1. Let \(f : [0, 2] \to \mathbb{R} \) be given by \(f(x) = x^3 + x - 1 \). Verify that the function satisfies the hypotheses of the Mean Value Theorem. Find all numbers \(c \) that satisfy the conclusion of the Mean Value Theorem.

2. Prove the following result:

 Proposition. Let \(f \) and \(g \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Suppose also that \(f(a) = g(a) \) and \(f'(x) < g'(x) \) for \(a < x < b \). Then \(f(b) < g(b) \).

 (Hint: Apply the Mean Value Theorem to the function \(h = f - g \).)

3. The graph of the first derivative \(f' \) of a function \(f \) is given in Figure 1.

![Figure 1](http://erdos.math.unb.ca/~kasprzyk/kasprzyk@unb.ca)

 Figure 1. The graph of \(y = f'(x) \).

 (i) On what intervals is \(f \) increasing?
(ii) At which values of x does f have a local minimum or maximum?

(iii) On what intervals if f concave upwards or concave downwards?

(iv) What are the x-coordinates of the inflection points of f?

Remember to justify your answers.

4. Let $B(x) = 3x^{2/3} - x$.

 (i) Find the intervals of increase or decrease.

 (ii) Find the local minimum and maximum values.

 (iii) Find the intervals of concavity and the inflection points.

 (iv) Using these results, sketch a graph of $y = B(x)$.

5. Consider the function $y = x^2 - 2x^4$.

 (i) Find the points of intersection with the axes.

 (ii) Find any asymptotes.

 (iii) What happens as $x \to \pm\infty$?

 (iv) Find the local minima and maxima, the intervals of concavity, and the points of inflection.

 (v) Sketch the function.