MATH1003

ASSIGNMENT 6

Suggested practice questions (the answers are in the back of the textbook):

- §3.4; 51, 53, 59, 61, 71.
- §3.5; 5, 7, 9, 11, 27, 31.

1. Let $g(x)+x \sin g(x)=x^{2}$, and $g(1)=0$. Find $g^{\prime}(1)$ and $g^{\prime \prime}(1)$.
2. Differentiate the following functions to find an expression for $d y / d x$ in terms of x and y :
(i) $y \sin x^{2}=x \sin y^{2}$,
(ii) $x y=\cot (x y)$,
(iii) $1+x=\sin \left(x y^{2}\right)$.

Figure 1. The graphs of $x^{2}-x y+y^{2}=3$ and $\left(x^{2}+y^{2}\right)^{2}=2\left(x^{2}-y^{2}\right)$.
3. Find the derivative of the following functions, simplifying where possible:
(i) $y=\tan ^{-1} x$,
(ii) $y=\tan ^{-1} \sqrt{x}$,

[^0](iii) $y=\tan ^{-1} x+\cos ^{-1} x$.
4. The graph of $x^{2}-x y+y^{2}=3$ is called a "tilted ellipse" (see the left-hand graph of Figure 11. Find the minimum and maximum values of y that this graph takes, and the minimum and maximum values of x.
5. The graph of $\left(x^{2}+y^{2}\right)^{2}=2\left(x^{2}-y^{2}\right)$ is called a "lemniscate" and is depicted in the right-hand graph of Figure 1. At what points is the tangent to the graph parallel to the x-axis? Have you any comments to make about this result?

[^0]: http://erdos.math.unb.ca/~kasprzyk/
 kasprzyk@unb.ca.

