1. Let $f(x)= \begin{cases}-x^{2} & x<0 \\ x & 0 \leq x \leq 1 \\ x+1 & x>1\end{cases}$
(a) Sketch the graph of f. What is the range of f.

You should fill lable the axes and fill put tics on them to indicate the scale. The range of f is all real numbers except those in the interval $(1,2]$
(b) For which values of a is f discontinuous at $x=a$? Give a reason why f is not continuous at this value(s).
f is continuous at all values except $x=2$. At this point, the limit does not exist. Specifically, $\lim _{x \rightarrow a^{-}} f(x)=1$ and $\lim _{x \rightarrow a^{+}} f(x)=2$ are not equal.
(c) See (b).
2. Find the derivatives of the following functions.
(a) $y=\left(1+x^{2}\right)^{100}, y^{\prime}=100\left(1+x^{2}\right)^{99}(2 x)=200 x\left(1+x^{2}\right)^{99}$.
(b) $y=(x+1) \sin (x)$,

$$
\begin{array}{rlr}
y^{\prime} & =(1) \sin (x)+(x+1)(-\cos (x)) \quad \text { product rule } \\
& =\sin (x)-(x+1) \cos (x) &
\end{array}
$$

(c) $y=\frac{\sqrt{1-x^{2}}}{x}$, First, let $f(x)=\sqrt{1-x^{2}}$ and $g(x)=x$. Using the chain rule,

$$
f^{\prime}(x)=-\frac{x}{\sqrt{1-x^{2}}}
$$

and clearly $g^{\prime}(x)=1$. Using the quotient rule and the above derivatives

$$
\begin{aligned}
y^{\prime} & =\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
& =\frac{-\frac{x^{2}}{\sqrt{1-x^{2}}}-\sqrt{1-x^{2}}}{x^{2}} \\
& =-\frac{1}{x^{2} \sqrt{1-x^{2}}}
\end{aligned}
$$

(d) $y=\left(x^{2}+1\right) \sqrt[3]{x^{2}+2}$, First, let $f(x)=x^{2}+1$ and let $g(x)=\sqrt[3]{x^{2}+2}$. Then $f^{\prime}(x)=2 x$, and, using the chain rule, $g^{\prime}(x)=\frac{2 x}{3\left(x^{2}+2\right)^{\frac{2}{3}}}$. Hence, using the product rule,

$$
\begin{aligned}
y^{\prime} & =f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
& =2 x \sqrt[3]{x^{2}+2}+\frac{2 x\left(x^{2}+1\right)}{3\left(x^{2}+2\right)^{2 / 3}} \\
& =\frac{6 x\left(x^{2}+2\right)+2 x\left(x^{2}+1\right)}{3\left(x^{2}+2\right)^{2 / 3}} \\
& =\frac{8 x^{3}+14 x}{3\left(x^{2}+2\right)^{2 / 3}}
\end{aligned}
$$

3. Evaluate the following limits:
(a) $\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{x-25}=\lim _{x \rightarrow 25} \frac{\sqrt{x}-5}{(\sqrt{x}-5)(\sqrt{x}+5)}=\frac{1}{10}$.
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x^{2}}{x^{3}+3 x-1}=3$.
(c) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-4}{x^{2}-4 x+4}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)(x+2)}{(x-2)^{2}}=\lim _{x \rightarrow 2^{+}} \frac{(x+2)}{(x-2)}=+\infty$
4. Let $f(x)=\sqrt{2 x+1}$ and $g(x)=x^{2}$.
(a) The domain of f is all real numbers x such that $x \geq-1 / 2$.
(b) $f(g(x))=\sqrt{2 x^{2}+1}$
(c) The domain of $f(g(x))$ is all real numbers.
5. Let $f(x)=x^{3}-3 x^{2}-8 x$.
(a) Find the equation of the tangent line to the curve $y=f(x)$ at the point $(1,-10)$.

This is the line with slope $m=f^{\prime}(1)=3(1)^{2}-6(1)-8=-11$ passing through the point $(1,-10)$. An equation for this line is

$$
y+10=-11(x-1)
$$

(b) The tangent line has slope one whenever $f^{\prime}(x)=1$. Since $f^{\prime}(x)=3 x^{2}-6 x-8$, this occurs when $x=3$ or $x=-1$.
6. Compute $f^{\prime}(x)$ from the definition of the derivative when $f(x)=3 x-x^{2}$.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3(x+h)-(x+h)^{2}\right)-\left(3 x-x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x+3 h-x^{2}-2 x h-h^{2}-3 x+x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(3-2 x) h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0}((3-2 x)-h) \\
& =3-2 x
\end{aligned}
$$

