MATH1003

QUIZ 2, QUESTION 2 (II)

Question 2(ii) was a mistake on my part, and is exceptionally difficult to do without resorting to a calculator (in which case it is trivial). Here is one possible solution.

Question. Show that there is a solution to $\ln x=e^{-x}$ in the interval $(1,2)$.
Solution. Note that $e<4$ and so $\sqrt{e}<2$. Hence it is sufficient to show that there is a solution in the smaller interval $(1, \sqrt{e})$.

Observe that $\ln 1=0<e^{-1}$. If we can show that $\ln \sqrt{e}>e^{-\sqrt{e}}$ then we are done, via the Intermediate Value Theorem.

Since e^{x} is strictly increasing, we have that $e^{-\sqrt{e}}<e^{-1}$. Hence it is enough to prove that:

$$
\ln \sqrt{e}>e^{-1} .
$$

Suppose for a contradiction that $\ln \sqrt{e} \leq e^{-1}$. By the Laws of Logarithms we have that:

$$
\begin{array}{rlrl}
\ln \sqrt{e} & \leq e^{-1} \\
\Rightarrow \quad & & \frac{1}{2} \ln e & \leq e^{-1} \\
\Rightarrow \quad & \frac{1}{2} & \leq e^{-1} \\
\Rightarrow \quad & & e & \leq 2
\end{array}
$$

But this is absurd (since $e>2$). Hence our assumption that $\ln \sqrt{e} \leq e^{-1}$ must be false, and thus $\ln \sqrt{e}>e^{-1}$, as required.

[^0]
[^0]: http://erdos.math.unb.ca/~kasprzyk/
 kasprzyk@unb.ca.

