045 c11 s 2d 6.5
210 A10 1 1 IRR ind i10 d42 c16 1d 6.6
210 A11 1 1 IRR ind i330 d1 c24 s 1 2.7
210 A22 1 1 ExteriorSquare(ρ21) s 1 0.0
210 U4(3) 1 1 IRR ind i280 d1 c32 s 1d 1.1
210 2.U4(3) 2 1 AIR ind i540 d1 c56 [-] 5.8

Ri112 [10, 202, 90, 90] 1d/54 21 + 5.9
210 31.U4(3) 2 1 AIR ind i126 d10 c100 s 1d 66

Ri162 [842, 1262] 2d/60 7.0 + 8.8
210 61.U4(3) 2 1 BB i126 d12 c104

Ri112 [30, 60, 120]2 2d/27 11 + 18
210 3.U6(2) 2 1 IE i20736 [3.M22] 2d/64 +15
210 S6(2) 1 1 IRR ind i28 d10 c16 s 1d 1.1
210 O+

8 (2) 1 1 IRR ind i120 d7 c56 s 1d 3.3
210 M22 1 1 ExteriorSquare(ρ21) s 1d 0.0
210 2.M22 1 1 IRR ind i330 d1 c30 s 1d 1.7
210 2.M22 1 1 IRR ind i231 d1 c21 s 1d 2.3
210 3.M22 2 1 BB i672 d2 c28

Ri22 [84, 126]2 2d/80 2.0 + 7.4

174

Deg Group C S Method N/D Time
210 6.M22 2 1 BB i77 d12 c20

Ri22 [36, 84, 90]3 4d/280 25 + 47
210 6.M22 4 1 BB i672 d2 c14

Ri22 [90, 120]2 3d/168 18 + 44
216 A9 1 1 IRR perm504 c36 2d 4.5
216 2.A10 1 1 IRR ind i45 d8 c10 s 2d 3.2
216 121.U4(3) 4 1 BB ρ30 ⊗ ρ40 c64 Ri112

[36, 60, 120]4 (p. 139) 2d/405 202 + 91
216 122.U4(3) 4 1 BB ρ40 ⊗ ρ72 c192

Ri112 [36, 180]4 (p. 139) 2d/54 40 + 139
216 S6(2) 1 1 IRR perm378 c26 s 1d 0.8
216 2.J2 1 2 AIR ind i280 d2 c44 s 3d/1 6.8 + 32
217 L5(2) 1 1 IRR perm248 s 1 1.6
217 L6(2) 1 1 IRR ind i651 d7 c75 2d 26.7
219 3D4(3) * 1 1 IRR perm26572 c172 2d 32
220 A13 1 1 IRR ind i286 d1 c18 s 1d 1.4
220 U5(2) 2 1 BB i165 d4 c32 Ri297

[102, 302, 402, 60, 80] 2d/96 9.9 + 8.4
220 2.Suz * 1 2 IE i56609280 (BB i440 d1

Ri24 [20, 452, 552]) 3d/792 13 + 66
221 U4(4) 2 1 BB p1040 c16

Ri325 [172, 204] 2d/16 20 + 18
224 2.A9 1 1 IRR ind i84 d8 c32 2d 9.5
224 A10 1 1 IRR ind i10 d35 c20 2d 6.0
224 4.U4(3) 4 1 BB i126 d16 c160 Ri672

[4, 203×1, 40, 602]2 2d/81 88 + 104
224 S4(7) 1 1 IRR perm400 c16 s 1d 2.3
224 2.O+

8 (2) 1 1 IRR ind i120 d8 c64 2d 4.1
224 J2 2 1 BB i1008 d1 c2 Ri525

[2, 6, 91+2, 121+3+3, 242+2] 2d/384 3.4 + 6.9
225 A10 1 1 IRR ind i210 d2 c26 s 1d 6.5
225 S4(4) 4 1 BB i1360 d1 c80

Ri85 [18, 30, 45, 72, 60] 2d/480 7.1 + 15
225 J2 1 1 IRR ind i525 d1 c39 2d 4.5
230 A23 1 1 SymmetricSquare(ρ22) s 1 2.4
230 M23 1 1 IRR perm253 c11 s 1d 2.4
231 A11 1 1 IRR ind i162 d2 c28 s 1 4.0
231 A23 1 1 ExteriorSquare(ρ22) s 1 0.0
231 U6(2) 1 1 IRR perm672 c52 s 1d 3.2
231 3.U6(2) 2 1 BB p2079 c141 Ri228096

[21, 212, 842]2 2d/60 8.5 + 41
231 M22 1 1 IRR ind i77 d5 c35 s 1d 2.5
231 3.M22 2 1 AIR ind i22 d30 c60 3d/1 20 + 32
231 M23 1 1 IRR ind i253 d1 c11 s 1 1.8

175

Deg Group C S Method N/D Time
231 M23 2 1 IE i23 [M22] 3d/120 2.5 + 13
231 M24 2 1 IE i276 (ext i2: i77 d5 c35) 3d/120 5.8 + 41
231 HS 1 1 IRR ind i1100 d1 c58 2d 6.2
231 McL 1 1 IRR ind i275 d21 c197 2d 17
234 L4(3) 1 1 IRR ind i130 d2 c14 s 1d 2.9
238 S8(2) 1 1 IRR ind i136 d28 c116 2d 22
240 U3(16) * 1 2 IE i4097 (i17, IRR ind i30 d16) 1d/32 37 + 71
241 U3(16) 16 1 GE i4097 [1, 240] (DI i15 d16:

BB i68 d8 c32 Ri256 [116×1
16]) 2d/272 352 + 6053

246 O−8 (3) * 1 1 IRR perm1066 c34 2d 43
248 2.L4(5) 1 1 IRR perm3100 c88 2d 10
248 Th * 1 1 G[I]E[¬χ] 25.L5(2) (p. 115) 1d/16 105 + 4.6

176

9.2. Representations of Higher Degree

The following table gives a summary of the representations of degree higher than 250
of quasi-simple groups which we have computed.

The conventions for the table are the same as before, except that we give the maximum
numerator and denominator LCM separate columns, and the latter is in factored form to
save space. We also give only the total time to save space (i.e., we do not split out the
time to construct the representation(s) for a subgroup H when relevant). If a time is at
least an hour, then we give the time Th for T hours. As before, an asterisk (*) after the
group name indicates that the representation is a minimal-degree faithful representation
of the group.

To summarize the chief results, we have succeeding in constructing the following faithful
absolutely irreducible ordinary representations:

• The minimal-degree representation of every sporadic group and its covers except for
the Monster group (degree 196883) and the double cover 2.B of the Baby Monster
(degree 96256).
• All representations of every sporadic group to degree 10000 at least.
• All representations of every cover of every sporadic group to degree 1000 at least.
• All representations of every Mathieu group and its covers.
• All representations to degree 1000 at least for the following groups: U6(2) and

2.U6(2), G2(3), 2.G2(3), G2(4), 2.G2(4), G2(5), S8(2), 2F4(2)′.

We note the following statistics for this table:

• There are 260 representations.
• There are 158 rational representations; of these, 45 were computed by Irre-

ducibleRationalRepresentations.
• There are 102 irrational representations; of these, none were computed by Abso-

lutelyIrreducibleRepresentation (since the other methods were more appli-
cable in high degree).
• 26 representations were computed by IrreducibleExtension.
• 43 representations were computed by GeneralExtension.
• 128 representations were computed by BBReductionRepresentation.

Deg Group C S Method N D Time
252 2.J2 1 2 BB i100 d12 c72

Ri100 [62, 14, 42, 56, 64] 3d 2.33.7 14
252 McL 1 1 IRR perm275 c11 1d 1 2.1
252 U6(2) 1 1 IRR perm693 c53 1d 1 9.6
252 M24 1 1 IRR perm276 c12 1d 1 3.3
253 Co2 1 1 ExteriorSquare(ρ23) 1d 1 +0.1
253 Co3 1 1 ExteriorSquare(ρ23) 1d 1 +0.1
253 M23 1 1 IRR perm506 c22 2d 1 2.4
253 M24 1 1 IRR ind i276 d1 c12 s 1 1 2.3
260 O+

8 (3) * 1 1 IE O7(3), i378, i2 1d 32 13
265 S4(23) * 2 1 IE L2(232):2, i2 3d 23 127

177

Deg Group C S Method N D Time
272 U3(17) * 1 2 IE i4914 (i3, BB i34 d32

c32 Ri289 [168, 169
2]) 6d 22.172 520

273 3D4(2) 1 1 RR (ρ26)2 c20 2d 1 20
273 G2(3) 1 1 IRR ind i351 d1 c2 1d 1 5
273 3.U3(17) * 6 1 GE i4914 [1, 272]6; ρ272:

IE i3, i3, BB i34 d32 c32
Ri289 [168, 169

2] (p. 148) 4d 22.172 1333
275 Co2 1 1 IRR perm2300 c92 2d 1 8.3
275 Co3 1 1 IRR perm276 c12 s1 1 2.7
276 Co1 * 1 1 GE Co3 [23, 253] 2d 1 +18
280 G2(5) 1 1 GE i3906 [40, 240] 2d 52 112
280 M22 2 1 BB i77 d10 c70 Ri77

[10, 15, 30, 452, 453] 2d 27 12
280 U4(3) 2 1 BB i112 d10 c8 Ri112

[10, 202, 30, 402, 90, 90] 2d 22.34 21
288 J2 1 1 IRR perm1008 c76 2d 1 7.2
288 L3(7) 6 1 BB p5586 c24

Ri57 [961+1+1] 4d 73 29
299 Co1 1 1 GE Co3 [1, 23, 275] 3d 22.32.23 +47
300 2F4(2)′ 1 1 IRR ind i1600 d1 c19 2d 1 20
300 J2 1 1 IRR ind i100 d7 c44 2d 1 10.4
300 G2(4) 2 1 IE J2 4d 2.3.7 48
320 U5(2) 1 2 BB i165 d4 c8

Ri297 [102, 302, 120, 1602] 2d 27 13
323 J3 2 1 BB p6156 c324 Ri6156 [1,

2 : 16, 17, 2 : 172, 34, 68, 120] 4d 25.3.5.17 34
324 3D4(2) 1 1 RR (ρ26)2 c11 2d 1 33
324 J3 1 1 IRR perm6156 c324 3d 1 24
324 3.J3 2 1 BB i6156 d2 c146 Ri14688

[18, 192, 202, 36, 362, 602]2 3d 22.32.5.19 757
325 2F4(2)′ 1 1 IRR ind i2925 d1 c19 3d 1 52
330 2.M22 1 1 IRR ind i77 d10 c18 2d 1 8.3
330 3.M22 2 1 DI i22 d15 (AIR ind i120 d2) s1 1 4.3
330 6.M22 2 1 DI i330 d1 s1 1 2.0
336 J2 1 2 BB i525 d2 c66

Ri100 [14,21,27,42,56,64] 3d 22.33 15
336 2.J2 1 2 BB i100 d14 c88 Ri100

[14, 21, 27, 42, 56, 64] 3d 24.33.7 31
336 12.M22 8 1 BB i22 d384 c48 Ri22

[121.L3(4)] [96, 1202]4 6d 28.35.5 +2335
342 U3(19) * 1 2 IE i6860 (i5, BB i2 d342

c16 Ri361 [184, 185
2, 365]) 5d 22.13.192 575

342 3.L3(7):2 4 1 IE L3(7) (DI i57 d6) 1d 2.7 214
342 3.O′N * 4 1 IE 3.L3(7):2 2d 2.72 +16.1h

178

Deg Group C S Method N D Time
350 G2(4) 1 1 IRR perm416 c8 1d 1 19
350 2.J2 1 2 BB p5600 c38

Ri100 [7, 27, 42, 56, 64] 3d 24.33.7 23.5
351 2F4(2)′ 1 1 IRR perm1600 c9 3d 1 27
351 2F4(2)′ 2 1 BB (ρ54)2 c48 Ri1600

[13, 26, 27, 391+2, 522, 64] 3d 24.33.13 26
351 3.G2(3) 2 1 DI i351 d1 s1 1 3
351 3D4(2) 3 1 BB (ρ52)2 c14 Ri2457

[23, 21, 28, 483, 84, 168] 2d 26 78
351 3.Fi22 * 2 1 IE 3.2F4(2)′, i3 (IRR p1600) 4d 22.5 2745
352 2.Fi22 * 1 1 IRR perm28160 c80 3d 1 85
357 O−8 (2) 1 1 IRR ind i1071 d1 c17 2d 1 18
364 G2(4) 1 1 IRR perm1365 c15 2d 1 50
364 2.G2(4) 1 2 GE i1365 [60, 64, 120, 120]2 3d 25 214
364 Suz 1 1 IE G2(4) 2d 22 +37
364 2.Suz 2 1 IE 2.G2(4) 3d 25 +61
378 3.G2(3) 2 1 DI i378 d1 s1 1 3
378 G2(4) 1 1 IRR ind i2016 d1 c60 3d 1 25
378 Ru * 2 1 IE 26.U3(3).2 1d 25 31
384 3.M22 2 1 BB i77 d18 c26 Ri22

[3.L3(4)] [842, 90, 126]2 5d 26.3.5.7 47
384 6.M22 2 1 BB i176 d12 c26 Ri22

[6.L3(4)] [84, 902, 120]2 4d 25.3.5.7 102
384 12.M22 4 1 BB ρ42 ⊗ ρ224 c56 Ri22

[121.L3(4)] [48, 96, 1202]4 5d 26.32.52.7 +670
385 M22 1 1 IRR perm616 c6 s 2d 1 101
385 U6(2) 1 1 BB i693 d10 c326

Ri672 [165, 220] 3d 22.3 108
406 Ru 1 1 IRR ind i4060 d1 c140 3d 1 66
429 Fi22 1 1 GE R(2) [78, 351] 4d 22.5 99
429 3.Suz 2 1 GE sh 3.G2(4) [65, 364]2 3d 23.3 220
440 2.M22 1 1 IRR ind i672 d1 c30 2d 1 70
440 U6(2) 1 1 IRR perm672 c51 2d 1 20
448 G2(3) 2 1 BB i364 d6 c32 Ri351

[142, 212, 272, 42, 56, 64] 3d 26.33.7 20
448 2.J2 1 2 BB i100 d14 c36 Ri100

[14, 21, 27, 42, 56, 64]2 3d 25.33.7 54
462 3.U6(2) 2 1 ρ21 ⊗ ρ22 1d 1 +0.1
468 3D4(2) 1 1 IRR perm819 c11 2d 1 274
476 O−8 (2) 1 1 IRR perm765 c38 2d 1 13
476 O−8 (2) 1 1 IRR ind i119 d6 c30 2d 1 38
483 M24 1 1 IRR perm759 c33 2d 1 19.5
495 3.O′N 2 1 GE 3.L3(7):2 [152, 343]2 5d 2.32.7.19 2601

179

Deg Group C S Method N D Time
506 U3(23) * 1 2 IE i12168 (BB i2 d506

c20 Ri2 [253, 253]2) 5d 3.13.232 2049
510 S8(2) 1 1 GE O−8 (2):2 [34, 476] 3d 2.32 1851
520 2.O+

8 (3) * 1 1 BB p2160 c52 R O7(3)
[1, 78, 168, 273] 3d 2.3.13 41

546 G2(3) 1 1 IRR ind i364 d2 c16 2d 1 86
560 2.G2(4) 1 2 BB i416 d24 c320 Ri416

[2.J2] [12, 84, 128, 252]2 5d 2.33.52.7 +204
560 4.M22 2 1 BB i77 d32 c224 Ri77

[16, 16, 64, 80]2 3d 23.33.5 221
560 U4(3) 1 2 BB p13440 c78 Ri112

[40, 801+1, 902+2] 2d 2.34 60
560 U6(2) 1 2 IE i891 (DI i560 d1) s1 23 85
572 2.Suz 2 1 GE i232960 [132, 440]2 2d 34 215
595 O−8 (2) 1 1 BB i119 d10 c38

Ri119 [10, 135, 180, 270] 1d 25 47
595 S8(2) 1 1 IE O−8 (2) 1d 25 +108
612 U4(4) 4 1 IE i325 (BB i272 d6 c48

Ri3 [204, 204, 204]2) 2d 25 591
616 2.HS 2 1 BB i5600 d1 c96 Ri100

[2.M22] [56, 120, 440] 4d 23.3.5.7.11 95
616 U6(2) 1 1 IRR perm891 c51 2d 1 49
616 2.U6(2) 1 1 IRR ind i672 d1 c10 1d 1 63
624 2F4(2)′ 2 1 BB p1600 c9 Ri1755 [4,

101+1, 162+2, 206×1, 402+2, 644] 2d 29.5 121
637 3D4(2) 1 1 BB i819 d7 c3 Ri2457

[21, 28, 84, 1681+2] 1d 26 63
640 U4(3) 2 1 BB i567 d5 c36 Ri112

[304×1, 801+1, 902+2] 2d 22.34 80
646 J3 2 1 BB p46512 c74 Ri14688

[18, 184×1
2 , 19, 20, 60] 5d 23.32.5.19 556

650 2F4(2)′ 1 1 IRR perm1755 c12 3d 1 1757
650 G2(4) 1 1 IRR perm1365 c15 3d 1 249
651 G2(5) 1 1 GE i3906 [1, 6, 20, 24, 120, 480] 2d 54 170
660 U5(2) 1 1 BB p1408 c28 Ri165

[12, 16, 27, 36, 72, 81, 128, 1441+1] 2d 26.32 255
672 6.U6(2) 2 1 BB i2016 d1 c12 Ri693

[16, 40, 160, 216, 240]2 3d 28.3 1.2h
675 2F4(2)′ 1 1 IRR perm1755 c12 4d 1 1015
680 He 1 1 IRR perm2058 c80 3d 1 192
693 HS 1 1 IRR perm1100 c62 2d 1 72.5
702 2F4(2)′ 2 1 BB i1755 d1 c6 Ri1755

[1, 5, 101+1+2+2, 16,
201+1+1, 352, 402+4, 644] 2d 27.5 115

180

Deg Group C S Method N D Time
703 R27 * 1 1 BB i19684 d1 c532

Ri19684 [1, 702] 1d 33 1277
728 G2(3) 1 1 BB i364 d3 c28 Ri351

[141+2, 211+2, 271+2, 423, 564, 643] 3d 25.33.7 34
729 G2(3) 1 1 BB i364 d3 c28 Ri351

[7, 141+1, 211+2, 271+2, 423, 563, 644] 3d 25.33.7 28
729 2.G2(3) 2 1 BB ρ54 ⊗ ρ54 c56 Ri351

[7, 141+1, 211+2, 271+2, 423, 563, 644]2 3d 25.33.7 128
760 HN 1 1 GE A12 [1, 132, 165, 462] (p. 122) 5d 23.32.7 359
770 HS 1 1 IRR ind i1100 d1 c54 2d 1 58
770 HS 2 1 GE M22 [210, 560] 3d 24.32.11 +425
770 M23 2 1 BB i1771 d1 c77

Ri23 [210, 2802, 2802] 3d 22.32.11 220
770 M24 2 1 IE M23 6d 22.32.11.23 +893
770 McL 2 1 BB i275 d210 c198

Ri275 [U4(3)] [210, 5602] 3d 23.35.5 +1301
770 U6(2) 2 1 BB i693 d20 c28 Ri6336

[S6(2)] [35, 315, 420] 3d 24.3 345
780 Suz 1 1 IRR perm1782 3d 1 100
780 6.Suz 2 1 GE i232960 [120, 660]2 2d 34 1386
782 Fi23 * 1 1 IRR perm31671 c185 (p. 64) 3d 1 596
783 Ru 1 1 IRR perm4060 c140 4d 1 140
783 3.Fi′24 * 2 1 GE[¬χ] Fi23 [1, 782] (p. 114) 4d 26.32.23 +2.0h
792 3.McL 2 1 BB i275 d72 c168 Ri22275

[1, 35, 64, 64, 70, 90, 126]2 4d 25.32.5.7 1770
792 2.U6(2) 1 1 BB i1408 d1 c18

R U5(2) [132, 660] 2d 26.32 +89
816 J3 1 2 BB p17442 c152 Ri23256 [1, 9,

9, 10, 16, 16, 18, 20, 202, 32, 40] 3d 24.33.5 818
819 G2(3) 1 1 BB i364 d3 c15 Ri351

[143×1, 211+2, 272+2, 423, 564, 644] 3d 26.33.7 38
819 G2(4) 2 1 BB (ρ65)2 c24 Ri1365

[32, 362, 604×1, 1803×1] 2d 27.5 132
825 HS 1 1 IRR perm1100 c58 2d 1 72
832 G2(3) 1 1 BB i364 d6 c32 Ri351 [71+1, 12,

142, 211+1, 272+2, 422, 564, 645] 3d 26.33.7 53
833 F4(2) * 1 1 GE S8(2) [238, 595] 3d 22.3 +481
896 Co3 2 1 IE M23 5d 27.32.5 +1247
896 HS 2 1 GE M22 [231, 2802, 385] 5d 210.32.11 +471
896 M23 2 1 BB i23 d231 c53 Ri253

[35, 35, 64, 64, 70, 90, 90, 126] 4d 27.3.5.7 356
896 McL 2 1 IE U4(3) 5d 33.5 +779
896 U4(3) 1 1 IRR ind i112 d16 c2 3 1 657

181

Deg Group C S Method N D Time
918 S8(2) 1 1 BB p2295 c19 Ri255

[15, 84, 315, 504] 2d 24.32 265
924 2.HS 2 1 BB i1100 d2 c24 Ri100

[2.M22] [120, 1542, 210, 440] 5d 23.33.5.7.11 216
924 6.Suz 2 1 GE 2.G2(4) [364, 560]2 5d 26.33.52.7 +982
924 3.U6(2) 2 1 BB i693 d10 c44 Ri891 [84, 840]2 1d 25 918
930 G2(5) 1 1 GE i3906 [1, 5, 24, 60, 120, 240, 480] 2d 2.54 323
960 G2(5) 2 1 GE i3906 [480, 480] 1d 3.52 304
990 A11 1 1 IRR ind i55 d42 c39 2d 1 430
990 M23 2 1 ρ22 ⊗ ρ45 1d 23 0.1
990 M24 2 1 IE M23 2d 23.23 1257

1000 2.HS 1 2 BB i100 d20 c60 Ri100
[2.M22] [20, 252, 210, 308] 4d 23.52.11 363

1001 Fi22 1 1 GE 210 : M22 [385, 616] 1d 25 189
1001 Suz 1 1 BB p1782 c36

R 35:M11 [11, 110, 220, 660] 2d 2.34 186
1016 Sz(128) * 1 1 IE i16385 1d 26 31.0h
1029 He 2 1 BB p4116 c57 Ri8330

[1, 20, 64, 126, 168, 192, 270] 3d 25.3.5.7 177
1035 M23 1 1 IRR perm1288 c56 s 2d 1 206
1035 M24 1 1 IRR perm1288 c56 2d 1 213
1035 M24 2 1 ρ23 ⊗ ρ45 1d 1 0.1
1056 HS 1 1 BB p3850 c36

R M22 [55, 154, 231, 385] 4d 25.32.5 124
1056 6.U6(2) 2 1 BB ρ42 ⊗ ρ56 c2 Ri891 [336, 720]2 1d 25 587
1085 G2(5) 1 1 GE i3906 [1, 24, 40, 60, 2401+1, 480] 3d 22.56 456
1105 F4(2) 1 1 GE S8(2) [510, 595] 2d 26.33 +460
1140 J3 1 1 BB p6156 c73 Ri6156 [11+2,

162+3, 172+3, 343+5, 685, 1203] 3d 25.3.5.17 308
1155 A11 1 1 IRR ind i55 d42 c30 2d 1 2.5h
1155 U6(2) 1 1 IRR perm1408 c26 2d 1 1325
1155 3.U6(2) 2 1 BB i693 d10 c6 Ri891 [105, 210, 840]2 1d 25.3 850
1215 J3 2 1 BB p6156 c8 Ri6156 [1,

162+3, 172+4, 343+3, 603+4
2 , 686] 7d 27.3.5.19 2954

1232 2.HS 2 1 BB ρ56 ⊗ ρ231 c104 Ri100
[2.M22] [210, 252, 330, 440] 4d 25.7 2461

1232 2.U6(2) 1 1 IRR ind i1408 d1 c3 2d 1 1723
1265 M24 1 1 BB i1288 d1 c56

R M23 [230, 1035] 3d 2.11 +87
1275 He 1 1 BB p2058 c45 Ri8330 [1, 203,

40, 60, 64, 1052, 108, 192, 2702] 4d 26.32.5.7 197
1275 He 2 1 BB (ρ102)2 c120 Ri8330 [20, 302,

452, 60, 64, 902, 108, 126, 192, 2701+1] 3d 28.3.5.7 844

182

Deg Group C S Method N D Time
1275 S8(2) 1 1 BB i5440 d1 c44 Ri255

[36, 105, 504, 630] 2d 25.5 430
1300 2F4(2)′ 1 1 IRR ind i1600 d1 c1 3d 1 3545
1320 A11 1 1 BB i11 d252 c30

R A10 [252, 300, 768] 4d 2.32.52 433
1320 A12 2 1 IE A11 5d 22.32.52.7 +2269
1333 J4 * 2 1 GE[¬χ] 211:M24 [452, 1288] (p. 116) 2d 27 1354
1386 HS 1 1 BB p5775 c50

R M22 [210, 231, 385, 560] 4d 24.32.11 411
1386 U6(2) 1 1 IRR ind i1408 d1 c2 s1d 1 1.4h
1386 3.U6(2) 2 1 BB i693 d12 c46

Ri891 [21, 105, 420, 840]2 1d 26 1073
1408 HS 1 1 BB p4125 c37

R M22 [99, 154, 210, 385, 560] 6d 27.32.11 416
1430 Fi22 1 1 GE 210 : M22

[1, 21, 77, 330, 385, 616] 3d 26.11 570
1485 A12 1 1 IRR ind i66 d42 c33 (p. 72) 2d 1 2126
1485 3.U6(2) 2 1 BB i6336 d2 c56

Ri891 [15, 630, 840]2 1d 26 1569
1540 U6(2) 1 1 BB i672 d55 c46

Ri891 [280, 1260] 1d 26 1202
1615 J3 1 1 BB p6156 c73 Ri6156 [1, 162+4

174+4, 343+4, 688, 1205] 5d 25.3.5.17 903
1638 O7(3) 1 1 BB i364 d6 c30 Ri3159 [21, 27, 35,

1051+1, 1202, 2101+1, 280, 405] 4d 26.32.7 701
1728 2F4(2)′ 1 1 BB i1755 d2 c4 Ri1755 [2, 101+2

165+5, 201+2+2+3+4+4, 32, 404+8, 6411] 2d 28.5 784
1728 6.Fi22 * 2 1 IE 6.R(2) (i2, i3, RR i1775 d2) 6d 26.34.5.132 47.8h
1750 HS 1 1 BB i100 d90 c20

R M22 [90, 99, 231, 3852, 560] 4d 25.32.5.7.11 1254
1750 McL 1 1 IRR perm2025 c50 3d 1 1.4h
1771 Co1 1 1 IE Co2 2d 27 +1.0h
1771 Co2 1 1 BB ρ23 ⊗ ρ253 Ri1024650

[35, 56, 420, 420, 840] 1d 26 1324
1771 Co3 1 1 BB ρ23 ⊗ ρ253 R 2.S6(2)

[8, 35, 48, 105, 120, 315, 420, 720] 4d 26.3.7 778
1771 M24 1 1 DI i1771 d1 s 1 1 0.4
1792 2.HS 2 1 BB i100 d252 c208 Ri100

[2.M22] [252, 3302, 4402] 4d 26.3.7 1.4h
1848 2.HS 1 2 BB i176 d56 c88 Ri100

[2.M22] [308, 3302, 4402] 5d 24.32.5.7 2205
1920 He 1 1 BB p8330 c104 Ri8330 [1, 20, 60,

64, 105, 2:108, 126, 128, 2:192, 270] 4d 26.33.5.7 621

183

Deg Group C S Method N D Time
1920 J3 3 1 BB p14688 c20 Ri6156 [164+4

174+4, 344+4, 687, 1208] 42d 2.5.19.39d 7.1h
1925 A12 1 1 BB p2520 c36

R A11 [825, 110] 6d 2.7 2571
1925 HS 1 1 BB i176 d21 c27

R M22 [154, 210, 231, 3852, 560] 4d 25.32.5.11 812
1925 HS 1 1 BB i3850 d1 c33

R M22 [55, 99, 210, 231, 3852, 560] 5d 24.32.5.7.11 817
1938 2E6(2) * 1 1 GE[¬χ] F4(2) [833, 1105] 4d 27.33 +1.2h
1938 J3 2 1 BB i6156 d1 c8 Ri6156 [164+4

1, 162+3, 172+4, 343+3, 603+4
2 , 686] 31d 25.3.5.31d 3.1h

1980 2.HS 2 1 BB i100 d56 c48
R 2.M22 [56, 120, 154, 330, 4403] 5d 24.32.5.7 1.1h

2024 2.Co1 1 1 GE Co2 [253, 1771] 2d 27 +1.9h
2024 Co2 1 1 IRR perm2300 c82 2d 1 1.2h
2024 Co3 1 1 BB i276 d22 c19 R 2.S6(2)

[8, 15, 35, 84, 105, 112, 189,
216, 280, 420, 560] 4d 27.33.5.7 890

2024 M23 1 1 IRR ind i23 d99 c99 4d 1 1.3h
2024 M24 1 1 IE M23 5d 22.3 +1.0h
2048 2F4(2)′ 2 1 BB i2925 d2 c15 Ri1755

[4, 51+1, 101+2+2, 163+3,

204×2+4+4, 323, 408+8, 6413] 7d 211.33.5.172 3491
2080 2.Fi22 1 1 GE 2.O7(3) [182, 260, 1638] 5d 26.33.7 2.2h
2277 Co2 1 1 IRR ind i2300 d1 c5 s 1d 1 6.1h
2277 M24 1 1 BB i3795 d1 c165 R M23

[253, 2024] 6d 22.32.5 +1143
2310 A11 1 1 BB i11 d450 c45

R A10 [450, 525, 567, 768] 3d 24.3.7 1321
2310 3.U6(2) 2 1 BB i693 d20 c10

Ri891 [210, 840, 1260]2 1d 28 2951
2380 2.F4(2) 1 1 GE[¬χ] S8(2) [1, 51, 135, 918, 1275] 3d 26.32.52.17 +1.9h
2432 J3 1 1 IRR perm14688 c64 10d 1 64.2h
2464 2.U6(2) 1 1 BB i693 d16 c33 Ri6237 [401+2, 64,

801+1, 1601+1, 2401+1+1, 3601+2] 2d 27.3.5 3535
2480 53.L3(5) 1 1 GE i31 [80, 2401+1, 4804×1] 2d 54 1.4h
2480 Ly * 2 1 G[I]E[¬χ] 53.L3(5) [2480] (p. 116) 4d 3.56 +19.3h
2520 HS 1 1 BB i176 d21 c33

R M22 [1542, 2102, 2312, 3852, 560] 5d 24.32.5.7.11 1706
2520 3.U6(2) 2 1 BB i693 d10 c4 Ri891

[21, 84, 315, 420, 1680]2 2d 27.3.5 1.4h
2673 A12 1 1 BB p5775 c72

R A11 [693, 9901+1] 4d 23.32 2255

184

Deg Group C S Method N D Time
2750 HS 1 1 BB i5775 d1 c15

R M22 [90, 210, 3852, 5603] 5d 24.33.11 2503
2754 J3 1 1 IRR perm17442 c78 9d 1 41.7h
2772 3.U6(2) 2 1 BB i693 d12 c46 Ri891

[211+1, 105, 210, 315, 420, 1680]2 2d 28.3 1.9h
3003 Fi22 1 1 GE 210 : M22 [77, 616, 2310] 1d 26 2034
3078 J3 1 1 IRR perm20520 c88 9d 1 169.0h
3080 Fi22 1 1 GE 210 : M22

[1, 21, 55, 77, 330, 616, 1980] 3d 29.3.7.11 1.3h
3080 U6(2) 2 1 BB i693 d10 c6 Ri891

[105, 315, 420, 2240] 1d 27.3 3.6h
3080 2.U6(2) 1 1 BB ρ22 ⊗ ρ176 c22 Ri6237

[32, 401+1, 801+1, 128, 1601+1+2,

2401+1, 3603×1, 480] 3d 28.32.5 1.4h
3200 HS 1 1 BB i176 d56 c62 R M22 [99,

154, 210, 2312, 3853, 5602] 5d 27.32.5.11 3581
3276 Ru 1 1 BB p4060 c24 R 26.U3(3).2

[12, 141+1, 212, 272, 631+1+2,
1262, 1891+2+3, 3781+1+2] 3d 29.32.7 2906

3312 M24 1 1 BB i24 d253 c264 R M23

[253, 1035, 2024] 6d 22.32.7 +1534
3344 HN 1 1 GE A12 [1, 54, 1322, 4622,

616, 1485] (p. 122) 6d 27.35.5.72.113 +3.2h
3432 Suz 1 1 BB (ρ143)2 c155 R 35:M11

[44, 528, 660, 792, 880] 3d 22.35.5 1.2h
3465 3.U6(2) 2 1 BB ρ22 ⊗ ρ420 c8 Ri891

[210, 315, 420, 8401+1+1]2 1d 26.3 1.7h
3520 Co3 2 1 IE McL (Schur index 2) 6d 23.38.5.103 +4.0h
3520 M24 1 1 BB i2024 d2 c176 R M23

[230, 231, 1035, 2024] 6d 26.7.11 +1438
3520 McL 1 1 BB i275 d21 c97 R M22

[212, 552, 99, 1542, 2102, 231, 5603] 5d 27.32.5.7.11 1.0h
3520 McL 1 2 BB i15400 d8 c176 R U4(3)

[5601+1, 1120, 1280] 5d 23.37.103 +12.8h
3588 Fi23 1 1 GE 211.M23 [1, 22, 253, 506,

1288, 1518] (p. 118) 5d 210.7.23 4.4h
3654 Ru 1 1 BB i4060 d1 c31 R 26.U3(3).2

[1, 14, 212, 27, 42, 631+2,
126, 1891+2+4, 3783×1+2] 3d 29.32.7 1.1h

4025 Co2 1 1 BB ρ23 ⊗ ρ253 c10 R 210:M22:2
[21, 22, 2311+1, 440, 3080] 3d 27.3.7 1.1h

4025 Co3 1 1 BB i276 d22 c71
R McL [22, 231, 252, 3520] 5d 27.32.5.7.11 +1.4h

185

Deg Group C S Method N D Time
4080 He 1 1 BB i8330 d2 c121 Ri8330 [2, 40,

64, 1052+2, 2:108, 126, 128,
1682, 1922+2, 252, 2702+2, 4202] 4d 28.33.5.7 1.4h

4123 Th 1 1 GE[¬χ] 25.L5(2) [155, 248, 3720]
(p. 115) 2d 29 1.3h

4158 A12 1 1 BB i12 d660 c34
R A11 [660, 1188, 2310] 6d 26.32.5.7 5.2h

4352 He 1 1 BB p8330 c104 Ri8330 [1, 202, 40,
602, 643, 90, 1053, 1083+3, 126, 128,
1923, 252, 2702+4, 420] 4d 28.33.5.7 2.2h

4371 B * 1 1 GE[¬χ] Fi23 [1, 782, 3588] (p. 119) 5d 211.35.7.23 +35.0h
4500 McL 1 1 BB p15400 c76 R M22 [55, 90,

99, 1542, 210, 2313, 3855, 5602] 5d 27.32.5.7.11 3.2h
4752 McL 1 2 BB p178200 c276 R M22

[90, 2102, 2312, 3854, 5604] 6d 27.33.5.11 65.6h
5005 Suz 2 1 BB (ρ143)2 c155 R 35:M11 [55, 110,

132, 2202, 440, 5282, 6602, 792, 880] 3d 22.36.5 +8.6h
5083 Fi23 1 1 GE 211.M23 [253,1288,3542]

(p. 118) 2d 28 10.9h
5103 McL 1 1 BB p15400 c76 R M22

[55, 90, 99, 1542, 210, 2313, 3855, 5602] 5d 27.33.5.7.11 2.6h
5313 M24 1 1 BB i1771 d5 c92 R M23

[462, 1035, 1792, 2024] 7d 27.3.5.7.11.23 +5.4h
5544 Co3 1 1 BB i276 d22 c53

R McL [22, 252, 1750, 3520] 6d 27.35.52.7.11 +3.0h
5544 M24 1 1 BB i1771 d5 c385 R M23

[1540, 1980, 2024] 7d 24.7.23 +7.1h
5544 McL 1 1 BB p15400 c28 R M22

[90, 99, 154, 2103, 231, 3854, 5605] 6d 27.32.5.7.11 9.1h
5775 A12 1 1 BB i23040 d1 c20

R A11 [990, 1155, 1320, 2310] 6d 25.32.53.7 2.4h
5796 M24 1 1 BB p10626 c93 R M23

[1792, 1980, 2024] 7d 27.33.52.7 +6.0h
5940 Suz 1 1 BB (ρ143)2 c155 R 35:M11 [1, 10, 11,

44, 1103, 1324, 220, 5282, 6603, 8802] 3d 22.36.5.11 +4.9h
6272 He 1 1 BB i8330 d1 c29 Ri8330 [1, 202, 60,

641+3, 901+1, 105, 1081+1, 1263, 128,
1684, 180, 1923+4, 252, 2702+4, 4202] 4d 27.32.5.7 7.3h

6528 He 1 1 BB ρ102 ⊗ ρ306 c144 Ri8330 [40, 60,
64, 90, 1051+3, 1081+3, 126, 1282,
168, 180, 1921+3, 2522, 2704+4, 4203] 4d 29.33.5.7 23.2h

7084 Co2 1 1 BB (ρ253)2 c319 R 210:M22:2
[924, 1540, 4620] 2d 28 9.4h

186

Deg Group C S Method N D Time
7084 Co3 1 1 BB (ρ253)2 c290

R McL [1540, 5544] 7d 28.35.52.7.112 +17.7h
7497 He 2 1 BB ρ102 ⊗ ρ680 c478 R S4(4):2

[50, 851+1, 153, 2562,

3401+1+2+2, 4082+2, 5102+2, 900] 7d 29.32.52.17 88.5h
7650 He 1 1 BB p29155 c271 R S4(4):2

[341+1, 50, 854×1, 1021+1, 2562,

3401+1+3+3, 4081+1, 5102+2, 900] 8d 28.32.52.17 17.1h
7650 He 2 1 BB ρ102 ⊗ ρ306 c156 R S4(4):2

[50, 851+1, 1532, 2562,

3401+1+2+2, 4082+2, 5102+2, 900] 7d 27.32.52.17 105.2h
8019 McL 2 1 BB i275 d189 c215 R U4(3)

[189, 420, 5601+1, 6401+2
2 ,

7292, 8962, 1120] 6d 25.310.5.7 75.5h
8250 McL 2 1 BB i22275 d1 c145 R U4(3)

[140, 210, 3151+1, 420, 5603×1,

6401+2
2 , 7292, 8962] 5d 25.38.5.7 21.3h

8671 Fi′24 * 1 1 GE[¬χ] Fi23 [3588, 5083]
(p. 121) 4d 212.3.7.23 +38.6h

8855 Co1 1 1 IE 211:M24 (p. 90) 1d 24 3.5h
8855 Co3 1 1 BB p11178 c78

R McL [252, 1750, 5103] 7d 27.33.53.7.112 +5.0h
8778 HN 2 1 BB (ρ266)2 c148 R A12 [132,

165, 462, 1485, 2376, 4158] 8d 29.34.52.7 +122.2h
8910 HN 1 1 BB (ρ266)2 c148 R A12

[1, 54, 1322, 275, 462,
616, 1925, 2640, 2673] 9d 25.35.52.71.11 +55.3h

9405 HN 1 1 GE A12 [11, 154, 4621+1,

616, 1925, 5775] 9d 25.35.52.7.11 +110.3h
9625 Co2 2 1 IE McL 6d 28.39.5.7 +122.1h
9625 Co3 2 1 IE McL 6d 28.39.5.7 +125.5h
9625 McL 1 1 BB i15400 d1 c74 R U4(3)

[351+1, 90, 140, 210, 3152+2,

420, 7293, 8963, 12802] 5d 26.38.5.7 26.9h
9856 McL 2 1 BB p92400 c392 R U4(3)

[2801+1
2 , 3151+1, 4202,

7292, 8963, 1120, 12802] 5d 210.38.5.7 84.1h
10395 M24 1 1 BB i276 d55 c93 R M23

[1035, 1540, 1792, 1980, 2024] 8d 27.33.52.7.11.23 +24.2h
10944 O′N * 1 1 BB p122760 c366

R L3(7):2 (p. 144) 8d 29.35.76.19 202.4h

187

Chapter 10

Representations of L2(q) and 2.L2(q)

10.1. Introduction

In this chapter we describe the ordinary representations of L2(q) and 2.L2(q) for q < 100
which we have constructed. For these groups, there are some known constructions for
representations [Tan67, PS83, Bög93, Per95, Nic06], but these methods generally write the
result over a non-minimal field. Apart from the trivial cases which can be handled by a
permutation representation or direct induction, it has generally remained a very difficult
problem to write the representations over minimal fields as q increases, but the hybrid
algorithm is particularly effective for constructing such representations with reasonably
small entries most of the time.

The irrational representations were generally either computed by AbsolutelyIrre-
ducibleRepresentation if the degree was small or by the hybrid algorithm BBReduc-
tionRepresentation. In the latter case, the most suitable subgroup H for reduction
was always the largest maximal subgroup, which for L2(q) is known as the Borel subgroup
(index q − 1) [Wil09, 3.3.3]. The other maximal subgroups are very small, comparatively,
so they are not suitable in general: reducing via such usually yields large entries in the
result.

For all q, the representation of degree q is trivially constructed from the permutation
representation of G of degree q + 1, so we omit such cases. Also, since L2(q) is isomorphic
to some other standard group for q = 2, 3, 4, 5, 9, we omit these cases from the tables.

At the time of writing, some representations of 2.L2(97) remain too difficult to con-
struct, since they involving splitting homogeneous modules over a very large number field,
or with very high multiplicity.

188

10.2. Representations of L2(q)

L2(q), q even, Degree (q − 1)

Deg q C Method N/D Time
7 8 1 IRR ind i28 d1 c4 1 0.3
7 8 3 AIR ind i28 d1 c4 1d/1 0.3 + 0.2

15 16 8 IE i17 (DI i15 d1) 2d/8 0.1 + 0.2
31 32 1 IRR ind i496 d1 c16 1 0.8
31 32 5 IE i33 (DI i33 d1) 2d/8 0.1 + 0.3
31 32 5 IE i33 (DI i33 d1) 2d/16 0.1 + 2.5
63 64 2 IE i65 (DI i63 d1) 2d/32 2.6 + 3.0
63 64 6 IE i65 (DI i63 d1) 2d/32 2.6 + 8.6
63 64 24 IE i65 (DI i63 d1) 5d/32 1.0 + 64.3

L2(q), q even, Degree (q + 1)

Deg q C Method N/D Time
9 8 3 AIR perm28 c4 1d/1 0.1 + 0.0

17 16 1 IRR ind i17 d2 c2 1 0.3
17 16 2 AIR perm68 c5 1d/1 0.1 + 0.1
17 16 4 BB p120 c8 Ri17 [24, 15] 2d/8 0.1 + 0.2
33 32 15 BB p496 c16 Ri33 [215, 31] 4d/16 3.2 + 2.1
65 64 1 IRR ind i65 d2 c2 s 1 1.0
65 64 3 BB i65 d6 c6 Ri65 [23, 63] 1d/16 4.4 + 2.4
65 64 3 BB i65 d6 c6 Ri65 [23, 63] 1d/16 4.9 + 2.5
65 64 6 BB i65 d12 c12 Ri65 [26, 63] 2d/16 5.9 + 4.5
65 64 18 BB p2016 c32 Ri65 [26, 63] 4d/32 8.4 + 46.4

189

L2(q), q ≡ 3 (mod 4), Degree (q − 1)/2

Deg q C Method N/D Time
3 7 2 AIR ind i21 d1 c5 1d/1 0.1 + 0.1
5 11 2 AIR perm55 c5 1d/1 0.0 + 0.1
9 19 2 AIR perm171 c15 2d/1 0.2 + 0.3

11 23 2 AIR ind i253 d1 c21 2d/1 0.4 + 0.5
13 27 2 AIR perm351 c21 1d/1 0.3 + 0.1
15 31 2 AIR perm930 c60 4d/1 0.6 + 1.0
21 43 2 BB p903 c33 Ri44 [21] 4d/43 0.7 + 0.3
23 47 2 BB i1081 d1 c45 Ri48 [232] 4d/47 6.5 + 1.5
29 59 2 BB p1771 c45 Ri60 [292] 5d/59 2.1 + 1.7
33 67 2 BB p2211 c51 Ri68 [332] 7d/67 5.9 + 2.2
35 71 2 BB i2485 d1 c69 Ri72 [352] 6d/71 5.5 + 6.5
39 79 2 BB p6162 c156 Ri80 [392] 6d/79 8.2 + 0.2
41 83 2 BB p3403 c63 Ri84 [412] 7d/83 6.9 + 3.8

L2(q), q ≡ 1 (mod 4), Degree (q + 1)/2

Deg q C Method N/D Time
7 13 2 AIR perm28 c4 1d/1 0.1 + 0.0
9 17 2 AIR perm36 c4 1d/1 0.1 + 0.1

13 25 1 IRR ind i36 d1 c2 1 0.3
15 29 2 AIR perm60 2d/1 0.1 + 0.9
19 37 2 AIR perm76 3d/1 0.2 + 0.2
21 41 2 AIR ind i210 d1 c10 4d/1 1.4 + 1.0
25 49 1 AIR ind i50 d1 c2 1d/1 0.4
27 53 2 AIR perm108 4d/1 0.6 + 1.5
30 61 2 BB p124 c4 Ri62 [1, 302] 5d/549 8.0 + 1.1
37 73 2 BB p148 c4 Ri74 [1, 362] 6d/73 2.0 + 0.5
41 81 1 IRR ind i81 d1 c2 1d 1.1
45 89 2 BB p180 c4 Ri90 [1, 442] 6d/178 8.2 + 2.4
49 97 2 BB p196 c4 Ri98 [1, 482] 6d/97 10.3 + 2.8

190

L2(q), q odd, Degree (q − 1)

Deg q C Method N/D Time
6 7 1 IRR perm7 1 0.1

10 11 1 IRR ind i11 d4 1 0.3
10 11 1 IRR ind i11 d4 1 0.3
12 13 3 AIR perm78 c9 1d/1 0.1 + 0.1
16 17 1 AIR perm136 c12 1d 0.1 + 0.1
16 17 3 AIR perm102 c8 2d/1 0.3 + 0.1
18 19 2 AIR perm57 c4 1d/1 0.1 + 0.1
18 19 2 AIR ind i171 d1 c17 1d/1 0.3 + 0.1
22 23 1 AIR ind i253 d1 c21 1d/1 0.5
22 23 2 AIR ind i253 d1 c21 Ri24 [22] 2d/92 0.1 + 0.6
24 25 6 BB p300 c18 Ri26 [12, 12] 2d/25 0.9 + 1.0
26 27 3 BB p351 c21 Ri28 [26] 1d/9 0.1 + 0.3
26 27 3 BB p702 c58 Ri28 [26] 1d/9 0.1 + 0.3
28 29 1 IRR perm406 c21 1d 0.2
28 29 2 AIR perm406 c21 3d/1 0.4 + 1.0
28 29 4 AIR perm203 c8 Ri30 [28] 2d/29 0.3 + 1.2
30 31 1 IRR ind i465 d1 c29 1d 1.2
30 31 2 BB p620 c33 Ri32 [30] 3d/217 0.6 + 0.8
30 31 4 BB p248 c9 Ri32 [30] 4d/3007 0.7 + 1.2
36 37 9 BB p666 c27 Ri38 [36] 3d/37 0.7 + 1.0
40 41 1 IRR ind i820 d1 c40 1d/1 1.6
40 41 3 BB p820 c30 Ri42 [40] 3d/41 1.4 + 0.3
40 41 6 BB p574 c16 Ri42 [40] 2d/41 0.9 + 1.8
42 43 5 BB p1806 c94 Ri44 [42] 2d/43 1.4 + 0.6
42 43 5 BB p903 c33 Ri44 [42] 4d/989 1.7 + 0.7
46 47 1 IRR ind i1081 d1 c45 1d 1.4
46 47 2 BB p1081 c36 Ri48 [46] 3d/658 0.6 + 1.8
46 47 2 BB p1081 c45 Ri48 [46] 3d/235 0.6 + 2.8
46 47 4 BB p1081 c36 Ri48 [46] 4d/1974 0.6 + 6.8
48 49 2 BB p1176 c36 Ri50 [24, 24] 2d/49 0.1 + 3.0
48 49 10 BB p980 c24 Ri50 [24, 24] 3d/49 0.6 + 1.1
52 53 1 IRR perm1378 c39 1d 1.5
52 53 3 BB p1378 c39 Ri54 [52] 2d/53 1.0 + 0.5
52 53 9 BB p1378 c39 Ri54 [52] 2d/53 1.0 + 1.6

191

L2(q), q odd, Degree (q − 1) [continued]

Deg q C Method N/D Time
58 59 1 AIR ind i1771 d1 c57 1d 3.4
58 59 2 BB i1771 d1 c57 Ri60 [58] 2d/59 1.3 + 4.0
58 59 4 BB p1711 c38 Ri60 [58] 3d/531 1.4 + 3.1
58 59 4 BB p1711 c60 Ri60 [58] 4d/1771 1.5 + 2.0
60 61 15 BB p1830 c45 BB Ri62 [60] 4d/61 3.4 + 8.4
66 67 8 BB i2211 d1 c65 Ri68 [66] 3d/67 1.7 + 8.7
66 67 8 BB p2211 c51 Ri68 [66] 8d/8d 1.7 + 8.7
70 71 1 IRR perm2485 c54 2d 1.5
70 71 1 IRR ind i2485 d1 c69 2d 6.7
70 71 1 IRR ind i2485 d1 c69 2d 7.3
70 71 2 BB p2485 c54 Ri72 [70] 3d/852 2.6 + 2.8
70 71 3 BB p2982 c61 Ri72 [70] 2d/71 2.6 + 2.7
70 71 3 BB p2982 c61 Ri72 [70] 4d/7881 2.6 + 3.2
70 71 6 BB p2485 c54 Ri72 [70] 3d/852 2.5 + 6.2
72 73 18 BB p2628 c54 Ri74 [72] 4d/73 4.2 + 10.4
78 79 4 BB p4108 c81 Ri80 [78] 5d/6d 6.8 + 1.2
78 79 8 BB p3081 c60 Ri80 [78] 4d/2370 1.6 + 9.6
80 81 20 BB p3240 c60 Ri82 [40, 40] 5d/81 10.4 + 11.7
82 83 1 IRR ind i3403 d1 c81 2d/1 9.2
82 83 1 IRR perm3403 c63 2d/1 4.9
82 83 3 BB i3403 d1 c81 Ri84 [82] 4d/16351 3.4 + 5.2
82 83 3 BB i3403 d1 c81 Ri84 [82] 2d/83 3.4 + 9.6
82 83 6 BB i3403 d1 c81 Ri84 [82] 3d/83 3.4 + 11.6
82 83 6 BB p3403 c63 Ri84 [82] 8d/7d 3.4 + 9.0
88 89 1 IRR perm3916 c66 1d 2.5
88 89 2 BB p3916 c66 Ri90 [88] 2d/89 5.5 + 1.8
88 89 3 BB p3916 c66 Ri90 [88] 2d/89 5.5 + 2.2
88 89 4 BB p3916 c66 Ri90 [88] 2d/89 5.5 + 2.8
88 89 12 BB p3916 c66 Ri90 [88] 10d/8d 5.5 + 17.6
96 97 3 BB p4656 c72 Ri98 [96] 2d/97 4.3 + 9.0
96 97 21 BB p4656 c72 Ri98 [96] 5d/97 4.4 + 38.8

192

L2(q), q odd, Degree (q + 1)

Deg q C Method N/D Time
6 7 1 IRR ind i7 d2 c2 1 0.1

12 11 2 AIR ind i11 d4 c4 1 0.1 + 0.0
14 13 1 IRR ind i14 d2 c4 1 0.1
18 17 1 IRR ind i36 d1 c4 1 0.4
18 17 3 AIR ind i72 d1 c8 1d/1 0.7 + 0.3
20 19 1 IRR ind i20 d2 c4 1d 0.3
20 19 3 BB p171 p15 Ri20 [13, 9] 2d/19 0.1 + 0.3
24 23 5 BB p253 c16 Ri24 [25, 22] 2d/23 0.2 + 2.2
26 25 1 IRR ind i26 d2 c4 1 0.7
26 25 1 IRR ind i26 d2 c4 1 0.7
26 25 1 IRR ind i52 d2 c4 1 0.4
26 25 2 BB p312 c24 Ri26 [22, 12, 12] 1d/5 1.1 + 1.3
28 27 6 BB p351 c21 Ri28 [26, 26] 2d/27 0.3 + 0.4
30 29 3 BB i30 d6 Ri30 [23, 28] 2d/29 0.3 + 0.3
30 29 3 BB p420 c28 Ri30 [23, 28] 2d/29 0.3 + 0.4
32 31 1 IRR ind i32 d2 c4 1d 0.8
32 31 2 BB p160 c10 Ri32 [22, 30] 2d/31 1.2 + 0.9
32 31 4 BB p465 c24 Ri32 [22, 30] 2d/31 1.4 + 1.2
38 37 3 BB i38 d6 c12 Ri38 [23, 36] 1d/37 0.7 + 2.0
38 37 3 BB i38 d6 c12 Ri38 [23, 36] 2d/37 0.8 + 1.9
42 41 1 IRR ind i84 d1 c4 1d/1 1.0
42 41 2 BB p420 c10 Ri42 [22, 40] 2d/41 1.8 + 0.2
42 41 2 BB p210 c10 Ri42 [22, 40] 2d/123 1.4 + 0.2
42 41 4 BB i84 d4 c16 Ri42 [24, 40] 3d/205 0.5 + 4.3
44 43 1 IRR ind i44 d2 c4 1d 0.8
44 43 3 BB p308 c14 Ri44 [26, 42] 2d/43 2.0 + 0.3
44 43 6 BB p903 c33 Ri44 [26, 42] 3d/43 2.1 + 0.8

193

L2(q), q odd, Degree (q + 1) [continued]

Deg q C Method N/D Time
48 47 11 BB p1081 c36 Ri48 [211, 46] 4d/47 2.4 + 3.2
50 49 1 IRR ind i50 d2 c4 3/1 0.4
50 49 2 AIR ind i175 d1 c7 2d/4 1.0 + 4.4
50 49 2 BB i100 d2 c8 Ri50 [22, 24, 24] 2d/49 1.0 + 1.4
50 49 4 BB i100 d4 c16 Ri50 [24, 24, 24] 3d/98 1.1 + 5.8
54 53 1 IRR perm54 s 1d 0.1
54 53 6 BB p702 c26 Ri54 [26, 52] 4d/53 3.0 + 3.9
54 53 6 BB i54 d12 c24 Ri108 [26, 52] 4d/53 4.0 + 5.9
60 59 14 BB p1711 c38 Ri60 [214, 58] 4d/59 3.0 + 7.5
62 61 1 IRR ind i62 d2 c4 1d 1.8
62 61 1 IRR ind i62 d2 c4 1d 1.9
62 61 2 BB p310 c10 Ri62 [22, 60] 2d/61 3.3 + 2.7
62 61 2 BB i310 d4 c8 Ri62 [22, 60] 3d/61 3.3 + 2.8
62 61 4 BB p930 c30 Ri62 [22, 60] 3d/61 3.5 + 6.1
62 61 4 BB i62 d8 c16 Ri62 [22, 60] 3d/549 4.6 + 2.7
68 67 1 IRR ind i68 d2 c4 2d/1 1.4
68 67 5 BB p748 c22 Ri68 [25, 66] 3d/67 1.9 + 2.2
68 67 10 BB i68 d20 c40 Ri68 [210, 66] 4d/67 2.3 + 6.4
72 71 2 BB i72 d4 c8 Ri72 [22, 70] 2d/71 2.7 + 2.2
72 71 3 BB p504 c14 Ri72 [23, 70] 2d/71 2.7 + 2.2
72 71 12 BB p2485 c54 Ri72 [212, 70] 4d/71 4.0 + 10.7
74 73 2 BB p888 c24 Ri74 [22, 72] 3d/146 4.4 + 4.3
74 73 3 BB p666 c18 Ri74 [23, 72] 2d/73 4.5 + 5.0
74 73 3 BB p888 c36 Ri74 [23, 72] 3d/438 4.4 + 4.6
74 73 6 BB p2664 c72 Ri74 [26, 72] 4d/438 4.5 + 4.1

194

L2(q), q odd, Degree (q + 1) [continued]

Deg q C Method N/D Time
80 79 1 IRR ind i80 d2 c4 2d/1 2.8
80 79 6 BB p1040 c26 Ri80 [212, 78] 3d/79 1.7 + 3.7
80 79 12 BB p3081 c60 Ri80 [212, 78] 4d/79 3.2 + 8.6
82 81 1 IRR ind i82 d2 c4 1d 2.6
82 81 2 BB p369 c9 Ri82 [22, 40, 40] 1d/27 7.6 + 6.1
82 81 2 BB p656 c16 Ri82 [22, 40, 40] 1d/27 8.0 + 5.1
82 81 2 BB i82 d4 c8 Ri82 [22, 40, 40] 2d/27 6.6 + 4.1
82 81 4 BB p1640 c40 Ri82 [24, 40, 40] 2d/27 8.6 + 12.0
82 81 8 BB p3280 c80 Ri82 [28, 40, 40] 3d/27 10.6 + 13.6
84 83 20 BB p3403 c63 Ri84 [220, 82] (p. 140) 6d/83 11.3 + 38.6
90 89 1 IRR perm360 c8 1d 1.5
90 89 5 BB i90 d10 c20 Ri90 [210, 88] 4d/5963 5.9 + 5.7
90 89 5 BB p990 c22 Ri90 [210, 88] 3d/89 6.1 + 5.5
90 89 10 BB i90 d20 c40 Ri90 [210, 88] 9d/7d 7.0 + 13.5
98 97 1 IRR ind i98 d2 c4 2d 4.4
98 97 1 IRR ind i98 d2 c4 2d 4.4
98 97 1 IRR ind i98 d2 c4 2d 4.4
98 97 2 BB p784 c16 Ri98 [22, 96] 2d/194 9.3 + 3.4
98 97 2 BB p1176 c24 Ri98 [22, 96] 2d/582 9.3 + 5.2
98 97 4 BB p1568 c32 Ri98 [24, 96] 4d/3007 9.3 + 13.1
98 97 4 BB p2352 c48 Ri98 [24, 96] 4d/41807 9.3 + 11.5
98 97 8 BB p4704 c96 Ri98 [24, 96] 8d/8d 10.2 + 19.4

195

10.3. Representations of 2.L2(q)

2.L2(q), q ≡ 1 (mod 4), Degree (q − 1)/2

Deg q F S Method N/D Time
6 13 2 2 AIR ind i28 d12 c112 1d/1 0.9 + 0.6
8 17 2 2 AIR ind i272 d2 c184 1d/1 2.5 + 1.3

12 25 1 2 AIR ind i65 d8 c104 1d/1 3.6 + 0.1
12 25 1 2 AIR ind i65 d8 c104 1d/1 2.9 + 0.1
14 29 2 2 BB i812 d2 c232 c56 10d/8d 20 + 7.9
18 37 2 2 IE i38 (BB p148 Ri2 [182]) 6d/333 4.2 + 0.5
20 41 2 2 BB i1640 d2 c472

Ri574 [42, 42, 12] 6d/6d 0.2 + 34
24 49 1 2 AIR ind i100 d24 c348 1d/1 20.7 + 1.9
24 49 1 2 AIR ind i100 d24 c348 1d/1 20.8 + 1.8
26 53 2 2 BB i2756 d2 c424 Ri108 [13, 13]2 6d/689 14.5 + 45
30 61 2 2 IE i62 (BB p248 c24 Ri4 [302]) 8d/5490 15 + 1.5
36 73 2 2 IE i74 (BB i4 d72 c32 Ri72 [362]) 10d/93440 16.7 + 1.9
40 81 1 2 AIR ind i738 d8 c212 1d/1 33.5 + 0.6
40 81 1 2 AIR ind i738 d8 c212 1d/1 33.2 + 0.6
44 89 2 2 IE i90 (BB i4 d88 c32 Ri4 [442]) 11d/7d 21.7 + 5.4
48 97 2 2 [Homogeneous split too hard] ? ?

2.L2(q), q ≡ 3 (mod 4), Degree (q + 1)/2

Deg q F S Method N/D Time
4 7 2 1 AIR perm16 1d/1 0.1 + 0.0
6 11 2 1 AIR perm24 1d/1 0.1 + 0.1

10 19 2 1 AIR perm40 1d/1 0.4 + 0.2
12 23 2 1 AIR perm48 2d/1 0.3 + 0.2
14 27 2 1 AIR perm56 1d/1 0.3 + 0.2
16 31 2 1 AIR perm64 3d/2 4.8 + 0.3
22 43 2 1 AIR ind i132 d1 c6 4d/1 2.9 + 0.6
24 47 2 1 BB p4512 c200 Ri48 [1, 232] 4d/47 2.0 + 0.6
30 59 2 1 BB p120 c4 Ri60 [1, 292] 4d/59 22.0 + 1.0
34 67 2 1 BB p136 c16 Ri68 [1, 332] 6d/67 12 + 6.7
36 71 2 1 BB p144 c32 Ri72 [1, 352] (p. 141) 6d/71 10.7 + 0.6
40 79 2 1 BB p160 c32 Ri80 [1, 392] 6d/79 10.7 + 11
42 83 2 1 BB p168 c24 Ri84 [1, 412] 7d/83 11.7 + 14

196

2.L2(q), q odd, Degree (q − 1)

Deg q F S Method N/D Time
6 7 2 2 AIR perm16 1d/1 0.1 + 0.0

10 11 1 2 AIR ind i11 d8 c16 1d/1 0.4 + 0.2
10 11 2 2 AIR ind i11 d8 c16 1d/1 0.4 + 0.2
12 13 3 2 BB p312 c48 Ri14 [122] 3d/13 0.8 + 0.5
16 17 1 2 AIR ind i272 d1 c32 1d/1 0.7 + 0.3
16 17 3 2 BB i272 d1 c32 Ri18 [162] 3d/17 10.9 + 1.1
18 19 1 2 AIR ind i20 d18 c40 1d/1 0.9 + 0.1
18 19 4 2 BB i20 d18 c40 Ri18 [18] 3d/418 1.2 + 1.3
22 23 2 2 BB i24 d22 c48 Ri24 [22] 2d/138 0.6 + 1.2
22 23 4 2 BB i24 d22 c48 Ri24 [22] 2d/69 0.6 + 1.6
24 25 6 2 BB i65 d8 c40 Ri26 [12, 12]2 6d/37100 4.8 + 2.6
26 27 1 2 AIR ind i28 d26 c56 3d/1 1.3 + 2.6
26 27 6 2 BB i28 d26 c56 1d/9 0.2 + 2.0
28 29 1 2 AIR ind i812 d1 c56 2d/3 4.5 + 0.9
28 29 2 2 BB i812 d1 c56

Ri203 [24, 2
2
4, 42, 6

3
2] 2d/30 2.5 + 5.5

28 29 4 2 BB i24 d22 c48 Ri30 [282] 5d/5162 2.1 + 7.9
30 31 8 2 BB i32 d30 c64 Ri32 [30] 4d/3007 2.7 + 8.8
36 37 9 2 BB p2664 c144 Ri38 [362] 5d/6d 10.1 + 25.8
40 41 1 2 BB i1640 d1 c80 Ri42 [402] 4d/7585 6.0 + 8.5
40 41 3 2 BB i1640 d1 c80 Ri42 [402] 9d/8d 10.4 + 16
40 41 6 2 BB i1640 d1 c80 Ri42 [402] 4d/1517 12 + 20
42 43 1 2 BB p3784 c184 Ri44 [42] 2d/129 12.4 + 0.2
42 43 10 2 BB p3784 c184 Ri44 [42] 5d/15179 29.1 + 11.3
46 47 4 2 BB p4512 c200 Ri48 [46] 3d/669 6.7 + 9.5
46 47 8 2 BB p4512 c200 Ri48 [46] 4d/4559 6.7 + 18.5
48 49 2 2 BB i2352 d1 c96 Ri50 [24, 24]2 3d/49 29 + 12.5
48 49 10 2 BB i2352 d1 c96 Ri50 [24, 24]2 3d/49 29 + 36.7
52 53 1 2 BB i2756 d1 c104 Ri54 [522] 3d/689 4.8 + 20
52 53 3 2 BB i2756 d1 c104 Ri108 [522] 5d/23797 5.1 + 22
52 53 9 2 BB i2756 d1 c104 Ri54 [522] 4d/25493 5.3 + 25

197

2.L2(q), q odd, Degree (q − 1) [continued]

Deg q F S Method N/D Time

58 59 1 2 BB p7080 c248 Ri60 [58] 3d/1003 13.7 + 17.9
58 59 2 2 BB p7080 c248 Ri60 [58] 3d/236 13.7 + 21.8
58 59 4 2 BB p7080 c248 Ri60 [58] 3d/295 9.9 + 25.4
58 59 8 2 BB p7080 c248 Ri60 [58] 5d/10561 13.2 + 31.0
60 61 15 2 BB i3660 d1 c120 Ri62 [60] 36d/36d 15 + 191
66 67 1 2 BB i68 c66 c136 Ri68 [68] 3d/335 0.9 + 6
66 67 16 2 BB i68 c66 c136 Ri68 [68] 8d/8d 0.9 + 174
70 71 2 2 BB i72 d70 c144 Ri72 [70] 4d/15549 20 + 9.4
70 71 4 2 BB p10224 c144 Ri72 [70] 3d/355 20 + 24
70 71 12 2 BB p10224 c144 Ri72 [70] 5d/98477 20 + 128
72 73 18 2 BB i5256 d1 c144 Ri296 [72] 578d/578d 0.9 + 3565
78 79 4 2 BB i80 d78 c160 Ri80 [78] 8d/8d 20 + 35
78 79 16 2 BB i80 d78 c160 Ri80 [78] 7d/7d 20 + 314
80 81 20 2 GE i82 [40, 40]2 71d/143d 51 + 4047
82 83 1 2 BB i84 d82 c168 Ri84 [82] 3d/83 2.0 + 19.5
82 83 2 2 BB i84 d82 c168 Ri84 [82] 3d/166 2.0 + 24.2
82 83 6 2 BB i84 d82 c168 Ri84 [82] 5d/20833 2.0 + 69
82 83 12 2 BB i84 d82 c168 Ri84 [82] 7d/355489 2.0 + 186
88 89 1 2 BB i7832 d1 c176 Ri90 [882] 6d/6d 22 + 2.6
88 89 4 2 BB i7832 d1 c176 Ri90 [882] 5d/5874 22 + 29.0
88 89 12 2 BB i7832 d1 c176 Ri90 [882] 29d/29d 22 + 305
96 97 3 2 BB i9312 d1 c288 Ri1568 [96] 281d/281d 9 + 881
96 97 21 2 [Homogeneous split too hard] ? ?

198

2.L2(q), q odd, Degree (q + 1)

Deg q F S Method N/D Time
8 7 1 2 AIR ind i8 d2 c2 1d/1 0.1 + 0.1

12 11 2 2 AIR ind i12 d4 c8 1d/1 0.2 + 0.6
14 13 1 2 AIR ind i28 d1 c4 1d/1 0.1 + 0.2
14 13 2 2 DI i14 d1 s 1/1 0.1
18 17 4 2 DI i18 d1 s 1/1 0.1
20 19 1 2 AIR ind i20 d2 c4 s 1/1 0.1
20 19 3 2 DI i19 d1 s 1/1 0.1
24 23 5 2 DI i24 d1 s 1/1 0.1
26 25 2 2 DI i26 d1 s 1/1 0.1
26 25 4 2 DI i26 d1 s 1/1 0.1
28 27 5 2 DI i28 d1 s 1/1 0.1
30 29 6 2 DI i30 d1 s 1/1 0.1
32 31 1 2 AIR ind i32 d2 c20 s 1d/1 3.1 + 0.1
32 31 2 2 DI i32 d1 s 1d/1 0.1
32 31 4 2 DI i32 d1 s 1d/1 0.1
38 37 1 2 AIR ind i76 d1 c4 2d/2 1.4 + 2.5
38 37 2 2 DI i38 d1 s 1/1 0.1
38 37 6 2 DI i38 d1 s 1/1 0.1
42 41 2 2 DI i42 d1 s 1/1 0.1
42 41 8 2 DI i42 d1 s 1/1 0.1
44 43 1 2 AIR ind i44 d2 c4 s 1/1 1.8 + 0.2
44 43 3 2 DI i44 d1 s 1/1 0.1
44 43 6 2 DI i44 d1 s 1/1 0.1
48 47 11 2 DI i48 d1 s 1 0.1
50 49 4 2 DI i50 d1 s 1 0.1
50 49 8 2 DI i50 d1 s 1 0.1
54 53 1 2 DI i54 d1 s 1/1 0.1
54 53 12 2 DI i54 d1 s 1/1 0.1

199

2.L2(q), q odd, Degree (q + 1) [continued]

Deg q F S Method N/D Time
60 59 14 2 DI i60 d1 s 1/1 0. 1
62 61 1 2 AIR ind i62 d2 c4 s 1/1 7.0 + 0.6
62 61 2 2 DI i62 s 1/1 0.3
62 61 4 2 DI i62 s 1/1 0.3
62 61 8 2 DI i62 s 1/1 0.3
68 67 1 2 AIR ind i68 d2 c4 s 1/1 5.0 + 0.6
68 67 5 2 DI i68 s 1/1 0.1
68 67 10 2 DI i68 s 1/1 0.1
72 71 2 2 DI i72 d1 s 1/1 0.4
72 71 3 2 DI i72 d1 s 1/1 0.4
72 71 12 2 DI i72 d1 s 1/1 0.4
74 73 2 2 DI i74 d1 s 1/1 0.7
74 73 4 2 DI i74 d1 s 1/1 0.7
74 73 12 2 DI i74 d1 s 1/1 0.7
80 79 6 2 DI i80 d1 s 1/1 0.6
80 79 12 2 DI i80 d1 s 1/1 0.6
82 81 4 2 DI i82 d1 s 1/1 1.2
82 81 16 2 DI i82 d1 s 1/1 2.0
84 83 20 2 DI i84 d1 s 1/1 0.8
90 89 2 2 DI i90 d1 s 1/1 1.5
90 89 20 2 DI i90 d1 s 1/1 1.5
98 97 2 2 DI i98 d1 s 1/1 5.6
98 97 20 2 DI i98 d1 s 1/1 5.6

200

Chapter 11

Representations of Other Kinds of Groups

11.1. Almost Simple Groups

We give a sample of some irreducible representations of groups which are almost simple.
The larger cases are easily handled by induction or extension (sometimes irreducible and
sometimes general) of suitable representations of quasi-simple groups which are already
constructed. Sometimes when induction is used, direct induction [DI] would not yield a
result over a minimal field. So to write the result over a minimal field, the expansion to
Q of the representation over the subgroup is first constructed, then this is induced [IND]
and the homogeneous result is split by the rational Meataxe; an irreducible component is
then passed to BBRationalModuleSetup to set up a black-box representation B and
the final representation is constructed from B by the hybrid algorithm.

Deg Group C S Method N/D Time
6 U4(2) : 2 1 1 IRR ind i2 d6 s 1/1 0.1

12 U3(4) : 4 2 1 IE i1600 (IRR perm13) 1d/1 0.1 + 0.1
12 2.J2.2 1 2 IE i2016 (DI i3 d4) 1d/1 4.6 + 3.0
22 HS : 2 1 1 IRR ind i2 d22 c7 1d/1 1.0
22 U6(2) : S3 1 1 IE i672 (ei 2, ind i2 d22) 1d/1 5.7 + 0.5
28 2.S6(3) : 2 1 1 IRR ind i2 d28 (p2240 c96) 1d/1 21.0
28 McL : 2 1 1 IRR ind i2 d22 c3 1d 1.1
28 J2 : 2 1 1 IRR ind i2 d28 (p315 c27) 1d/1 2.9
36 3.J3 : 2 2 1 IND i2 [3.J3]; split; [-] +0.5

BB Ri34884 [62, 30] 2d/32 53 + 0.6
65 G2(4) : 2 1 1 IRR ind i2 d65 (p 416 c26) s 1d/1 1.6
78 Fi22 : 2 1 1 DI i2 [Fi22] 2d/1 +1.9

102 He : 2 1 1 IND i2 [He : Q]; split 2d/1 +2.5
124 Sz(32) : 5 2 1 IE i1025 DI i31 d4 1d/8 10.4
143 Suz : 2 1 1 IE i2 [Suz] 2d/1 +5.3
170 J3 : 2 1 1 GE J3 [170] +2.9

Ri6156 [17, 17, 682] 3d/120 1.0 + 1.6
231 HS : 2 1 1 IRR ind i2 d231 c11 2d/1 30
240 12.M22.2 4 1 IND i2 [12.M22]; split; [-] +322

BB Ri44 [2402] 2d/1344 75 + 68
266 HN : 2 1 1 GE HN [266] 2d/(26.5) 5.8
429 Fi22 : 2 1 1 IE Fi22 4d/20 +24
684 3.O′N : 2 2 1 GE 3.O′N [6842] (p. 111) 4d/3038 +359

201

11.2. Maximal Subgroups of the Monster

Out of interest, we computed a minimal-degree faithful ordinary representation of each
maximal subgroup of the Monster sporadic simple group. Several of these groups have
long composition length and interesting composition factors. We omitted the cases where
the group is too large to compute its character table within a day or the minimal degree
for a faithful representation is greater than 10000.

In the following table, the number N indicates the N -th maximal subgroup according
to the numbering of [WWT+], while the other fields are as for the other tables (since all
the representations have Schur index 1, we omit the ‘S’ field).

N Group Deg C Method N/D Time
3 3.Fi′24 783 2 GE[¬χ] Fi23 [1, 782] 4d/5d +2.0h

13 32 : 2×O+
8 (3).S4 2400 1 ρ8 ⊗ ρ300 (RR p3369) 3d/1 63

16 51+6 : 2J2 : 4 500 1 IE i10080
(GE i25 [200, 300]) 3d/20 332

17 (7 : 3× He) : 2 306 1 GE i652800 [54, 252] 2d/49 35
18 (A5 × A12) : 2 44 1 ρ4 ⊗ ρ8 s 1d 2.8
19 53+3.(2× L3(5)) 3100 1 DI i31 d100 (IE i10, i3, i2) s 2d/1 1070
20 (A6 × A6 × A6).(2× S4) 27 1 DI i3 d9 (IE i2025) s 1/1 65
21 (A5 × U3(8):31):2 224 2 ρ7 ⊗ ρ56 (ρ56: IE 513) 1d/24 50
22 52+2+4 : (S3 ×GL2(5)) 600 1 IE i10 (DI i150 d4) s 1/1 118
23 (L3(2)× S4(4) : 2).2 108 2 IE i425 (DI i18 d6) 1d/28 40
24 71+4:(3× 2S7) 294 1 IE i120 (DI i49 d6) 1/7 87
25 (52 : [24]× U3(5)).S3 480 2 DI i24 d20 (IE i175) s 2d/6 125
26 (L2(11)×M12) : 2 110 2 DI i2 d55 (IE i144) 2d/33 20
27 (A7 × (A5 × A5) : 22) : 2 48 1 IRR perm140 s 1/1 12
28 54 : (3× 2L2(25)) : 2b 624 1 DI i156 d4 (RR p5) s 1/1 10
29 72+1+2 : GL2(7) 336 1 IE i3 (i2, i7) s 1/1 14
30 M11 × A6.2

2 90 1 IRR perm110 c6 s 1/1 1.4
31 (S5 × S5 × S5) : S3 12 1 IE i216 (i4, i4, i5, i2) 1/1 0.4
32 (L2(11)× L2(11)) : 4 20 1 IRR perm110 c11 1/1 0.3
33 132 : 2L2(13).4 168 1 IRR perm338 c16 s 1/1 1.6
34 (72 : (3× 2A4)× L2(7)).2 144 2 DI i16 d9 (AIRp392 c60) 1d/1 29
35 (13 : 6× L3(3)).2 144 1 IRR perm338 c21 1d/1 1.8
36 131+2 : (3× 4S4) 156 1 IRR perm2197 c11 2d/1 18
37 L2(71) 35 2 BB i2485 d1 c69 Ri72 [352] 6d/71 12
38 L2(59) 29 2 BB p1771 c45 Ri60 [292] 5d/59 3.8
39 112 : (5× 2A5) 120 1 IRR perm121 c16 s 1/1 0.4
40 L2(29):2 28 1 IRR ind i2 d28 c7 1d/1 0.5
41 72 : SL2(7):2 48 1 IRR perm49 c4 s 1/1 0.1
42 L2(19):2 18 1 IRR ind i2 d18 c6 1d/1 0.3
43 41:40 40 1 IRR perm41 c2 s 1/1 0.1

202

11.3. Representations of some Perfect Groups

In Table 1 of [DD10], some constructed representations of perfect groups are listed. We
have computed the same representations by our algorithms, which are described by the
following table. See the reference for details on the groups.

Deg |G| C S Method N/D Time
16 1920 2 1 AIR perm240 c51 1d/1 0.8
24 7680 2 1 AIR perm160 c14 1d/1 2.0
30 15000 4 1 BB p600 c56

Ri6 [101+1+1]4 2d/25 3.1
32 23040 4 1 BB RR d5⊗ d32 c20

Ri6 [84, 242] 2d/20 4.3
56 115248 6 1 BB p1176 c56 Ri49

[3, 4, 6, 7, 7, 8, 8, 12]6 2d/336 9.9
64 129024 2 1 AIR ind i72 d2 c4 1d/1 3.5
48 645120 1 1 ρ6 ⊗ ρ8 1/1 4.4

203

Bibliography

[ABH10] Martin Albrecht, Gregory Bard, and William Hart. Algorithm 898: Efficient
multiplication of dense matrices over GF(2). ACM Trans. Math. Softw., 37(1),
2010.

[ABM99] John Abbott, Manuel Bronstein, and Thom Mulders. Fast deterministic com-
putation of determinants of dense matrices. In Proceedings of the 1999 In-
ternational Symposium on Symbolic and Algebraic Computation (Vancouver,
BC), pages 197–204 (electronic), New York, 1999. ACM.

[AHU75] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The design and
analysis of computer algorithms. Addison-Wesley Publishing Co., Reading,
Mass.-London-Amsterdam, 1975. Second printing, Addison-Wesley Series in
Computer Science and Information Processing.

[Bau91] Ulrich Baum. Existence and efficient construction of fast Fourier transforms
on supersolvable groups. Comput. Complexity, 1(3):235–256, 1991.

[BC94] Ulrich Baum and Michael Clausen. Computing irreducible representations of
supersolvable groups. Math. Comp., 63(207):351–359, 1994.

[BC03] John N. Bray and Robert T. Curtis. Monomial modular representations
and symmetric generation of the harada-norton group. Journal of Algebra,
268(2):723 – 743, 2003.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra
system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
Computational algebra and number theory (London, 1993).

[BEO01] Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. The groups of order
at most 2000. Electron. Res. Announc. Amer. Math. Soc., 7:1–4 (electronic),
2001.

[BF91] László Babai and Katalin Friedl. Approximate representation theory of finite
groups. In 32nd Annual Symposium on Foundations of Computer Science (San
Juan, PR, 1991), pages 733–742. IEEE Comput. Soc. Press, Los Alamitos,
CA, 1991.

[Bli05] H. F. Blichfeldt. The finite, discontinuous primitive groups of collineations in
four variables. Math. Ann., 60(2):204–231, 1905.

[Bli07] H. F. Blichfeldt. The finite, discontinuous primitive groups of collineations in
three variables. Math. Ann., 63(4):552–572, 1907.

[BN70] C. Brott and J. Neubüser. A programme for the calculation of characters and
representations of finite groups. In J. Leech, editor, Computational problems
in abstract algebra. Oxford - Pergamon, 1970.

205

[Bög93] S. Böge. Realisierung (p - 1)-dimensionaler Darstellungen von PSL(2, p).
Arch. Math., 60:121–127, 1993.

[BR90] László Babai and Lajos Rónyai. Computing irreducible representations of
finite groups. Math. Comp., 55(192):705–722, 1990.

[Bra67] Richard Brauer. Über endliche lineare Gruppen von Primzahlgrad. Math.
Ann., 169:73–96, 1967.

[Brü98] Herbert Brückner. Algorithmen für endliche auflösbare Gruppen und Anwen-
dung. PhD thesis, Zugl.: Aachen, Techn. Hochsch., Diss., 1998, Aachen, 1998.

[BS92] Dave Bayer and Mike Stillman. Computation of Hilbert functions. Journal
of Symbolic Computation, 14(1):31 – 50, 1992.

[BW93] Thomas Becker and Volker Weispfenning. Gröbner Bases. Graduate Texts in
Mathematics. Springer, New York–Berlin–Heidelberg, 1993.

[CC82] T.W.J. Chou and G.E. Collins. Algorithms for the solution of systems of
linear diophantine equations. SIAM J. Computing, 11(4):687–708, 1982.

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson.
Atlas of finite groups. Oxford University Press, Eynsham, 1985. Maximal
subgroups and ordinary characters for simple groups, With computational
assistance from J. G. Thackray.

[CH04] J. J. Cannon and D.F. Holt. Computing maximal subgroups of finite groups.
J. Symbolic Comp., 37(5):589–609, 2004.

[CHSS05] John J. Cannon, Derek F. Holt, Michael Slattery, and Allan K. Steel. Com-
puting subgroups of bounded index in a finite group. J. Symbolic Comput.,
40(2):1013–1022, 2005.

[CIW97] Arjeh M. Cohen, Gábor Ivanyos, and David B. Wales. Finding the radical of
an algebra of linear transformations. J. Pure Appl. Algebra, 117/118:177–193,
1997. Algorithms for algebra (Eindhoven, 1996).

[CLG97] Frank Celler and Charles R. Leedham-Green. Calculating the order of an in-
vertible matrix. In Larry Finkelstein and William M. Kantor, editors, Groups
and Computation II, volume 28 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 55–60. AMS, 1997.

[CLGM+95] Frank Celler, Charles R. Leedham-Green, Scott H. Murray, Alice C. Niemeyer,
and E. A. O’Brien. Generating random elements of a finite group. Comm.
Algebra, 23(13):4931–4948, 1995.

[CLO96] David Cox, John Little, and Donal O’Shea. Ideals, Varieties and Algorithms.
Undergraduate Texts in Mathematics. Springer, New York–Berlin–Heidelberg,
2nd edition, 1996.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory, vol-
ume 138 of Graduate Texts in Mathematics. Springer, Berlin–Heidelberg–New
York, 1993.

[CP96] John Cannon and Catherine Playoust. MAGMA: a new computer algebra
system. Euromath Bull., 2(1):113–144, 1996.

206

[CR81] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol.
I. John Wiley & Sons Inc., New York, 1981. With applications to finite groups
and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication.

[CR87] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol.
II. Pure and Applied Mathematics (New York). John Wiley & Sons Inc.,
New York, 1987. With applications to finite groups and orders, A Wiley-
Interscience Publication.

[DA03] Vahid Dabbaghian-Abdoly. An algorithm to construct representations of finite
groups. PhD thesis, Ottawa, Ont., Canada, Canada, 2003. AAINQ83515.

[DA05] Vahid Dabbaghian-Abdoly. An algorithm for constructing representations of
finite groups. J. Symbolic Comput., 39(6):671–688, 2005.

[Dab08] Vahid Dabbaghian. Repsn: A gap4 package for constructing representations of
finite groups. URL: http://www.gap-system.org/Packages/repsn.html, 2008.

[DD10] V. Dabbaghian and J. D. Dixon. Computing matrix representations. Math.
Comp., 79(271):1801–1810, 2010.

[DER84] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices.
Monographs on Numerical Analysis. Oxford University Press, 1984.

[DG93] J. D. Dixon and H. Gollan. Computing primitive linear groups of small order.
1993.

[Dix70] John D. Dixon. Computing irreducible representations of groups. Math.
Comp., 24:707–712, 1970.

[Dix82] John D. Dixon. Exact solution of linear equations using p-adic expansions.
Numer. Math., 40(1):137–141, 1982.

[Dix93] John D. Dixon. Constructing representations of finite groups. In Groups and
computation (New Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., pages 105–112. Amer. Math. Soc., Providence,
RI, 1993.

[DPW05] Jean-Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient com-
putation of the characteristic polynomial. In Proceedings of the 2005 interna-
tional symposium on Symbolic and algebraic computation, ISSAC ’05, pages
140–147, New York, NY, USA, 2005. ACM.

[DZ98] J. D. Dixon and A. E. Zalesskii. Finite primitive linear groups of prime degree.
J. London Math. Soc. (2), 57(1):126–134, 1998.

[DZ08] J. D. Dixon and A. E. Zalesskii. Corrigendum: “Finite primitive linear groups
of prime degree” [J. London Math. Soc. (2) 57 (1998), no. 1, 126–134]. J.
Lond. Math. Soc. (2), 77(3):808–812, 2008.

[EHV92] D. Eisenbud, C. Huneke, and W. Vasconcelas. Direct methods for primary
decomposition. Inventiones Mathematicae., 110:207–235, 1992.

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139 (1-3):61–88, 1999.

[FB67] S. Flodmark and E. Blokker. A computer program for calculation of irre-
ducible representations of finite groups. International Journal of Quantum

207

Chemistry, pages 703–11, 1967.

[Fie09] Claus Fieker. Minimizing representations over number fields. II. Computa-
tions in the Brauer group. J. Algebra, 322(3):752–765, 2009.

[Fie11] Claus Fieker. Private communication. 2011.

[GG90] H. Gollan and J. Grabmeier. Algorithms in Representation Theory and their
Realization in the ComputerAlgebra System Scratchpad. Bayreuther Mathem.
Schriften, Heft 33:1–23, 1990. ISSN 0172-1062.

[Gra06] Markus Grassl. Constructing matrix representations of finite groups in char-
acteristic zero. In Proceedings 10th Rhine Workshop on Computer Algebra
(RWCA06), pages 143–148, Basel, March 2006.

[GTZ88] Patrizia M. Gianni, Barry M. Trager, and Gail Zacharias. Grbner bases and
primary decomposition of polynomial ideals. J. Symb. Comput., pages 149–
167, 1988.

[HHR93] George Havas, Derek F. Holt, and Sarah Rees. Recognizing badly presented
z-modules. Linear Algebra and its Applications, 192:137–164, 1993.

[HM01] Gerhard Hiss and Gunter Malle. Low-dimensional representations of quasi-
simple groups. LMS J. Comput. Math., 4:22–63 (electronic), 2001.

[HM02] Gerhard Hiss and Gunter Malle. Corrigenda: “Low-dimensional represen-
tations of quasi-simple groups” [LMS J. Comput. Math. 4 (2001), 22–63;
MR1835851 (2002b:20015)]. LMS J. Comput. Math., 5:95–126 (electronic),
2002.

[Hol98] Derek F. Holt. The Meataxe as a tool in computational group theory. In
The atlas of finite groups: ten years on (Birmingham, 1995), volume 249 of
London Math. Soc. Lecture Note Ser., pages 74–81. Cambridge Univ. Press,
Cambridge, 1998.

[HP89] D.F. Holt and W. Plesken. Perfect Groups. Oxford University Press, 1989.

[HR94] Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral.
Math. Soc. Ser. A, 57(1):1–16, 1994.

[Hup98] Bertram Huppert. Character theory of finite groups, volume 25 of de Gruyter
Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1998.

[HW76] W. C. Huffman and D. B. Wales. Linear groups of degree eight with no
elements of order seven. Illinois J. Math., 20(3):519–527, 1976.

[HW78] W. C. Huffman and D. B. Wales. Linear groups of degree nine with no
elements of order seven. J. Algebra, 51(1):149–163, 1978.

[Isa06] I. Martin Isaacs. Character theory of finite groups. AMS Chelsea Publishing,
Providence, RI, 2006. Corrected reprint of the 1976 original [Academic Press,
New York; MR0460423].

[Jac89] Nathan Jacobson. Basic algebra. II. W. H. Freeman and Company, New York,
second edition, 1989.

[Jan66] G. J. Janusz. Primitive idempotents in group algebras. Proc. Amer. Math.
Soc., 17:520–523, 1966.

208

[KB79] R. Kannan and A. Bachem. Polynomial algorithms for computing the smith
and hermite normal forms of an integer matrix. SIAM J. Computing, 9:499–
507, 1979.

[KP02] James Kuzmanovich and Andrey Pavlichenkov. Finite groups of matrices
whose entries are integers. The American Mathematical Monthly, 109(2):173–
186, 2002.

[LaM91] B.A. LaMacchia. Basis reduction algorithms and subset sum problems. Sm
thesis, Dept. of Elect. Eng. and Comp. Sci., Massachusetts Institute of Tech-
nology, 1991. URL:http://www.farcaster.com/papers/sm-thesis/index.htm.

[Lin71] J. H. Lindsey, II. Finite linear groups of degree six. Canad. J. Math., 23:771–
790, 1971.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261(4):515–534, 1982.

[LP10] Klaus Lux and Herbert Pahlings. Representations of Groups. Cambridge
University Press, 2010.

[LS03] Klaus M. Lux and Magdolna Szőke. Computing homomorphism spaces be-
tween modules over finite dimensional algebras. Experiment. Math., 12(1):91–
98, 2003.

[Lüb02] F. Lübeck. On the computation of elementary divisors of integer matrices. J.
Symbolic Comp., 33:57–65, 2002.

[Lux97] Klaus Lux. Algorithmic methods in modular representation theory. Habilita-
tionsschrift, RWTH Aachen, 1997.

[LW98] Klaus Lux and Markus Wiegelmann. Condensing tensor product modules. In
The atlas of finite groups: ten years on (Birmingham, 1995), volume 249 of
London Math. Soc. Lecture Note Ser., pages 174–190. Cambridge Univ. Press,
Cambridge, 1998.

[Min96] Torsten Minkwitz. Extensions of irreducible representations. Appl. Algebra
Engrg. Comm. Comput., 7(5):391–399, 1996.

[MNRW02] Jürgen Müller, Max Neunhöffer, Frank Röhr, and Robert Wilson. Completing
the Brauer trees for the sporadic simple Lyons group. LMS J. Comput. Math.,
5:18–33 (electronic), 2002.

[Mon04] Michael Monagan. Maximal quotient rational reconstruction: an almost opti-
mal algorithm for rational reconstruction. In Proceedings of the 2004 interna-
tional symposium on Symbolic and algebraic computation, ISSAC ’04, pages
243–249, New York, NY, USA, 2004. ACM.

[MR99] Jürgen Müller and Jens Rosenboom. Condensation of induced representations
and an application: the 2-modular decomposition numbers of Co2. In Com-
putational methods for representations of groups and algebras (Essen, 1997),
volume 173 of Progr. Math., pages 309–321. Birkhäuser, Basel, 1999.

[Mül04] Jüergen Müller. Computation representation theory: Re-
marks on condensation. Preprint, RWTH Aachen,
www.math.rwth-aachen.de/∼Juergen.Mueller/preprints/jm102.pdf,
2004.

209

[MW01] Daniele Micciancio and Bogdan Warinschi. A linear space algorithm for com-
puting the Hermite normal form. In Proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, pages 231–236 (elec-
tronic), New York, 2001. ACM.

[Nic06] S.J. Nickerson. An atlas of characteristic zero representa-
tions. PhD thesis, University of Birmingham, 2006. URL:
http://www.maths.qmul.ac.uk/∼raw/SJNphd.pdf.

[Noe07] Felix Noeske. Tackling the generation problem in condensation. J. Algebra,
309(2):711–722, 2007.

[NS09a] Gabriele Nebe and Allan Steel. Recognition of division algebras. J. Algebra,
322(3):903–909, 2009.

[NS09b] Phong Q. Nguyen and Damien Stehlé. An lll algorithm with quadratic com-
plexity. SIAM Journal on Computing, 39(3):874–903, 2009.

[NVe09] P. Q. Nguyen and B. Vallée (editors). The LLL Algorithm: Survey and Ap-
plications. Information Security and Cryptography. Springer-Verlag, 2009.

[O’B06] E. A. O’Brien. Towards effective algorithms for linear groups. In Finite ge-
ometries, groups, and computation, pages 163–190. Walter de Gruyter, Berlin,
2006.

[Par84] R. A. Parker. The computer calculation of modular characters (the meat-axe).
In Computational group theory (Durham, 1982), pages 267–274. Academic
Press, London, 1984.

[Par98] Richard A. Parker. An integral meataxe. In The atlas of finite groups: ten
years on (Birmingham, 1995), volume 249 of London Math. Soc. Lecture Note
Ser., pages 215–228. Cambridge Univ. Press, Cambridge, 1998.

[Per95] Martin Pergler. Complex representations of GL(2, q). C. R. Math. Rep. Acad.
Sci. Canada, 17(5):207–212, 1995.

[Poh93] Michael E. Pohst. Computational algebraic number theory, volume 21 of DMV
Seminar. Birkhäuser Verlag, Basel, 1993.

[PS83] Ilya Piatetski-Shapiro. Complex representations of GL(2, K) for finite fields
K, volume 16 of Contemporary Mathematics. American Mathematical Society,
Providence, R.I., 1983.

[PS96] Wilhelm Plesken and Bernd Souvignier. Constructing rational representations
of finite groups. Experiment. Math., 5(1):39–47, 1996.

[PS97] W. Plesken and B. Souvignier. Analysing finitely presented groups by con-
structing representations. J. Symbolic Comput., 24(3-4):335–349, 1997. Com-
putational algebra and number theory (London, 1993).

[PS98] W. Plesken and B. Souvignier. Constructing representations of finite groups
and applications to finitely presented groups. J. Algebra, 202(2):690–703,
1998.

[Püs02] Markus Püschel. Decomposing monomial representations of solvable groups.
J. Symbolic Comput., 34(6):561–596, 2002.

210

[Rei03] Irving Reiner. Maximal Orders, volume 28 of LMS Monographs. Oxford
University Press, 2003.

[Ros10] Tobias Rossmann. Irreducibility testing of finite nilpotent linear groups. Jour-
nal of Algebra, 324(5):1114 – 1124, 2010. Computational Algebra.

[Ryb90] A. J. E. Ryba. Computer condensation of modular representations. J. Sym-
bolic Comput., 9(5-6):591–600, 1990. Computational group theory, Part 1.

[Sch04] I. Schur. Über die Darstellung der endlichen Gruppen durch gebrochene lin-
eare Substitutionen. 127:20–50, 1904.

[Sch11] I. Schur. Über die Darstellung der symmetrischen und der alternierenden
Gruppe durch gebrochene lineare Substitutionen. 139:155–250, 1911.

[Sch02] T. Schulz. Konstruktion rationaler Darstellungen endlicher Gruppen (Con-
struction of rational representations of finite groups). PhD thesis, RWTH
Aachen, 2002.

[SE91] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical
algorithms and solving subset sum problems. In Fundamentals of computation
theory (Gosen, 1991), volume 529 of Lecture Notes in Comput. Sci., pages 68–
85. Springer, Berlin, 1991.

[Sey93] M. Seysen. Simultaneous reduction of a lattice basis and its reciprocal basis.
Combinatorica, 13(3):363–376, 1993.

[Sim05] Denis Simon. Solving quadratic equations using reduced unimodular quadratic
forms. Math. Comp., 74(251):1531–1543 (electronic), 2005.

[Smi61] Henry John Stephen Smith. On systems of linear indeterminate equations
and congruences. Philosophical Transactions of the Royal Society, 151:293–
326, 1861.

[Sou09] Bernd Souvignier. Decomposing homogeneous modules of finite groups in
characteristic zero. J. Algebra, 322(3):948–956, 2009.

[Ste97] Allan Steel. A new algorithm for the computation of canonical forms of matri-
ces over fields. J. Symbolic Comput., 24(3-4):409–432, 1997. Computational
algebra and number theory (London, 1993).

[Ste09] Damien Stehlé. Floating-point LLL: theoretical and practical aspects, chap-
ter 5, pages 179–214. Information Security and Cryptography. Springer-
Verlag, 2009.

[Ste11] Allan Steel. Ordinary representations of finite groups [web-
page]. URL: http://magma.maths.usyd.edu.au/users/allan/reps/ or
http://tinyurl.com/OrdReps, 2011.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–
356, 1969.

[SW97] Ibrahim A. I. Suleiman and Robert A. Wilson. The 2-modular characters of
Conway’s third group Co3. J. Symbolic Comput., 24(3-4):493–506, 1997.

[Sze99] Fernando Szechtman. Weil representations of unitary groups. J. Algebra,
221(1):161–187, 1999.

211

[Tan67] Shun’ichi Tanaka. Construction and classification of irreducible representa-
tions of special linear group of the second order over a finite field. Osaka J.
Math., 4:65–84, 1967.

[Tha81] J.G. Thackray. Modular representations of some finite groups. PhD thesis,
University of Cambridge, 1981.

[Tra76] Barry M. Trager. Algebraic factoring and rational function integration. In
R.D. Jenks, editor, Proc. SYMSAC ’76, pages 196–208. ACM press, 1976.

[Ung06] W. R. Unger. Computing the character table of a finite group. J. Symbolic
Comput., 41(8):847–862, 2006.

[Ung09] William Unger. An algorithm for computing Schur indices of characters. Sub-
mitted to J. Algebra (Section on Computational Algebra), 2009.

[Ung10] William Unger. Private communication. 2010.

[vzGG03] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, Cambridge, second edition, 2003.

[Wal68] David B. Wales. Finite linear groups in seven variables. Bull. Amer. Math.
Soc., 74:197–198, 1968.

[Wal69] David B. Wales. Finite linear groups of degree seven. I. Canad. J. Math.,
21:1042–1056, 1969.

[Wha] R. Clint Whaley. Automatically tuned linear algebra software (atlas).
http://math-atlas.sourceforge.net/.

[Wil96] Robert A. Wilson. Standard generators for sporadic simple groups. J. Algebra,
184(2):505–515, 1996.

[Wil98a] Robert A. Wilson. An atlas of sporadic group representations. In The atlas of
finite groups: ten years on (Birmingham, 1995), volume 249 of London Math.
Soc. Lecture Note Ser., pages 261–273. Cambridge Univ. Press, Cambridge,
1998.

[Wil98b] Robert A. Wilson. A representation for the Lyons group in GL2480(4), and a
new uniqueness proof. Arch. Math. (Basel), 70(1):11–15, 1998.

[Wil99] Robert A. Wilson. Construction of finite matrix groups. In Computational
methods for representations of groups and algebras (Essen, 1997), volume 173
of Progr. Math., pages 61–83. Birkhäuser, Basel, 1999.

[Wil02] Robert A. Wilson. Condensation. Unpublished notes, University of Sydney,
2002.

[Wil09] Robert A. Wilson. The finite simple groups, volume 251 of Graduate Texts in
Mathematics. Springer-Verlag London Ltd., London, 2009.

[WP05] R. Clint Whaley and Antoine Petitet. Minimizing development
and maintenance costs in supporting persistently optimized BLAS.
Software: Practice and Experience, 35(2):101–121, February 2005.
http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

[WWT+] R. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Nor-
ton, S. Nickerson, S. Linton, J. Bray, and R. Abbott. Atlas of finite group
representations. URL: http://brauer.maths.qmul.ac.uk/Atlas/v3.

212

