MATH1003

QUIZ 3 - MOCK MID-TERM

This quiz has five questions, with each question worth 5 marks.
The quiz lasts for one-and-a-half hours. No calculators, books etc. are allowed.

1. The function $f:(-7,7) \rightarrow \mathbb{R}$ is drawn in Figure 1 for $0 \leq x<7$. Taking care to

Figure 1. The graph of $y=f(x)$ for $0 \leq x<7$.
label your graphs clearly, sketch $y=f(x)$ for all values of x in the domain of f, assuming that:
(i) f is an even function;
(ii) f is an odd function;
(iii) f is neither even nor odd.
2. The rational function $f(x)$ and the polynomial $g(x)$ are defined by:

$$
f(x)=\frac{1}{x+1}, \quad g(x)=x^{3}+1
$$

(i) What are the domains of f and g ?
(ii) Find an expression for $f \circ g$, and state the domain.
(iii) Find an expression for $g \circ f$, and state the domain.
(iv) What can we say about the continuity of $f \circ g$ and $g \circ f$?

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

3. The piecewise function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is given by:

$$
\varphi(x)= \begin{cases}x+1, & \text { if } x \leq 1 \\ x^{2}, & \text { otherwise }\end{cases}
$$

(i) Sketch the graph of $y=\varphi(x)$.
(ii) By calculating the left and right limits separately as $x \rightarrow 1$, or otherwise, calculate $\lim _{x \rightarrow 1} \varphi(x)$ or explain why no such limit exists.
(iii) State the definition of what it means for a function to be continuous at a point a. When is φ continuous?
4. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be the curve given by $F(x)=\sqrt{x^{2}+5}$.
(i) State the definition of what it means for a function to be differentiable.
(ii) From the definition in (i), calculate $F^{\prime}(x)$.
(iii) Verify that the point $(2,3)$ lies on the curve $y=F(x)$.
(iv) Find the equation of the line tangent to $y=F(x)$ at $(2,3)$.
5. Evaluate the following limits, or give a reason why they do not exist:
(i) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$,
(ii) $\lim _{x \rightarrow \infty} \frac{1+x}{\sqrt{2 x^{2}+1}}$,
(iii) $\lim _{x \rightarrow \infty} e^{-x} \cos x$.

