This exam consists of five questions, each worth 20 marks. Please attempt all the questions. This is a take-home, open-book exam. Unless stated otherwise, you may use a computational algebra package; you should print out a copy of your calculations and submit them along with your solutions.

1. State clearly the definition of Gröbner basis, and the definition of S-polynomial. Explain how the S-polynomial is used when calculating a Gröbner basis.

Without the aid of a computer, find a Gröbner basis for the ideal:

$$
\left(y^{2}-x, z^{4}-y^{2}\right)
$$

Be sure that you indicate which monomial order you are using, and that you explain how you know that your answer is a Gröbner basis,

Is your Gröbner basis minimal? Is it reduced? If not, adjust it so that it is.
2. (i) Find all possible solutions to the system of equations:

$$
\left\{\begin{array}{l}
x^{10}-22 x^{6}+51 x^{4}-48 x^{2}+18=-18 y \\
x^{10}-22 x^{6}+51 x^{4}-30 x^{2}+18=18 z \\
x^{12}-9 x^{10}+32 x^{8}-57 x^{6}+51 x^{4}-18 x^{2}=0
\end{array}\right.
$$

If appropriate, write your solutions in terms of ζ and ζ^{2}, where $1, \zeta$ and ζ^{2} are the three cube roots of unity.
(ii) Find a parameterisation for the curve:

$$
\mathbb{V}\left(x^{2} z-y^{2}, y x-x+1\right) \subset \mathbb{R}^{3}
$$

What is the image of its projection along the x-axis onto the (y, z)-plane? In the image of this projection, explain what's happening at the point $(1,0)$.
3. State the definition of monomial ideal. Prove that if

$$
I=\left(x^{\alpha} \mid \alpha \in A\right)
$$

is a monomial ideal, then a monomial $x^{\beta} \in I$ if and only if x^{β} is divisible by x^{α} for some $\alpha \in A$.

Sketch a picture of the monomials contained in the ideal:

$$
J=\left(x^{6}, x^{5} y, x^{3} y^{2}, x^{2} y^{3}, y^{5}\right) \subset k[x, y] .
$$

If we perform the division algorithm on some $f \in k[x, y]$ using the generators of J as divisors, write down explicitly which terms can appear in the remainder. Making sure that you state which monomial order you are using, calculate the remainder when $f=2 x^{3}+x^{7} y^{2}+3 x^{2} y+y^{6}$.
4. (i) Let $I=\left(f_{1}, \ldots, f_{r}\right)$ be an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Prove that $f \in \sqrt{I}$ if and only if $1 \in\left(f_{1}, \ldots, f_{r}, 1-w f\right) \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}, w\right]$.
(ii) If $I=\left(x y^{2}-2 y^{2}, x^{4}-2 x^{2}+1\right) \subset \mathbb{C}[x, y]$ and $f=y-x^{2}+1$, is $f \in \sqrt{I}$? If so, what is the smallest power $m>0$ of f such that $f^{m} \in I$?
(iii) Let $I=\left(\left(x^{7}-x^{6}-2 x^{5}+2 x^{4}+x^{3}-x^{2}\right) y^{2}+\left(2 x^{5}-4 x^{4}+4 x^{2}-2 x\right) y^{3}+\left(x^{3}-\right.\right.$ $\left.3 x^{2}+3 x-1\right) y^{4}$) be a principal ideal in $\mathbb{C}[x, y]$. Find \sqrt{I}.
5. Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial. We say that f has a singularity at the point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ if its partial derivatives all vanish at that point; i.e. if:

$$
\frac{\partial f}{\partial x_{1}}\left(a_{1}, \ldots, a_{n}\right)=\ldots=\frac{\partial f}{\partial x_{n}}\left(a_{1}, \ldots, a_{n}\right)=0
$$

(i) Let $f=\left(x^{4}+y^{4}\right)^{2}-x^{2} y^{2} \in \mathbb{R}[x, y]$. By performing a suitable Gröbner basis calculation, show that $\mathbb{V}(f, \partial f / \partial x, \partial f / \partial y)=\{(0,0)\}$. Hence or otherwise conclude that $f=0$ has only one singular point, at the origin.
(ii) Show that $g=2 x y^{5}+5 y^{2} z^{4}-3 x^{2} z^{4}$ has two lines of singularities. What are they?

