MATH1003 PRACTICE MID-TERM

This exam has five questions, with each question worth 5 marks.
The exam lasts for one-and-a-half hours. No calculators, books etc. are allowed.

1. Sketch the curve $y=\left|x^{2}-2\right|$. Find the equation of the tangent line to the curve at the point $(-1,1)$. At what point does this tangent line cross the y-axis?
2. Using the rules of differentiation, differentiate the following functions:
(i) $y=\left(\tan x+x^{2}\right)^{3 / 2}$,
(ii) $u(t)=\frac{\sec t}{t}$,
(iii) $f(\theta)=\sqrt{\theta} e^{2 \theta}+1$,
(iv) $y=\sin ^{-1}(2 x)$,
(v) $g(t)=\frac{\cos 2 t}{t^{2}}$.
3. The piece-wise function $s(x)$ is given by:

$$
s(x)= \begin{cases}\frac{1}{x}, & \text { when } x<-1 \\ x^{2}, & \text { when }-1 \leq x<2 \\ 2 x, & \text { when } x \geq 2\end{cases}
$$

(i) Sketch a graph of $y=s(x)$. State the domain and range.
(ii) Evaluate the following limits:
(a) $\lim _{x \rightarrow-1^{-}} s(x)$,
(b) $\lim _{x \rightarrow-1^{+}} s(x)$,
(c) $\lim _{x \rightarrow 2^{-}} s(x)$,
(d) $\lim _{x \rightarrow 2^{+}} s(x)$.
(iii) When is $s(x)$ continuous? Give a brief justification for your answer.

```
http://erdos.math.unb.ca/~kasprzyk/
kasprzyk@unb.ca.
```

4. (i) State a definition of derivative in terms of limits.
(ii) Using your definition in (i), calculate the derivative of:

$$
f(t)=9+5 t-2 t^{2}
$$

(iii) When is $f^{\prime}(t)=0$?
5. Evaluate the following limits, or give a reason why they do not exist:
(i) $\lim _{t \rightarrow 3^{+}} \frac{2}{\sqrt{t-3}}$,
(ii) $\lim _{x \rightarrow 0}\left(7 x+\frac{\sin (3 x)}{7 x}\right)$,
(iii) $\lim _{t \rightarrow 2} \frac{t^{2}-3 t+2}{t^{2}-t-2}$,
(iv) $\lim _{x \rightarrow \infty} \frac{x^{2}-5}{3 x^{2}+2 x-1}$.

