1. Let \(f(x) = \begin{cases} -x^2 & x < 0 \\ x & 0 \leq x \leq 1 \\ x + 1 & x > 1 \end{cases} \)

(a) Sketch the graph of \(f \). What is the range of \(f \).

You should fill lable the axes and fill put tics on them to indicate the scale. The range of \(f \) is all real numbers except those in the interval \((1, 2]\).

(b) For which values of \(a \) is \(f \) discontinuous at \(x = a \)? Give a reason why \(f \) is not continuous at this value(s).

\(f \) is continuous at all values except \(x = 2 \). At this point, the limit does not exist. Specifically, \(\lim_{x \to a^-} f(x) = 1 \) and \(\lim_{x \to a^+} f(x) = 2 \) are not equal.

(c) See (b).
2. Find the derivatives of the following functions.

(a) \(y = (1 + x^2)^{100} \), \(y' = 100(1 + x^2)^{99}(2x) = 200x(1 + x^2)^{99} \).

(b) \(y = (x + 1)\sin(x) \),

\[
 y' = (1)\sin(x) + (x + 1)(-\cos(x)) \quad \text{product rule}
 \]

\[
 = \sin(x) - (x + 1)\cos(x)
 \]

(c) \(y = \frac{\sqrt{1-x^2}}{x} \), First, let \(f(x) = \sqrt{1-x^2} \) and \(g(x) = x \). Using the chain rule,

\[
 f'(x) = -\frac{x}{\sqrt{1-x^2}},
 \]

and clearly \(g'(x) = 1 \). Using the quotient rule and the above derivatives

\[
 y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}
 \]

\[
 = -\frac{x^2}{\sqrt{1-x^2}} - \sqrt{1-x^2}
 \]

\[
 = -\frac{1}{x^2\sqrt{1-x^2}}
 \]

(d) \(y = (x^2+1)\sqrt{x^2+2} \), First, let \(f(x) = x^2+1 \) and let \(g(x) = \sqrt{x^2+2} \). Then \(f'(x) = 2x \), and, using the chain rule, \(g'(x) = \frac{2x}{3(2x^2+1)^{\frac{3}{2}}} \). Hence, using the product rule,

\[
 y' = f'(x)g(x) + f(x)g'(x)
 \]

\[
 = 2x\sqrt{x^2+2} + \frac{2x(x^2+1)}{3(2x^2+1)^{\frac{3}{2}}}
 \]

\[
 = \frac{6x^2+2x}{3(2x^2+1)^{\frac{3}{2}}}
 \]

\[
 = \frac{8x^3+14x}{3(2x^2+1)^{\frac{3}{2}}}
 \]

3. Evaluate the following limits:

(a) \(\lim_{x\to 25} \frac{\sqrt{x} - 5}{x - 25} = \lim_{x\to 25} \frac{\sqrt{x} - 5}{(\sqrt{x} - 5)(\sqrt{x} + 5)} = \frac{1}{10} \).

(b) \(\lim_{x\to \infty} \frac{3x^3 - 2x^2}{x^3 + 3x - 1} = 3 \).

(c) \(\lim_{x\to 2} \frac{x^2 - 4}{x^2 - 4x + 4} = \lim_{x\to 2} \frac{(x - 2)(x + 2)}{(x - 2)^2} = \lim_{x\to 2} \frac{(x + 2)}{(x - 2)} = +\infty \)
4. Let \(f(x) = \sqrt{2x+1} \) and \(g(x) = x^2 \).

 (a) The domain of \(f \) is all real numbers \(x \) such that \(x \geq -1/2 \).

 (b) \(f(g(x)) = \sqrt{2x^2 + 1} \)

 (c) The domain of \(f(g(x)) \) is all real numbers.

5. Let \(f(x) = x^3 - 3x^2 - 8x \).

 (a) Find the equation of the tangent line to the curve \(y = f(x) \) at the point \((1, -10)\).

 This is the line with slope \(m = f'(1) = 3(1)^2 - 6(1) - 8 = -11 \) passing through the point \((1, -10)\). An equation for this line is
 \[y + 10 = -11(x - 1) \]

 (b) The tangent line has slope one whenever \(f'(x) = 1 \). Since \(f'(x) = 3x^2 - 6x - 8 \), this occurs when \(x = 3 \) or \(x = -1 \).

6. Compute \(f'(x) \) from the definition of the derivative when \(f(x) = 3x - x^2 \).

 \[
 f'(x) = \lim_{h\to0} \frac{f(x+h) - f(x)}{h} = \lim_{h\to0} \frac{(3(x+h) - (x+h)^2) - (3x - x^2)}{h} = \lim_{h\to0} \frac{3x + 3h - x^2 - 2xh - h^2 - 3x + x^2}{h} = \lim_{h\to0} \frac{(3 - 2x)h - h^2}{h} = \lim_{h\to0} ((3 - 2x) - h) = 3 - 2x
 \]