1. Differentiate the following functions:

(i) \(y = \sec x \),

(ii) \(y = \frac{x^2}{\cos x} \),

(iii) \(y = \sec x(x - \cot x) \),

(iv) \(y = \sin(\sin(\sin x)) \),

(v) \(y = \frac{(\csc x)^4}{2x^2} \).

2. Let \(y = \sin 2x - 2\sin x \). For what values of \(x \) is the tangent line parallel to the \(x \)-axis?

3. Suppose that \(f \) is differentiable on \(\mathbb{R} \). Given \(F \) as follows, find an expression for \(F' \).

(i) \(F(x) = f(e^x) \),

(ii) \(F(x) = e^{f(x)} \),

(iii) \(F(x) = f(x^\alpha) \),

(iv) \(F(x) = f(x)^\alpha \).

4. Let \(y = e^{-rx} \), where \(r \) is a constant.

(i) Find expressions for \(y' \) and \(y'' \) in terms of \(y \) and \(r \).

(ii) Show that the following equation is satisfied:

\[y'' + 2ry' + r^2y = 0. \]

(iii) Write down a function which satisfies:

\[y'' - 6y' + 9y = 18. \]